

 D2.3
Version 1.0

Author TUB

Dissemination PU

Date 30-06-2018

Status FINAL

D2.3 ElasTest requirements, use-cases and
architecture v1

Project acronym ELASTEST

Project title ElasTest: an elastic platform for testing complex distributed
large software systems

Project duration 01-01-2017 to 31-12-2019

Project type H2020-ICT-2016-1. Software Technologies

Project reference 731535

Project website http://elastest.eu/

Work package WP2

WP leader TUB

Deliverable nature Public

Lead editor Varun Gowtham

Planned delivery date 30-06-2018

Actual delivery date 30-06-2018

Keywords Open source software, cloud computing, software
engineering, operating systems, computer languages,
software design & development

Funded by the European Union

http://elastest.eu/

D2.3 ElasTest requirements, use-cases and architecture

2

License

This is a public deliverable that is provided to the community under a Creative
Commons Attribution-ShareAlike 4.0 International License:

http://creativecommons.org/licenses/by-sa/4.0/

You are free to:

Share — copy and redistribute the material in any medium or format.

Adapt — remix, transform, and build upon the material for any purpose, even
commercially.

The licensor cannot revoke these freedoms as long as you follow the license
terms.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license,
and indicate if changes were made. You may do so in any reasonable manner,
but not in any way that suggests the licensor endorses you or your use.

ShareAlike — If you remix, transform, or build upon the material, you must
distribute your contributions under the same license as the original.

No additional restrictions — You may not apply legal terms or technological
measures that legally restrict others from doing anything the license permits.

Notices:

You do not have to comply with the license for elements of the material in the
public domain or where your use is permitted by an applicable exception or
limitation.

No warranties are given. The license may not give you all of the permissions
necessary for your intended use. For example, other rights such as publicity,
privacy, or moral rights may limit how you use the material.

For a full description of the license legal terms, please refer to:

http://creativecommons.org/licenses/by-sa/4.0/legalcode

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/legalcode

D2.3 ElasTest requirements, use-cases and architecture

3

Contributors

Name Affiliation

Guglielmo De
Angelis

CNR

Francisco Díaz URJC

Andy Edmonds ZHAW

Boni García URJC

Nikolaos Stavros
Gavalas

RELATIONAL

Felipe Gorostiaga IMDEA

Francisco Gortázar URJC

Varun Gowtham TUB

Pablo Chico de
Guzman

IMDEA

Piyush Harsh ZHAW

Magdalena
Kacmajor

IBM

Francesca Lonetti CNR

Enric Pages ATOS

Michael Pauls TUB

David Rojo ATOS

Cesar Sanchez IMDEA

Avinash
Sudhodanan

IMDEA

Guiomar Tuñon NAEVATEC

D2.3 ElasTest requirements, use-cases and architecture

4

Version history

Version Date Author(s) Description of changes

0.0 15-02-2018 E.Pages

M. Gallego

Initial ToC and content

0.1 15-02-2018 E. Pages

M. Gallego

V. Gowtham

Revised ToC and initial content

0.2 23-05-2018 M. Gallego

V. Gowtham

Add component descriptions

Add user requirement list

Revision and update of use cases section

0.4 05-06-2018 V. Gowtham Update user requirements table

0.5 05-06-2018 V. Gowtham Add list of contributors

Edit the document

0.6 13-06-2018 E. Pages

M. Gallego

Update user requirements table

0.6 13-06-2018 V. Gowtham Modifiy introduction

0.7 22-06-2018 F. Gortázar Modify introduction

0.8 26-06-2018 V. Gowtham Change as per peer review and editing

0.8 26-06-2018 ALL Internal review

0.9 27-06-2018 V. Gowtham Reformat the report

0.10 28-06-2018 E. Pages Modify architecture overview section

1.0 29-06-2018 V. Gowtham Reorganizing content and editing

 Final version preparation

D2.3 ElasTest requirements, use-cases and architecture

5

Table of contents

1 Executive summary ... 15

2 Introduction .. 15

2.1 Core concepts and design principles .. 16
2.2 Structure of the document... 17
2.3 Target audiences .. 18

3 Use Cases .. 18

3.1 Define a SuT deployed by ElasTest ... 18
3.2 Define a SuT deployed outside ElasTest .. 19
3.3 Define a TJob with SuT and execute it ... 19
3.4 Define a TJob using TSS and execute it .. 20
3.5 Inspect TJob information after execution .. 21
3.6 Define a TiL and execute it ... 21
3.7 Ask for test recommendations ... 21
3.8 Calculate TJob costs ... 22
3.9 Define a TJob and execute it from Jenkins ... 22

4 Architecture Overview .. 22

4.1 ElasTest Platform (Functional Architecture) .. 22
4.2 User Requirements .. 27
4.3 Methodology .. 51
4.4 Components Specification ... 52

5 ElasTest Core Components .. 53

5.1 ElasTest Tests Manager (ETM) ... 53
5.1.1 Objectives ... 53
5.1.2 Systems Prerequisites and Technical Requirements specification 54
5.1.3 Component Design ... 54
5.1.4 Interactions .. 58

5.2 ElasTest Platform Manager (EPM) ... 59
5.2.1 Objectives ... 59
5.2.2 System Prerequisites and Technical Requirements Specification 59
5.2.3 Component Design ... 60
5.2.4 Interactions .. 61

5.3 ElasTest Monitoring Platform (EMP) .. 62
5.3.1 Objectives ... 62
5.3.2 System Prerequisites and Technical Requirements Specification 62
5.3.3 Component Design ... 63
5.3.4 Interactions .. 66

5.4 ElasTest Service Manager (ESM) .. 66
5.4.1 Objectives ... 67
5.4.2 System Prerequisites and Technical Requirement Specification 67
5.4.3 Component Design ... 69
5.4.4 Interactions .. 75

5.5 ElasTest Data Manager (EDM) ... 76
5.5.1 Objectives ... 76
5.5.2 System Prerequisites and Technical Requirements Specification 76
5.5.3 Component Design ... 77
5.5.4 Interactions .. 78

D2.3 ElasTest requirements, use-cases and architecture

6

5.6 ElasTest Instrumentation Manager (EIM) .. 79
5.6.1 Objectives ... 79
5.6.2 System Prerequisites and Technical Requirements Specification 79
5.6.3 Component Design ... 80
5.6.4 Interactions .. 85

6 ElasTest Test Support Services .. 85

6.1 ElasTest User Impersonation Service (EUS) ... 85
6.1.1 Objectives ... 86
6.1.2 System Prerequisites and Technical Requirements Specification 86
6.1.3 Component Design ... 87
6.1.4 Interactions .. 87

6.2 ElasTest Device Emulator Service (EDS) ... 88
6.2.1 Objectives ... 88
6.2.2 System Prerequisites and Technical Requirements Specification 89
6.2.3 Component Design ... 89
6.2.4 Interactions .. 91

6.3 ElasTest Security Service (ESS) ... 92
6.3.1 Objectives ... 92
6.3.2 System Prerequisites and Technical Requirements Specification 92
6.3.3 Component Design ... 92
6.3.4 Interactions .. 94
6.3.5 Additional information ... 95

6.4 ElasTest Big-Data Service (EBS) .. 95
6.4.1 Objectives ... 95
6.4.2 System Prerequisites and technical Requirements Specification 95
6.4.3 Component Design ... 95
6.4.4 Interactions .. 97

6.5 ElasTest Monitoring Service (EMS) .. 97
6.5.1 Obejctives ... 97
6.5.2 System Prerequisites and Technical Requirements Specification 97
6.5.3 Component Design ... 99
6.5.4 Interactions .. 106

7 ElasTest Test Engines .. 106

7.1 ElasTest Cost Engine (ECE) ... 106
7.1.1 Objectives ... 106
7.1.2 System Prerequisites and Technical Requirements Specification 107
7.1.3 Component Design ... 107
7.1.4 Interactions .. 110

7.2 ElasTest Recommendation Engine (ERE) .. 111
7.2.1 Objectives ... 111
7.2.2 System Prerequisites and Technical Requirements Specification 111
7.2.3 Component Design ... 112
7.2.4 Interactions .. 115

7.3 ElasTest Question & Answer Engine (EQE) .. 116
7.3.1 Objectives ... 116
7.3.2 System Prerequisites and Technical Requirements Specification 116
7.3.3 Component Design ... 117
7.3.4 Interactions .. 120

7.4 ElasTest Orchestration Engine (EOE).. 121

D2.3 ElasTest requirements, use-cases and architecture

7

7.4.1 Objectives ... 121
7.4.2 System Prerequisites and Technical Requirements Specification 121
7.4.3 Component Design ... 122
7.4.4 Interactions .. 122

8 ElasTest Integrations with External Tools .. 123

8.1 ElasTest Jenkins Plugin (EJ) .. 123
8.1.1 Objectives ... 123
8.1.2 System Prerequisites and Technical Requirements Specification 123
8.1.3 Component Design ... 123
8.1.4 Interactions .. 127

8.2 ElasTest Toolbox (ET) ... 128
8.2.1 Objectives ... 128
8.2.2 System Prerequisites and Technical Requirements Specification 128
8.2.3 Component Design ... 128
8.2.4 Interactions .. 132

9 Conclusions and Future Work ... 132

10 References .. 132

D2.3 ElasTest requirements, use-cases and architecture

8

List of figures

Figure 1. Conceptual representation of the ElasTest architecture and its relation with the SuT.
 ... 23

Figure 2. Functional architecture overview of the ElasTest platform. .. 24

Figure 3. Architecture reference - support systems overview. ... 26

Figure 4. ElasTest work agile methodology ... 51

Figure 5. ETM FMC Diagram. ... 55

Figure 6. Main data model managed by ETM ... 55

Figure 7. ETM use case - Define a TJob and execute it. .. 57

Figure 8. ETM use case - Define a TJob using the ElasTest services and execute it. 58

Figure 9. Architectural overview of EPM. ... 60

Figure 10. Architecture diagram of EMP. .. 63

Figure 11. Registration and EMP setup phase interactions. ... 64

Figure 12. Data processing workflow in EMP .. 65

Figure 13. Query processing in EMP. .. 65

Figure 14. Architecture diagram of ESM ... 69

Figure 15. Use cases of ServiceConsumer. .. 70

Figure 16. Use cases of ServiceProvider. ... 70

Figure 17. Sequences of ESM functionality - Part 1 of figure. ... 71

Figure 18. Sequences of ESM functionality - Part 2 of figure. ... 72

Figure 19. Service provider interactions in ESM. .. 73

Figure 20. Data model of ESM - Part 1 of figure. .. 74

Figure 21. Data model of ESM - Part 2 of figure. .. 75

Figure 22. FMC diagram of EDM. .. 78

Figure 23. EIM FMC diagram. .. 82

Figure 24. EIM use case - Agent deployment. ... 83

Figure 25. EIM use case - Observability operation. ... 83

Figure 26. EIM use case - Controllability operation. ... 84

Figure 27. EIM use case - Agent undeployment. ... 84

Figure 28. EUS FMC diagram. .. 87

Figure 29. EDS FMC diagram. .. 90

Figure 30. EDS use case sequence diagram. ... 91

Figure 31. ESS FMC diagram. ... 93

Figure 32. ESS use case sequence diagram. .. 94

Figure 33. EBS FMC diagram. .. 96

D2.3 ElasTest requirements, use-cases and architecture

9

Figure 34. EBS sequence diagram: Use from a TJob. .. 96

Figure 35. EMS FMC diagram. ... 99

Figure 36. EMS internal components. ... 101

Figure 37. Sequence diagram showing Management of monitoring machines. 102

Figure 38. Sequence diagram for subscription of channels. ... 102

Figure 39. Sequence diagram for event publishing. .. 103

Figure 40. EMS use case sequence diagram - execution of a test. ... 103

Figure 41. EMS use case sequence diagram - debugging ElasTest platform. 104

Figure 42. EMS data model ... 105

Figure 43. FMC diagram of ECE. .. 108

Figure 44. Sequence diagram showing steps in cost estimation process. 109

Figure 45. Sequence diagram showing steps for cost calculation of a TJob execution. 109

Figure 46. Cognitive Engines - FMC diagram. .. 112

Figure 47. ERE use cases. ... 114

Figure 48. ERE sequence diagram (Tester actor). ... 114

Figure 49. ERE sequence diagram (Admin actor). ... 115

Figure 50. Cognitive Engines - FMC diagram. .. 117

Figure 51. EQE use cases. .. 118

Figure 52. EQE sequence diagram (Tester actor). ... 119

Figure 53. EQE sequence diagram (Admin actor). .. 120

Figure 54. EOE FMC diagram. .. 122

Figure 55. EJ FMC diagram. ... 124

Figure 56. EJ use case sequence diagram - setup and test configuration. 125

Figure 57. EJ use case sequence diagram - basic integration with ElasTest. 126

Figure 58. EJ use case sequence diagram - advance integration with ElasTest. 127

Figure 59. ET FMC diagram. .. 129

Figure 60. ET use case sequence diagram - start ElasTest. ... 130

Figure 61. ET use case sequence diagram - stop ElasTest. .. 131

Figure 62. ET use case sequence diagram - update ElasTest. ... 131

D2.3 ElasTest requirements, use-cases and architecture

10

List of tables

Table 1. Building blocks of ElasTest. .. 25

Table 2. User Requirements List - ElasTest Core Components. .. 29

Table 3. User Requirements List - ElasTest Test Support Services. ... 38

Table 4. User Requirements List - ElasTest Test Engines. ... 43

Table 5. User Requirements List - ElasTest Integration with External Tools. 47

Table 6. Input to ETM. ... 59

Table 7. Output from ETM. ... 59

Table 8. Input to EPM. ... 61

Table 9. Output from EPM. ... 61

Table 10. EMP requirements. .. 62

Table 11. Input to EMP. ... 66

Table 12. Output from EMP. ... 66

Table 13. ESM requirements. .. 68

Table 14. Input to ESM. ... 75

Table 15. Output from ESM... 76

Table 16. EDM requirements. ... 77

Table 17. Input to EDM. .. 78

Table 18. Output from EDM. ... 78

Table 19. EIM requirements. ... 80

Table 20. Input to EIM ... 85

Table 21. Output from EIM ... 85

Table 22. Input to EUS. .. 88

Table 23. Output from EUS. .. 88

Table 24. EDS prerequisites. .. 89

Table 25. Input to EDS. .. 91

Table 26. Output form EDS. .. 92

Table 27. ESS requirements. ... 92

Table 28. Input to ESS.. 94

Table 29. Output from ESS. ... 95

Table 30. Input to EBS. .. 97

Table 31. EMS requirements. .. 98

Table 32. Input to EMS. ... 106

Table 33. Output from EMS... 106

Table 34. ECE requirements. ... 107

D2.3 ElasTest requirements, use-cases and architecture

11

Table 35. Input to ECE. .. 111

Table 36. Output from ECE. ... 111

Table 37. ERE requirements. ... 111

Table 38. Input to ERE. .. 115

Table 39. Output from ERE. ... 115

Table 40. EQE requirements.. 116

Table 41. Input to EQE. .. 120

Table 42. Output from EQE. .. 121

Table 43. Input to EOE. .. 123

Table 44. Output from EOE ... 123

Table 45. Input to EJ. ... 127

Table 46. Input to ET. .. 132

Table 47. Output from ET. ... 132

D2.3 ElasTest requirements, use-cases and architecture

12

Glossary of acronyms

Acronym Definition

CI (Continuous Integration) This refers to the software development practice
with that name.

FOSS (Free Open Source
Software)

This refers to software released under open source
licenses.

IaaS (Infrastructure as a Service),
PaaS (Platform as a Service) and
SaaS (Software as a Service)

MaasS (Mobile as a Service)

Baas (Browser as a Service)

This refers to different models of exposing cloud
capabilities and services to third parties.

Instrumentation This refers to extending the interface exposed by a
software system for achieving enhanced
controllability (i.e. the ability to modify behavior
and runtime status) and observability (i.e. the
ability to infer information about the runtime
internal state of the system).

 QoS (Quality of Service) and QoE
(Quality of Experience)

In this proposal, QoS and QoE refer to
nonfunctional attributes of systems. QoS is related
to objective quality metrics such as latency or
packet loss. QoE is related to the subjective quality
perception of users. In ElasTest, QoS and QoE are
particularly important for the characterization of
multimedia systems and applications through
custom metrics.

SiL (Systems in the Large) A SiL is a large distributed system exposing
applications and services involving complex
architectures on highly interconnected and
heterogeneous environments. SiLs are typically
created interconnecting, scaling and orchestrating
different SiS. For example, a complex microservice-
architected system deployed in a cloud
environment and providing a service with elastic
scalability is considered a SiL.

SiS (Systems in the Small) SiS are systems basing on monolithic (i.e. non
distributed) architectures. For us, a SiS can be seen
as a component that provides a specific functional
capability to a larger system.

SuT (Software under Test) This refers to the software that a test is validating.
In this project, SuT typically refers to a SiL that is
under validation.

TO (Test Orchestration) The term orchestration typically refers to test

D2.3 ElasTest requirements, use-cases and architecture

13

orchestration understood as a technique for
executing tests in coordination. This should not be
confused with cloud orchestration, which is a
completely different concept related to the
orchestration of systems in a cloud environment.

TORM (Test Orchestration and
Recommendation Manager)

Is an ElasTest functional component that abstracts
and exposes to testers the capabilities of the
ElasTest orchestration and recommendation
engines.

TJob (Testing Job) We define a TJob as a monolithic (i.e. single
process) program devoted to validating some
specific attribute of a system. Current Continuous
Integration tools are designed for automating the
execution of T-Jobs. T-Jobs may have different
flavors such as unit tests, which validate a specific
function of a SiS, or integration and system tests,
which may validate properties on a SiL as a whole.

TiL (Test in the Large) A TiL refers to a set of tests that execute in
coordination and that are suitable for validating
complex functional and-or non-functional
properties of a SiL on realistic operational
conditions. We understand that a TiL can be
created by orchestrating the execution of several
T-Job.

Test Support Service (TSS) We define a TSS as a tool which aides in the
preparation of tests in different contexts.

ETM (ElasTest Tests Manager) A core component of ElasTest.

EPM (ElasTest Platform Manager) A core component of ElasTest.

ESM (ElasTest Service Manager) A core component of ElasTest.

EDM (ElasTest Data Manager) A core component of ElasTest.

EIM (ElasTest Instrumentation
Manager)

A core component of ElasTest.

ECE (ElasTest Cost Engine) A test engine provided by ElasTest.

ERE (ElasTest Recommendation
Engine)

A test engine provided by ElasTest.

EQE (ElasTest Question & Answer
Engine)

A test engine provided by ElasTest.

EOE (ElasTest Orchestration
Engine)

A test engine provided by ElasTest.

EUS (ElasTest User Emulator
Serice)

A test support service provided by ElasTest.

D2.3 ElasTest requirements, use-cases and architecture

14

EDS (ElasTest Device Emulator
Service)

A test support service provided by ElasTest.

ESS (ElasTest Security Service) A test support service provided by ElasTest.

EBS (ElasTest Big-Data Service) A test support service provided by ElasTest.

EMS (ElasTest monitoring
Service)

A test support service provided by ElasTest.

ET (ElasTest ToolBox) A toolbox provided for integration of ElasTest with
external tools.

EJ (ElasTest Jenkins Plugin) A plugin provided for integration of ElasTest with
external tools.

CRUD (Create Read Update
Delete)

Standard operations that can be performed on/to
a software.

DoA (Description of Action) A document which lists and described the actions
to be performed in a project.

FMC (Fundamental Modelling
Concepts)

Framework that provides comprehensive
description of software intensive systems.

UML (Unified Modelling
Language)

A general purpose, developmental, modelling
language in the field of software engineering.

AWS (Amazon Web Services) A cloud services platform.

AAA (Authentication,
authorization and accounting)

Is a framework for intelligently controlling access
to computer resources, enforcing policies, auditing
usage and providing the information to bill for
services.

API (Application Programming
Interface)

A set of functions and procedures that allow the
creation of applications which access the features
or data of an operating system, application, or
other service.

UI (User Interface)

GUI (Graphical User Interface)

The UI is an information device which a user can
use to interact with a machine. Similarly, GUI is a
type of UI that allows users to interact with
electronic devices through graphical icons and
visual indicators.

OAI (Open API Initiative) An effort to standardise the description of REST
API.

D2.3 ElasTest requirements, use-cases and architecture

15

1 Executive summary

ElasTest is a cloud platform designed for helping developers to test and validate large
software systems while maintaining compatibility with current continuous integration
practices and tools. The platform embraces a microservice like architecture,
collectively providing facilities for the tester to deploy testing processes as separate
entities. A combination of such testing processes can be leveraged or reused to form a
larger testing process which counters the monolithic testing approach.

In this deliverable, we outline the efforts invested as part of task 2.2 and task 2.3 of
WP2. The document further describes in the following mentioned sequence:

- The high level use cases with tester as the main user.
- The high-level architecture of ElasTest.
- The efforts invested in collecting user requirements.
- The high-level architecture and description of each component available in

ElasTest.

This deliverable focuses on providing the reader an overview of ElasTest. A more
detailed understanding of the components is detailed in the component’s
corresponding work package deliverable. This document in its current form is the first
version at month 18.

This deliverable refers to other deliverables D2.2, D3.1, D4.1, D4.2 D5.1, D6.1 and
D6.2.

2 Introduction

Nowadays, complex large software systems are proliferating due to the commodity of
cloud and the need of elastic applications which pushes developers towards resilient
software architectures like microservices. In this project, we concentrate on testing
large software systems (i.e. SiL) created by the orchestration of simple components
(i.e. SiS). Typically, those software systems are validated using CI tools and
methodologies. This approach provides some minimal guarantees in relation to the
correctness of the functional properties of the software, but it has very relevant
limitations when evaluating other attributes of a software system in real production
environments. For example, whenever developers want to validate non-functional
features such as scalability, fault-tolerance or data consistency; they need to create
complex testing architectures customizing the cloud orchestration mechanisms and
managing test scalability by themselves. Things become even more complex when
trying to reproduce real-world operational conditions. For example, tasks such as
finding out how the system performs in real-networks (e.g. congestion, packet loss,
latency, etc.) or evaluating how latency and other QoE parameters degrade with the
number of users are relevant challenges. This becomes even more complex when
systems manage special types of traffic such as sensor data or multimedia
communications, which may follow complex binary protocols with real-time
requirements and where the evaluation of QoS and QoE requires complex data
processing.

D2.3 ElasTest requirements, use-cases and architecture

16

ElasTest is an elastic cloud platform designed for helping developers to test and
validate SiL (see definitions above), while maintaining compatibility with current CI
practices and tools. For this, ElasTest bases on three principles:

- Instrumentation of SuT: ElasTest offers the facility to instrument the SuT
based on the tester requirements. Such SuTs can be deployed on a native
machine or on a cloud.

- Test Orchestration: ElasTest provides the facility to orchestrate one or more
TJobs that assess the SuT. The orchestration is at the heart of the platform able
to apply novel techniques to form Test in Large (TiL) as a combination of TJobs.
Furthermore, it exploits the reuse of TJobs.

- Test Recommendation: To ease the tester’s job, ElasTest offers a novel solution
of recommending tests to a user. This feature optimizes the tester productivity.

These principles are complemented by a set of tools aimed at supporting testing on
different contexts:

- Browsers as a service, for UI testing
- Emulators and actuators as a service, for testing of IoT applications
- Security as a service, for assessing the security properties of large software

systems
- Monitoring as a service, for providing dynamic probes in a domain specific

language capable of capturing the high level behaviour of the system and
raising alarms

- Big Data as a service, for capturing and processing all the data of the different
services

2.1 Core concepts and design principles

The microservice in the context of ElasTest and the rest of the document is referred to
as component, this is due to the fact that we do not follow the microservice
architecture closely, and favor flexibility over formality. The platform is dynamic in
nature in which the composition of the platform depends on which components that
are active at any given time depending on the testing process (TJob) that is running.

The nomenclature of components and the relevance to ElasTest is detailed in Section
4. In this subsection we describe the basic principles used when designing the
individual components of ElasTest.

Following requirements are set forth for each component:

1. Define the features offered by the component.
2. Define the communication mechanism to interact with the component.
3. Define the component lifecycle.
4. Define how the component is maintained and used.

The following text shows how each requirement is addressed in the context of
ElasTest.

1. Define the features offered by the component:
Each component acts as a standalone entity providing certain features. The
implementation details of the features is left to the component such that the

D2.3 ElasTest requirements, use-cases and architecture

17

details of implementation is contained in the component. The said requirement
equally applies to TJobs, where it provides the freedom to the tester to choose
any method of implementation suitable to implement the features of the
TJobs. The component may further use internal components also following a
microservice like architecture.

2. Define the communication mechanism to interact with the component:
The component is responsible to expose the features contained in it to the
outside world. The features are exposed using a RESTful API interface. This
interface offers the facility to create, read, modify and update the feature or
resources exposed by the component. To have a common understanding, the
OpenAPI Initiative Specification (OAIS)1 is used by all the components to define
and implement the interface such that not only other components in ElasTest
but also the tester is able to interact with the component with ease. Each
component therefore documents the features exposed using the OAIS and
makes it available to the tester.

3. Define the component lifecycle:
The component lifecycle points to duration time of time when the features of
the component are required while using ElasTest. The lifecycle of each
component is clearly understood and it is by this method there is an
understanding with other components when a resource or feature of a
component is made available. Certain components of ElasTest are alive during
the time ElasTest is running when the user starts the platform. Certain other
components are born when a TJob is started and terminated when TJob
finishes while some other come alive on the demand of the tester.

4. Define how the component is maintained and used.
Each component is a software implementation. Keeping up with the pace of
software development is at the core of ElasTest. For this CI methods are used
such that the components are kept up to date. Furthermore, mechanisms are
provided in ElasTest to update the platform and also understand the status of
each component.

The focus of this deliverable is to provide the reader a high level overview of ElasTest
by documenting the combined efforts of Tasks 2.2 and T2.3 as obtained from DoA [1].

It is important to note that, this deliverable presents an overview of ElasTest in general
and in particular, each component is presented in high level detail. A deeper
understanding of each component can be obtained from the component’s
corresponding work package deliverables D3.1 [3], D4.1 [4], D4.2 [5], D5.1 [6] and D6.2
[8].

2.2 Structure of the document

The deliverable explains the efforts by first presenting the high level use cases (in
Section 3). In the next part of the document (Section 4), the conceptual diagram of
ElasTest is discussed followed by an explanation of overall architecture diagram of
ElasTest. In the same section, the user requirements targeted by each component of

1 https://www.openapis.org/about

D2.3 ElasTest requirements, use-cases and architecture

18

ElasTest is presented. The rest of the document (Sections 5, 6, 7 and 8) is dedicated to
presentation of the high level descriptions of each component. Section 9 concludes
this document outlining the future work.

2.3 Target audiences

This deliverable is relevant for any developer or tester in general but not restricted.
Furthermore, this deliverable can be useful for stakeholders in the management as
well as in the academia.

3 Use Cases

A TJob that is to be executed has to undergo one of the CRUD (create, read, update
and delete) operations by the user. Furthermore, a SuT associated with a TJob also
needs to undergo CRUD operations from the user. Considering the interaction
between ElasTest and TJob a set of high level use cases can be derived.
Complementing to the CRUD operations are the recommendation facilities embedded
into ElasTest and the cost of running a TJob.

ElasTest is a platform for executing tests. For that reason, the main user is the tester.
ElasTest also can be operated by an administrator, but the use cases for the
administrator are considered secondary and are not described here.

We identify the following main use cases:

1. UC1 - Define a SuT deployed by ElasTest.
2. UC2 - Define a SuT deployed outside ElasTest.
3. UC3 - Define a TJob and execute it.
4. UC4 - Define a TJob using a TSS and execute it.
5. UC5 - Inspect TJob information after execution.
6. UC6 - Define a TiL and execute it.
7. UC7 - Ask for test recommendations.
8. UC8 - Calculate TJob costs.
9. UC9 - Define a TJob and execute it from Jenkins.

3.1 Define a SuT deployed by ElasTest

The actions needed to define a SuT deployed by ElasTest are described below:

Actions

1. Tester will create a new Project or select an existing one.
2. Tester will create a SuT description. SuT description will have the following

information:
a. Basic information: Name and description
b. How SUT is going to be deployed by ElasTest:

- With Commands Container: The tester will specify a container image
and a sequence of commands written as a bash script that will be
executed to deploy the SuT.

- With Docker image: The tester will specify only a docker image
corresponding to the SuT.

D2.3 ElasTest requirements, use-cases and architecture

19

- With Docker Compose: The tester will specify a docker-compose.yml
file contents to deploy the SuT.

c. if it is necessary to wait for a http port to be available before tests can be
executed.

d. Parameters with default values (that will be prompted each time the SuT is
deployed in the context of a TJob).

3.2 Define a SuT deployed outside ElasTest

The actions needed to define a SUT already deployed outside ElasTest are described
below:

Actions

1. Tester will create a new Project or select an existing one.
2. Tester will create a SuT description. SuT description will have the following

information:
a. Basic information: Name and description
b. With a SUT already deployed, the instrumentation can be configured in the

following ways:
- No instrumentation: No information for SuT will be gathered during

TJob execution.
- Instrumented by ElasTest: ElasTest use EIM to instrument the SuT. All

configuration needed to connect to SuT and install and configure
instrumentation agents have to be provided.

- Manual instrumentation: ElasTest shows in the Graphical User
Interface (GUI), the information needed by the tester to properly
configure the instrumentation agents in the SuT.

3.3 Define a TJob with SuT and execute it

The actions needed to define a TJob associated to a SuT and execute it are described
below:

Actions

1. Tester will implement some tests for a SuT using a testing library in some
programming language. For example, she will use JUnit in Java. This test will
interact with the SuT in some way. For example using a REST API.

2. Tester will upload the tests to some source code repository.
3. Tester will create a new Project or select an existing one.
4. Tester will create a TJob in ElasTest indicating:

a. Basic information: Name
b. What SuT should be tested in that TJob
c. How to obtain and execute the tests to be executed. This is defined with:

- Commands to download tests code, compile it and execute it.
- Environment docker image to execute the commands.

5. Tester will execute the TJob using ElasTest Web interface.

D2.3 ElasTest requirements, use-cases and architecture

20

a. ElasTest will execute the SuT (if necessary) and will wait until ready (if
configured so).

b. ElasTest will execute the tests (executing the specified commands). Tests will
exercise SuT by means of some network protocol.

c. When tests are finished, ElasTest will shutdown the SuT if necessary.
6. During TJob execution, tester can see the following information gathered from

Tests and SuT execution in real time:
a. TJob: logs, CPU, memory, IO consumption and other information provided

by ElasTest services.
b. SuT: logs, CPU, memory, IO and other. If SuT is composed by several

components (for example, having different containers deployed with
docker-compose) the tester will see metrics of every part of the system.

Notes:

A TJob can be defined without a SuT associated to it in any way. The main difference is
that ElasTest won’t wait for SuT to be ready and, of course, no information will be
displayed and recorded for it.

3.4 Define a TJob using TSS and execute it

The actions needed to define a TJob using a TSS and execute it are described below:
Actions
1. Tester will implement some tests for a SuT using a testing library in some

programming language. For example, she will use JUnit in Java. Also, the test code
will control some of the ElasTest Test Support Services (TSSs) by means of a remote
interface. For example, the tests can exercise a web application SuT using the
browsers provided by the ElasTest User impersonation Service (EUS).

2. Tester will upload the tests to some source code repository.
3. Tester will create a new Project or select an existing one.
4. Tester will create a TJob in ElasTest indicating:

a. Basic information: Name
b. What SuT should be tested in that TJob
c. How to obtain and execute the tests to be executed.
d. What TSSs are needed to execute the test. For example, the EUS service.

5. Tester will execute the TJob using ElasTest Web interface.
a. ElasTest will start all TSSs specified by the user in the TJob configuration.
b. ElasTest will execute the SuT (if necessary) and will wait until ready (if

configured so).
c. ElasTest will execute the tests (executing the specified commands). Tests will

use TSSs by means of a remote protocol. For example, tests can request to EUS
service some web browsers to interact with a web application SuT.

d. When tests are finished, ElasTest will shutdown TSSs and the SuT if necessary.
6. During TJob execution, tester can see the information gathered from Tests and SuT

execution in real time. It also can see the information provided by the TSSs used.
For example, the browsers provided by EUS can be displayed in real time when
tests are being executed.

D2.3 ElasTest requirements, use-cases and architecture

21

3.5 Inspect TJob information after execution

The actions needed to inspect the information gathered during a past execution of a
TJob are described below:

Actions
1. Tester will navigate through the web interface to find some past TJob execution.
2. Then screen showing past TJob executions has the following information:

a. Every test executed has the following information associated to it:
- Test class
- Test name
- Execution duration
- Execution status: ERROR, FAIL or SUCCCESS
- Files generated during test execution
- Logs from test, SuT and other TSS (for example browsers console)

generated during the test execution
b. Logs can be inspected using the Log Analyzer tool, a powerful tool for filtering,

marking, comparing, etc.

3.6 Define a TiL and execute it

The actions needed to orchestrate a set of TJob creating a TilL are described below:

Actions:

1. Tester will create a pipeline job in Jenkins with ElasTest plugin installed and
configured

2. Tester will define a TiL with one of the following operators for combining TJobs:
a. Sequence operator: It runs a TJob after another.
b. Parallel operator: It runs several TJobs in parallel and emit common

verdict of all of them based on the configuration (AND or OR).
3. Tester will execute the Jenkins job and ElasTest plugin will execute Jobs as

defined in the TiL.

3.7 Ask for test recommendations

ElasTest Recommendation Engine (ERE) can be used by testers to ask how a given
feature should be tested. ERE is trained with features and their corresponding tests. In
that way, when a feature is presented to ERE, it can return tests used to test similar
features in the projects used the train ERE’s model.

The actions needed to use ERE in such way are:

Actions

1. Tester will navigate to ERE screen (instantiating ERE if necessary)
2. Tester will select the data set used for recommendations
3. Tester will ask for a test given a feature specified in natural language
4. ERE will show several test implementations with a confidence score associated to

each one.

D2.3 ElasTest requirements, use-cases and architecture

22

3.8 Calculate TJob costs

ElasTest Cost Engine (ECE) can be used by testers to know how much TJobs can cost
(before they are executed) or how much they really cost (after their execution). To do
that, the resources used by TJobs (basically platform resources and test support
services) have a cost associated to them.

The actions performed to calculate TJob costs using ECE are the following:

Actions

1. Tester will navigate to ECE screen (instantiating ECE if necessary) and the list of the
TJobs will appear.

2. Tester will select one TJob and the cost information will be shown

3.9 Define a TJob and execute it from Jenkins

ElasTest Jenkins Plugin (EJ) can be used to integrate ElasTest with Jenkins. The main
features provided by EJ are: a) to send logs and tests results from Jenkins jobs to
ElasTest (for later inspection) and b) to use ElasTest TSS from tests executed inside
Jenkins jobs. Assuming a Jenkins installation with the EJ properly installed and
configured, it can be used with the following actions:

Actions

1. Tester will create a pipeline Job in Jenkins
2. Tester will create a job wrapping all job steps into elastest(){...} syntax. This will

send Job logs to ElasTest.
3. Tester will include as parameter the list of TSS to be used by the job tests.
4. When Jenkins job is executed, ElasTest Jenkins plugin will request to ElasTest to

instantiate the required TSSs and provide the test code the remote endpoints
where that TSSs will be available.

5. When the job have finished. EJ will undeploy the TSSs and the test results will be
sent from Jenkins to ElasTest.

6. Tester will use a link provided in the Jenkins job execution page to open an ElasTest
screen that shows the logs and metrics gathered during job execution.

4 Architecture Overview

4.1 ElasTest Platform (Functional Architecture)

ElasTest is a cloud platform designed for helping developers to test and validate large
software systems while maintaining compatibility with current continuous integration
practices and tools. For this, ElasTest bases on three principles:

1) Instrumentation of the software under test through observability and
controllability agents so that it reproduces real-world operational behavior.

2) Test orchestration combining intelligently testing units for creating a more
complete test suite.

3) Test recommendation using machine learning and cognitive computing
techniques for recommending testing actions and providing testers with

D2.3 ElasTest requirements, use-cases and architecture

23

friendly interactive facilities for decision making.

ElasTest enables developers to test large software systems through complex test suites
created by orchestrating simple testing units (so-called TJobs). This orchestration
mechanism is one of the main novelties of the ElasTest project and its precise
conception, formalization and consolidation is one of our main research objectives.
From the perspective of the tester, a TJob is software that, upon execution, performs
some testing actions against the software under test. From this perspective, the TJob is
a “testing unit”. In order of not to constrain the freedom and flexibility of the tester,
we do not assume any kind of property for the TJob neither from the technological (i.e.
language, framework, etc.) nor from the semantics perspective (i.e. model, behavior,
etc.) Our only assumption is that the TJob accepts some input parameters and that,
upon execution, generates an outcome (i.e. output parameters). The expected values
of such outcome constitute the TJob oracle.

The conceptual representation of the ElasTest architecture is shown in Figure 1. This
conceptual representation, created at the time of the proposal, was the starting point
of our architecture design. It consists of a number of software modules that testers
can install into public or private clouds.

Figure 1. Conceptual representation of the ElasTest architecture and its relation with the SuT.

A more detailed overview of the functional architecture of the ElasTest platform is
shown in Figure 2. The intermediate architecture design presented within this
document has been produced after accomplishing the procedures defined in the
methodology described in section 4.3 of this report. Both figures, the conceptual

D2.3 ElasTest requirements, use-cases and architecture

24

representation and the functional architecture overview are based on the
Fundamental Model Concept (FMC) which primarily provides a framework for the
comprehensive description of software-intensive systems. It is based on a precise
terminology and supported by a graphical notation which can be easily understood. In
order to know how to interpret the block diagrams and their communications, please
refer to the FMC cheat sheet [9].

Figure 2. Functional architecture overview of the ElasTest platform.

Table 1 illustrates the building blocks of the ElasTest system; the individual software
components of the platform maps with the blocks depicted in the aforementioned
figure, each of them constitutes a fine-grained SOA.

We envisaged the ElasTest platform to be implemented as a distributed and scalable
system, which allows the testing of large software systems created by the
orchestration of simple components. Nowadays, those large systems are mainly
validating the correctness of the software under evaluation using CI tools and DevOps
methodologies among other available options. Despite this, very relevant limitations
exist when we try to evaluate other attributes of the software such as non-functional
features in real production environments or real-world operational conditions.
ElasTest is a cloud platform designed for helping developers to test and validate large
software systems while maintaining compatibility with current continuous integration
practices and tools.

The resultant components are categorized as follows:
- ElasTest Core Components: These components constitute the enablers of the

platform. They have the responsibility of providing management mechanism
for the platform, the tests jobs and the software under evaluation.

- ElasTest Test Engines: The engines offers additional capabilities that can be
used by the platform or the test support services, thanks to our modular
architecture different engines may be plugged.

http://www.fmc-modeling.org/download/notation_reference/Reference_Sheet-Block_Diagram.pdf

D2.3 ElasTest requirements, use-cases and architecture

25

- ElasTest Test Support Service (TSS): These comprise reusable cloud services
used to support the testing of the software under evaluation.

- ElasTest Integrations with External Tools: These comprise of the tools and
plugins used for integration of ElasTest with external tools.

Table 1. Building blocks of ElasTest.

Component Name Role

Core Components

Test Manager (ETM) It is the brain of ElasTest and the main entry point
for developers.

Platform Manager (EPM) It is the interface between ElasTest components
and the cloud infrastructure.

Platform Monitoring (EMP) It is a service that monitors the core modules of
ElasTest platform.

Service Manger (ESM) It delivers, on request/demand, service instances
of particular service types.

Data Manager (EDM) It provides the persistence layer services for all
components.

Instrumentation Manager (EIM) It controls and orchestrates the agents that are
deployed on the software under evaluation.

 Test Engines

Cost Engine (ECE) It estimates the cost to make developers cost
aware of running a test.

Recommendation Engine (ERE) It is a cognitive system designed to leverage
recommendations based on learned knowledge.

Question & Answer Engine (EQE) It accepts questions asked in natural language and
tries to identify user’s intentions and needs.

Orchestrator Engine (EOE) It orchestrates and executed in coordination a set
of test jobs for creating more complex test suite.

 Test Support Services

User Impersonation Service (EUS) It is devoted to provide the mechanism for
emulation of users in end-to-end tests.

Device Emulator Service (EDS) It emulates devices used in Internet of Things (IoT)
applications.

Security Service (ESS) It facilitates the security testing of the software
under evaluation.

Big-Data Service (EBS) It provides a scalable computing engine based on

D2.3 ElasTest requirements, use-cases and architecture

26

big-data technologies

Monitoring Service (EMS) It provides a monitoring service suitable for
inspecting the execution of the software under
evaluation.

ElasTest Integrations with
External Tools

ElasTest Jenkins plugin It is devoted to provide the mechanism for using
ElasTest via Jenkins CI system.

ElasTest Tools This provides tools to install and configure
ElasTest in the easiest way possible.

ElasTest has been designed for transforming ideas into profitable products, for this, it
focuses on learning and discovering how to fit a technology into the market instead on
how to carry out the technological developments themselves.
One of the most repeated "mantras" since the beginning of the project is that we need
to ensure to ‘do not reinvent the wheel’ duplicating available systems that has already
previously been created or optimized by others. Accordingly, at early stages of the
design phase we have been working on the identification of available technologies and
systems that we can extend or re-use, instead of starting from scratch, we evaluated
the current support systems that we can adopt to complement the functionalities of
our components. Figure 3 below shows the mapping between different technologies
and the ElasTest building-blocks.

Figure 3. Architecture reference - support systems overview.

D2.3 ElasTest requirements, use-cases and architecture

27

4.2 User Requirements

This subsection presents the user requirements and explains the methodology used to
collate the requirements in the process of realizing ElasTest. The requirements were
collected from each partner in the consortium with emphasis on their respective
domain of expertise. Although testers and developers were recognized as end users,
this may not restrict the reachability of ElasTest. ElasTest in general is potential
candidate of interest for academia and industry which include various classes of end
users.

The user of Elastest can belong to either of the below mentioned category:

- ElasTest user : A user who can use ElasTest as a normal user towards running a
TJob and SuT associated with test support service/s.

- ElasTest admin: A user category who has privilege access to ElasTest. Certain
features of ElasTest are made available only to admin. An admin can be
considered as a privileged user.

At the time of review in month 18, the user roles of user and admin are not built into
the platform.

The SMART criteria2 was chosen to document the requirements targeting the end
users of ElasTest who were identified to be testers and developers. This criteria helps
in setting goals, by defining objectives with clear milestones and an estimation of
accomplishing the goal.

The user requirements are listed as user story in the following format:

As a <type of user> , I want <some goal> so that <some reason>.

Once the user story was defined for a requirement, it was treated as a goal and
tracked in the project for it’s availability. User requirements collected were subdivided
based on the four categories of components as discussed in previous subsection. The
requirements thus collected are listed in the rows of separate tables dedicated to each
category. In general the columns of table can be understood as follows:

- Column 1 (ID): Is the unique ID of a requirement associated in the
corresponding row of the table.

- Column 2 (Component): Shows the component name which is proposing the
requirement. The abbreviation of each component found in this column can be
found in glossary of acronyms.

- Columns 3 (Title): Presents the title of the requirement.
- Column 4, 5 and 6 (User Story): Collectively documents the user story

associated with the title listed in column 3.
o Column 4 (User type) : Presents which user type is the requirement

relevant to.
o Column 5 (Goal) : Consolidates the goal of the requirement.
o Column 6 (reason) : Explains the need for the requirement for the user

listed in column 4.

2 SMART Criteria, https://en.wikipedia.org/wiki/SMART_criteria

D2.3 ElasTest requirements, use-cases and architecture

28

- Column 7 (Status): This field is dedicated to mark if the status of feature
associated with the requirement having the following possibilities:

o AVAILABLE : shows the feature is made available in ElasTest by the
respective component.

o BACKLOG : shows the feature is planned to be made available ElasTest.
- Column 8 (Release): This column tracks the release version of ElasTest, when

the feature was first made available when the Status column is marked
AVAILABLE. Else it signifies the future release version when the planned feature
would be made available by the component in ElasTest, if the Status column is
marked with BACKLOG. The methodology for defining a releases is discussed in
subsection 4.3.

The table template discussed above helps us to document a requirement, by defining a
milestone and verifying it.

As a result of efforts carried out in WP7, the project has received a list of
requirements. One of the requirements was Test Link integration which was added as
feature into ElasTest to facilitate the execution of one of the demonstrators.
Furthermore, instrumentation with external agents instead of instrumenting code in
ElasTest was another notable addition to the list of user requirements as a result of
evolution of the platform.

The user requirements list collected until the month 18 of the project can be found in
the following tables dedicated to each category of components:

- Table 2. User Requirements List - ElasTest Core Components.
- Table 3. User Requirements List - ElasTest Test Support Services.
- Table 4. User Requirements List - ElasTest Test Engines.
- Table 5. User Requirements List - ElasTest Integration with External Tools.

Table 2. User Requirements List - ElasTest Core Components.

ID Component Title As a <type of
user>

I want <some goal> so that <some reason> Status Release

ETM1 ETM Manage projects ElasTest user (Create, Read, Update and
Delete) CRUD operations on
projects

I can create, edit, remove
and update test projects
to group TJobs and SuTs.

AVAILABLE R1-R2

ETM2 ETM Create SuTs ElasTest user to create SuTs I can specify how to start
a SuT with the following
options: Deployed by
ElasTest (Docker, Docker-
compose commands) or
Deployed Elsewhere.

AVAILABLE R3

ETM3 ETM Manage SuTs ElasTest user CRUD operations on SuTs I can create, edit, remove
and update SuTs.

AVAILABLE R3

ETM4 ETM Create TJobs ElasTest user to create TJobs I can specify what SUT
should be tested and
how to execute tests
against it.

AVAILABLE R3

ETM5 ETM Manage TJobs ElasTest user CRUD operations on TJobs I can create, edit, remove
and update TJobs.

AVAILABLE R3

ETM6 ETM Execute TJobs ElasTest user to execute a TJob I can have logs, metrics
and tests results
recorded for further
inspection.

AVAILABLE R3

ETM7 ETM Dashboard ElasTest user to see projects and last TJob
executions in a single screen

I can have an overview of
the status of the

AVAILABLE R3

D2.3 ElasTest requirements, use-cases and architecture

30

ID Component Title As a <type of
user>

I want <some goal> so that <some reason> Status Release

platform.

ETM8 ETM Review TJob
executions

ElasTest user to review finished TJob
executions

I can see what happened,
especially in executions
with failed tests.

AVAILABLE R3

ETM9 ETM Test Support
Services

ElasTest user to specify what TSSs must be
ready to use when a TJob is
executed

The tests in TJob can use
selected TSS when
testing the SuT.

AVAILABLE R1-R2

ETM10 ETM Log analyzer ElasTest user to analyse, filter and mark logs
gathered during TJob execution

the problem
troubleshooting is easier
than looking to plain log.

AVAILABLE R3

ETM11 ETM Test case
execution

ElasTest user to review easily all information
gathered during one specific
test (logs, events and files)

I can focus on
information related to a
test (possibly failed).

AVAILABLE R4

ETM12 ETM TestLink info
management

ElasTest user to see TestLink projects, test
cases, suites, builds and test
plans in ElasTest interface

I can see that
information integrated
with other TJobs and
projects.

AVAILABLE R4

ETM13 ETM TestLink Test plan
execution

ElasTest user to execute TestLink Test plans
using browsers provided by
ElasTest and recording all
information from SuT and
browsers

I can associate all that
information to a bug
report in case of test
failure.

AVAILABLE R4

ETM14 ETM Test Engines ElasTest user to start, use and stop a Test
Engine

I can start the engine
only when needed

AVAILABLE R4

D2.3 ElasTest requirements, use-cases and architecture

31

ID Component Title As a <type of
user>

I want <some goal> so that <some reason> Status Release

ETM15 ETM Show platform
information

ElasTest
admin

see the version and compilation
date of ElasTest components

I can see if platform is
updated or not.

AVAILABLE R3

ETM16 ETM Core components
integration

ElasTest user to see core components' GUI
integrated in the main ElasTest
GUI

I can see the platform
integrated.

AVAILABLE R4

ETM17 ETM Show logs and
metrics in
realtime

ElasTest user to see logs and metrics from SuT
and Tests execution

I can know what
happened with SuT and
Tests in case I want to
solve any problem.

AVAILABLE R1-R2

ETM18 ETM ElasTest micro ElasTest user a reduced version of ElasTest I can try it with a very
reduced resource
requirements.

BACKLOG R5

ESM1 ESM Public catalog to
allow end users
to "install" and
"unsinstall"
services in a
current ElasTest
instance

ElasTest user to install a TSS from a public
catalog/registry

new TSSs can be installed
in an ElasTest instance.

AVAILABLE R4

D2.3 ElasTest requirements, use-cases and architecture

32

ID Component Title As a <type of
user>

I want <some goal> so that <some reason> Status Release

EIM1 EIM

Non-Intrusive

ElasTest user
agents as less intrusive as
possible

I can produce low
overhead of the
instrumentation.

AVAILABLE R1-R2

EIM2 EIM

Lightweight

ElasTest user

lightweight agents
it may need to be
deployed within the SuT.

AVAILABLE R1-R2

EIM3 EIM

Interoperability
across OS
distributions and
version

ElasTest user

to maintain interoperability
across different OS distributions

the agents should be
designed to consume
well established
operating system
interfaces to guarantee
interoperability (at least
on Linux systems).

AVAILABLE R1-R2

EIM4 EIM Allow
instrumentation
of AWS resources

ElasTest user to instrument Amazon Web
Services (AWS) resources using
native AWS monitoring
capabilities (CloudWatch)

I can inspect what
happens in those
resources from ElasTest
when executing tests
against that AWS SuT.

BACKLOG R5-
Final

EIM5 EIM Allow
instrumentation
of OpenStack
resources

ElasTest user to instrument OpenStack
resources (VMs, ObjectStorage,
networking) using native
OpenStack monitoring
capabilities (Ceilometer)

I can inspect what
happens in those
resources from ElasTest
when executing tests
against that OpenStack
SuT.

BACKLOG R5-
Final

D2.3 ElasTest requirements, use-cases and architecture

33

ID Component Title As a <type of
user>

I want <some goal> so that <some reason> Status Release

EIM6 EIM Allow instrument
Kubernetes
resources

ElasTest user to instrument kubernetes
resources (Pods, services,
containers, nodes) using native
Kubernetes monitoring
capabilities (Prometheus)

I can inspect what
happens in those
resources from ElasTest
when execute tests
against that Kubernetes
SuT.

BACKLOG R5-
Final

EIM7 EIM Provide fine grain
configuration of
Beats agents

ElasTest user to configure the event stream
names

I can recognize the
events in ElasTest GUI.

BACKLOG R4

EIM8 EIM Controllability ElasTest user To control SuT I can simulate real
conditions (network
bandwidth, failures,
etc...).

BACKLOG R4

EPM1 EPM Providing
Northbound API

ElasTest user to interact with the EPM the consumer can make
use of the EPM via a
ReSTful API.

AVAILABLE R1-R2

EPM2 EPM Providing SDKs ElasTest user to interact with the EPM the developers of other
components can easily
integrate with the EPM
by making use of SDKs
(libraries) provided for
different languages (e.g.
java, python).

AVAILABLE R1-R2

D2.3 ElasTest requirements, use-cases and architecture

34

ID Component Title As a <type of
user>

I want <some goal> so that <some reason> Status Release

EPM3 EPM Instance lifecycle
operations

ElasTest user to be able to execute lifecycle
operations such as start/stop,
remove instances and retrieving
information of the instance at
runtime

the consumer of the EPM
has full flexibility of
executing lifecycle
operations with the
virtualized instances for a
proper management at
runtime.

AVAILABLE R1-R2

EPM4 EPM Instance
management
operations

ElasTest user to be able to execute operations
such as executing commands
inside the instances and
downloading/uploading files

the consumer of the EPM
has full flexibility of
accessing and interact
with the virtualized
instances.

AVAILABLE R1-R2

EPM5 EPM Platform - Linux
support

ElasTest user to run the EPM in Linux as the
OS with native docker

the user of ElasTest has
the free choice of the
underlying OS where
ElasTest is running.

AVAILABLE R3

EPM6 EPM Platform - Mac
support

ElasTest user to run the EPM in Mac OS as the
OS with docker for Mac

the user of ElasTest has
the free choice of the
underlying OS where
ElasTest is running.

AVAILABLE R1-R2

EPM7 EPM Platform -
Windows support

ElasTest user to run the EPM in Windows with
docker toolbox as the OS and
docker for Windows

the user of ElasTest has
the free choice of the
underlying OS where
ElasTest is running.

BACKLOG R4

D2.3 ElasTest requirements, use-cases and architecture

35

ID Component Title As a <type of
user>

I want <some goal> so that <some reason> Status Release

EPM8 EPM Log forwarding ElasTest user to forward logs to the
configured endpoint

other parties can access
those logs which can be
used for further
troubleshooting and
debugging.

AVAILABLE R1-R2

EPM9 EPM Platform Elasticity ElasTest user elasticity provided by the EPM either other ElasTest
components can be
scaled dynamically or the
virtualized resources
requested by other
ElasTest components
themselves.

BACKLOG R5

EMP1 EMP Monitoring
spaces

ElasTest
admin

to be able to specify a separate
monitoring space for the overall
application

I can get easy, properly
segregated access to my
overall metric / log data.

AVAILABLE R1-R2

EMP2 EMP Monitoring
subspaces

ElasTest
admin

to be able to further separate
metric and log stream of an
application sub-component /
microservice from rest of the
components

I can easily locate the
data stream coming from
one component versus
looking at a large set of
data points from all
possible metric
generation sources in my
large application

AVAILABLE R1-R2

D2.3 ElasTest requirements, use-cases and architecture

36

ID Component Title As a <type of
user>

I want <some goal> so that <some reason> Status Release

(possibly distributed).

EMP3 EMP API
authentication
and authorization

ElasTest
admin

my access to be authenticated
and properly logged for safety
as well as auditing purposes

no one else is able to
access the data streams
from my services as they
may contain sensitive
data.

AVAILABLE R1-R2

EMP4 EMP Receive system
metric streams

ElasTest
admin

to be able to send relevant
system metrics into the
monitoring system

I can analyze data trends
later or in real time.

AVAILABLE R1-R2

EMP5 EMP Persist system
metric streams

ElasTest
admin

my data points to be stored for
a specified period in time

I can do detailed offline
analysis of trends and /
or investigate
bottlenecks / problem
areas with my
application.

AVAILABLE R1-R2

EMP6 EMP Data query
capability

ElasTest
admin

to be able to see stored data
points

I can analyze data trends
and observe system
trends.

AVAILABLE R1-R2

EMP7 EMP RESTful APIs ElasTest
admin

to easily integrate with the
monitoring service with clearly
defined interfaces

I can send metrics and
perform control
operations through my
application code logic

AVAILABLE R1-R2

D2.3 ElasTest requirements, use-cases and architecture

37

ID Component Title As a <type of
user>

I want <some goal> so that <some reason> Status Release

rather than interacting
with the monitoring
service in a standalone
detached mode.

EMP8 EMP Availability of
commonly used
metric collectors
(agents)

ElasTest
admin

to easily collect and send most
commonly used system metrics
into the monitoring platform

I can concentrate more
on my system specific
instrumentation and
monitoring.

AVAILABLE R4

EMP9 EMP Showing in
ElasTest GUI,
monitoring
information of all
components

ElasTest
admin

to see all metrics and other
monitoring information in
ElasTest GUI

I can know the status of
the system.

BACKLOG R5

D2.3 ElasTest requirements, use-cases and architecture

38

Table 3. User Requirements List - ElasTest Test Support Services.

ID Component Title As a <type of
user>

I want <some goal> so that <some reason> Status Release

EMS1 EMS Simple filtering
rules

ElasTest user to be able to add subscriptions
so that EMS filters events
according to conditions
expressed in my subscriptions

I can better select which
events to receive.

AVAILABLE R4

EMS2 EMS Deploy sampled-
based and signal-
based signals

ElasTest user to extract a field from certain
types of events to be
considered as sampled values
from a signal, which I want to
reconstruct and work with.

I can build on it,
aggregating its values
and combining them
with each other to
synthesize useful
information.

IN
PROGRESS

R5

EMS3 EMS Deploy
correlation
machines

ElasTest user to create notification events
based on received events, their
relative timing and arrival and
other contextual information

I can delegate to the EMS
the finding of patterns of
events in the stream of
observations from the
test.

IN
PROGRESS

R5-
Final

EMS4 EMS Unsubscribe
endpoints

ElasTest user to stop the flow of events to a
subscribed endpoint

I can remove it safely. IN
PROGRESS

R5

EMS5 EMS Undeploy routing
rules

ElasTest user to stop applying certain rules of
routing

I can regroup the events
in new ways.

IN
PROGRESS

R5

EMS6 EMS Undeploy
machines

ElasTest user to stop executing certain
monitoring machine

the system avoids
computing data which I
no longer need.

IN
PROGRESS

R5

D2.3 ElasTest requirements, use-cases and architecture

39

ID Component Title As a <type of
user>

I want <some goal> so that <some reason> Status Release

EMS7 EMS

Subscribe
websockets

ElasTest user to receive events over a
websocket

I can easily describe tests
that guide the testing
process depending on
the observations of the
current test.

AVAILABLE R4

ESS1 ESS Unprotected URL
detection

ElasTest user to receive list of unprotected
URLs

I can protect them and
prevent attackers from
stealing sensitive
information of the users
of my web site.

AVAILABLE R3

ESS2 ESS Insecure cookie
detection

ElasTest user to receive list of insecure
cookies (sensitive cookie values
sent via http channel)

I can secure them and
prevent attackers from
impersonating the users
of my web site.

AVAILABLE R3

ESS3 ESS Scanning for
common
vulnerabilities
(unauthenticated)

ElasTest user to be able to automatically test
whether my Web Application is
vulnerable to common Web
Application security
weaknesses.

I can avoid the situation
in which malicious actors
cannot easily hack my
web site by exploiting
the most common
vulnerabilities.

AVAILABLE R4

D2.3 ElasTest requirements, use-cases and architecture

40

ID Component Title As a <type of
user>

I want <some goal> so that <some reason> Status Release

ESS4 ESS Scanning for
common
vulnerabilities
(unauthenticated)

ElasTest user to do a deep security scan
covering parts of my Web
application that are otherwise
difficult to be reached by
automatic Web vulnerability
scanners

I can avoid the situation
in which common Web
application
vulnerabilities are not
missed by my security
scanner due to the
reachability issue.

IN
PROGRESS

R5

ESS5 ESS Login Oracle
Attack Detection

ElasTest user to be able to detect privacy-
related attacks against the users
of my Web application

the privacy of my users
are not compromised to
malicious third parties.

IN
PROGRESS

R5

ESS6 ESS Replay Attack
Detection

ElasTest user to be able to prevent replay
attacks against my shopping
cart applications

malicious users cannot
shop for free or shop by
paying less by replaying
payment tokens.

BACKLOG R6-
Final

ESS7 ESS False positives
Reduction

ElasTest user to be able to see security
vulnerabilities that are relevant
for my Web applications

I don't have to waste
time looking into security
issues that are not
relevant for my Web
application.

BACKLOG R6-
Final

EUS1 EUS W3C WebDriver
compatibility

ElasTest user to support standard W3C
WebDriver API (based on JSON
messages over REST)

EUS is backwards
compatible with existing
technologies such as
Selenium and Appium.

AVAILABLE R1-R2

D2.3 ElasTest requirements, use-cases and architecture

41

ID Component Title As a <type of
user>

I want <some goal> so that <some reason> Status Release

EUS2 EUS Basic media
evaluation

ElasTest user to read audio level and RGB
colors of given UI elements

it can be used as test
oracle to feed test
assertion.

BACKLOG R6-
Final

EUS3 EUS Event
subscription

ElasTest user to subscribe to UI elements tests can receive events
notification.

AVAILABLE R4

EUS4 EUS Measure end-to-
end latency of a
WebRTC session

ElasTest user to measure end-to-end latency tests can know whether
or not a WebRTC service
has operational real-time
performance rates

BACKLOG R6-
Final

EUS5 EUS Measure quality
(audio|video) of a
WebRTC session

ElasTest user to measure full-reference QoE
indicators both for audio and
video

tests can find out the
quality of the WebRTC
media in an easy way.

BACKLOG R6-
Final

EUS6 EUS Remote control ElasTest user to monitor remote sessions for
browsers and mobile

I can watch in real-time
and interact with
browser/movie sessions.

AVAILABLE R1-R2

EUS7 EUS WebRTC stats ElasTest user To read WebRTC statistics I can test/read WebRTC
QoS indicator in a
seamless way.

AVAILABLE R4

EUS8 EUS Browser logging
gathering

ElasTest user to read browser logs testers are aware of the
underlying logging info to
trace potential failures.

AVAILABLE R3

EUS9 EUS Mobile logging
gathering

ElasTest user to read mobile logs testers are aware of the
underlying logging info to
trace potential failures

BACKLOG R6-
Final

D2.3 ElasTest requirements, use-cases and architecture

42

ID Component Title As a <type of
user>

I want <some goal> so that <some reason> Status Release

EDS1 EDS Minimal
orchestrator EDS

ElasTest user to orchestrates sensors and
actuators

the demonstrator can
initiate and connect
sensors and actuators
and connect them with a
logic.

AVAILABLE R4

EDS2 EDS Minimal EDS
orchestration

ElasTest user to call and initiate required
sensors and actuators

the sensors and
actuators are live and
can provide data.

AVAILABLE R4

EDS3 EDS Demonstrator
logic

ElasTest user to connect sensors and
actuators via logic

an IoT application can be
realized.

AVAILABLE R4

EDS4 EDS Scalability of an
application

ElasTest user a combination of demonstrator
applications

I can test an SiL. AVAILABLE R4

EDS5 EDS Reusability of an
application

ElasTest user A combination of demonstrator
applications

I can form an SiL as a
combination of SiS.

AVAILABLE R4

EDS6 EDS Mechanisms for
collecting QoS

ElasTest user to collect QoS metrics I can analyse QoS BACKLOG R6-
Final

EDS7 EDS Add basic set of
sensors (about 7
types)

ElasTest user to use various sensors I can use in my IIoT
application.

BACKLOG R5

EDS8 EDS Add basic set of
actuators

ElasTest user to use various actuators in my IIoT application. BACKLOG R5

D2.3 ElasTest requirements, use-cases and architecture

43

Table 4. User Requirements List - ElasTest Test Engines.

ID Component Title As a <type of
user>

I want <some goal> so that <some reason> Status Release

EOE1 EOE Topology
generation

ElasTest user to define some kind of test
orchestration notation

users can define a TiL by
aggregating different
TJobs.

AVAILABLE R5

EOE2 EOE Jenkins DSL
notation

ElasTest user to leverage Jenkins shared
library technology to create
orchestration topology

users can define a TiL by
aggregating different
TJobs.

IN
PROGRESS

R6-
Final

ERE1 ERE Data
Preprocessing

ElasTest
admin

to automatically preprocess
user data

I can minimize time and
effort spent on data
preparation.

AVAILABLE R1-R2

ERE2 ERE Data Load ElasTest
admin

to upload user data to cloud it can be fed to the
machine learning model.

AVAILABLE R1-R2

ERE3 ERE Training on User
Data

ElasTest
admin to launch the execution of ML

algorithms

I can train machine
learning model on user
provided data.

AVAILABLE R1-R2

ERE4 ERE Flexible Storage ElasTest
admin

A flexible solution for storing
user data

I can choose storage type
that fits best the size of
my datasets.

AVAILABLE R3

ERE5 ERE Authentication ElasTest
admin

to log in and authenticate as a
registered user

I can get access to
proprietary services.

AVAILABLE R3

ERE6 ERE Admin Dashboard ElasTest
admin

a separate role and UI for
managing data load and training

I can ensure control over
resource-consuming
procedures.

AVAILABLE R3

D2.3 ElasTest requirements, use-cases and architecture

44

ID Component Title As a <type of
user>

I want <some goal> so that <some reason> Status Release

ERE7 ERE Configure default
settings

ElasTest user to configure and save default
settings for queries

I can choose the model
that I want to query.

AVAILABLE R3

ERE8 ERE Tester UI ElasTest user a user interface I can query for, view and
interact with
recommendations
generated by ERE.

AVAILABLE R1-R2

ERE9 ERE Recommend
TJobs to reuse

ElasTest user based on a natural language
descriptions, receive
recommendations on
automated test cases to reuse

I can increase code
reusability, save time and
effort.

AVAILABLE R1-R2

ERE10 ERE Recommend
manual test cases
to reuse

ElasTest user based on functionality
description, receive
recommendation on manual
test steps to reuse

I can increase knowledge
reuse, improve test cases
quality, support less
experienced testers.

BACKLOG R6-
Final

ERE11 ERE Recommend new
TJobs for
incoming features

ElasTest user based on natural language
description, receive newly
generated code for automated
test cases

I can save time and
resources spent on test
automation.

AVAILABLE R4

ERE12 ERE Learning from
tester feedback

ElasTest user a convenient way to amend
received recommendations and
return them to the system

The feedback is used for
re-training to improve
future
recommendations.

BACKLOG R6-
Final

ERE13 ERE Inline help ElasTest user to have access to inline help as I
navigate through the UI

I can get immediate
explanations and tips for
using various features.

AVAILABLE R4

D2.3 ElasTest requirements, use-cases and architecture

45

ID Component Title As a <type of
user>

I want <some goal> so that <some reason> Status Release

ERE14 ERE End-to-end
preprocessing
pipeline

ElasTest
admin

to automatically crawl a
software repository (Java) and
extract relevant training data

I can eliminate manual
effort required to gather
and analyse data.

AVAILABLE R5

ERE15 ERE

Pre-trained
models

ElasTest
admin

ERE to provide off-the-shelf pre-
trained model that can be
customized using my own data

I can leverage software
engineering knowledge
captured in large open
source repositories,
decrease training time
and cost.

BACKLOG R6-
Final

EQE1 EQE Data
Preprocessing ElasTest

admin

to automatically preprocess
user data

I can minimize manual
effort on data
preparation.

IN
PROGRESS

R4

EQE2 EQE Data Load ElasTest
admin

to load user data it can be fed to a
machine learning model.

IN
PROGRESS

R4

EQE3 EQE Training on user
data ElasTest

admin

to launch training I can generate a Q&A
model trained on user
data.

BACKLOG R6-
Final

EQE4 EQE Interactive UI ElasTest user An interactive UI I can easily input
questions and read
responses within the
conversation flow.

BACKLOG R6-
Final

EQE5 EQE Advices on
efficient queries

ElasTest user Ask the Q&A system how to
query the recommender

I can formulate efficient
queries.

BACKLOG R6-
Final

D2.3 ElasTest requirements, use-cases and architecture

46

ID Component Title As a <type of
user>

I want <some goal> so that <some reason> Status Release

EQE6 EQE Learning about
new test cases

ElasTest user Ask Q&A about new test cases
appropriate for a given project

Leverage testing
knowledge captured in
open software
repositories.

BACKLOG R6-
Final

D2.3 ElasTest requirements, use-cases and architecture

47

Table 5. User Requirements List - ElasTest Integration with External Tools.

ID Component Title As a <type of
user>

I want <some goal> so that <some reason> Status Release

ET1 ET Install full latest
version

ElasTest user to install the latest full ElasTest testers can configure
SuTs and TJobs with all
the capabilities.

BACKLOG R6-
Final

ET2 ET Install lite latest
version

ElasTest user to install the latest lite ElasTest testers can configure
SuTs and TJobs with and
use the basic capabilities
of ElasTest.

BACKLOG R6-
Final

ET3 ET Install full specific
version

ElasTest user To install a specific version of
the full ElasTest

testers can configure
SuTs and TJobs with all
the capabilities.

BACKLOG R6-
Final

ET4 ET Install lite specific
version

ElasTest user to install a specific version of
the lite ElasTest

testers can configure
SuTs and TJobs with and
use the basic capabilities
of ElasTest.

BACKLOG R6-
Final

ET5 ET Check ElasTest
Status

ElasTest user to check the ElasTest status
(running/stop/failed/unstable...)

the user can check if the
platform is ready to be
used.

AVAILABLE R1-R2

ET6 ET Start full latest
version

ElasTest user to start the latest full ElasTest
docker image

testers can configure
SuTs and TJobs with all
the capabilities.

AVAILABLE R4

ET7 ET Start lite latest
version

ElasTest user to start the latest lite ElasTest testers can configure
SuTs and TJobs with and
use the basic capabilities
of ElasTest.

AVAILABLE R1-R2

D2.3 ElasTest requirements, use-cases and architecture

48

ID Component Title As a <type of
user>

I want <some goal> so that <some reason> Status Release

ET8 ET Start full specific
version

ElasTest user to start a specific version of the
full ElasTest

testers can configure
SuTs and TJobs with all
the capabilities.

AVAILABLE R4

ET9 ET Start full latest
version without
ERE

ElasTest user to start the latest full ElasTest
(without the ElastTest
Recommendation Engine)

testers can configure
SuTs and TJobs with all
the capabilities except
ElastTest
Recommendation
Engine.

AVAILABLE R1-R2

ET10 ET Start lite specific
version

ElasTest user to start a specific version of the
lite ElasTest

testers can configure
SuTs and TJobs with and
use the basic capabilities
of ElasTest.

AVAILABLE R1-R2

ET11 ET Retrieve
connection
information

ElasTest user to know where to connect to
access the ElasTest platform

users can connect to the
Platform to operate.

AVAILABLE R1-R2

ET12 ET Retrieve
information of
deployed
components

ElasTest user to know which components are
available in the running ElasTest

I can obtain information
of each of the
components, such as
status, port, consuming
resources etc.

BACKLOG R3

ET13 ET AWS Cloud
Elastest
Deployment

ElasTest user to configure and Run an Elastest
Instance in the AWS cloud, with
no or little effort

I am able to have a fully
operating ElasTest
running in the cloud.

BACKLOG R4

D2.3 ElasTest requirements, use-cases and architecture

49

ID Component Title As a <type of
user>

I want <some goal> so that <some reason> Status Release

ET14 ET

AWS Cloud Elastic
Elastest

ElasTest user

to configure and Run an Elastest
that can be seamlessly elastic

I am able to launch
(virtually) any number of
TJobs as the resources
would be elastic.

BACKLOG R6-
Final

EJ1 EJ Install plugin Tester
(Jenkins User)

to install ElasTest Plugin with
default plugin installer

ElasTest configuration
properties can be set on
Jenkins Configuration
and ElasTest can be used
in Jenkins Jobs.

IN
PROGRESS

R5

EJ2 EJ Install plugin for
pipelines

Tester
(Jenkins User)

to install ElasTest Plugin with
default plugin installer

ElasTest configuration
properties can be set on
Jenkins Configuration
and ElasTest can be used
in Jenkins Pipelines.

IN
PROGRESS

R5

EJ3 EJ Global
configuration of
ElasTest platform

Tester
(Jenkins User)

to configure global ElasTest
settings:
 - Version
 - type (lite/full)

the plugin can manage
the ElasTest platform
with the appropriate
configuration.

IN
PROGRESS

R5

EJ4 EJ Jenkins Managed
ElasTest

Tester
(Jenkins User)

ElasTest plugin to be able to
launch a ElasTest with the
specified global configuration

any job can be able to
launch and use this
ElasTest.

IN
PROGRESS

R5

D2.3 ElasTest requirements, use-cases and architecture

50

ID Component Title As a <type of
user>

I want <some goal> so that <some reason> Status Release

EJ5 EJ External
Managed ElasTest

Tester
(Jenkins User)

ElasTest plugin to be able to use
an ElasTest running in other
location (local or external)

any job can be able to
use this ElasTest.

BACKLOG R6-
Final

EJ6 EJ Configure docker
Image SuT

Tester
(Jenkins User)

to configure in a Job, ElasTest to
recognize and launch a provided
an image of a SuT

ElasTest can work with
that SuT.

BACKLOG R6-
Final

EJ7 EJ Configure
externally hosted
SuT

Tester
(Jenkins User)

to configure in a Job, ElasTest to
recognize an externally hosted
SuT

ElasTest can work with
that SuT.

BACKLOG R6-
Final

EJ8 EJ Configure
personalized SuT

Tester
(Jenkins User)

to provide an script (mvn, sh,
py...) that the ElasTest plugin
will use to launch a SuT

ElasTest can work with
that SuT.

BACKLOG R6-
Final

EJ9 EJ Configure docker
image TJob

Tester
(Jenkins User)

to configure ElasTest to
recognize and launch a provided
an image of a TJob

ElasTest can execute that
TJob.

BACKLOG R6-
Final

EJ10 EJ Configure
personalized TJob

Tester
(Jenkins User)

to provide n script (mvn, sh,
py...) that the ElasTest plugin
will use to launch a TJob

ElasTest can execute that
TJob.

BACKLOG R6-
Final

EJ11 EJ Export results Tester
(Jenkins User)

to export the result of the tests
executed in a readable format

I can read detailed
results

BACKLOG R6-
Final

EJ12 EJ Export logs Tester
(Jenkins User)

to export all the generated logs
for SuT and TJobs

I can retrieve them for
further operations.

BACKLOG R6-
Final

4.3 Methodology

Figure 4 shows the ElasTest agile methodology and its application on the work
packages.

Figure 4. ElasTest work agile methodology

The agile methodology selected is based on executing incremental iterations on a
Build-Measure-Learn feedback loop which validates that the implemented technology
is valuable and responds to real needs. On every of these iterations, the built
technologies are discussed between the technical WPs (WP3, WP4, WP5) and the
vertical demonstrators (WP7) in order to refine their roadmap.
The cycles have a duration of 4 months, we call each of these cycles a Release (R), a
total of 9 releases have been planned during the project duration. The development
tasks until R6 shall provide the platform validated in a lab, while the last 3 shall
demonstrate it through the vertical demonstrators.
During the first cycle we have focused on developing, based on our initial component
designs, proof and concepts as well as performing adaptations to the previous baseline
technologies/components in order to identify and start solving the integration issues
that the consortium were able to anticipate at this stage. Hence, in an initial stage
most components only implements a small subset of the requirements depicted in
section 4.2. Within the second cycle, and once the CI environment was ready, we have
focused mainly on providing value to the platform users by implementing the required
component functionalities while at the same time we organized regular meetings
keeping an eye on the market and vertical demonstrators needs, in order to maintain
the project aligned with the industry requirements. At month 18, we were able to
cover four of these incremental cycles which include the release of the first integrated
version of the platform (Milestone_5).
In order to achieve our goals, common conventions and approaches have been agreed
within the consortium. You can find below the most relevant conventions:

- Fundamental Model Concept (FMC) has been selected to provide
understandable block diagrams of the platform as well as for each of the
submodules that constitutes the platform.

D2.3 ElasTest requirements, use-cases and architecture

52

- Unified Modeling Language (UML) is the general-purpose modeling language
selected to define the Data Model diagrams and Sequence diagrams across the
components.

- Early discussions are promoted across technical WPs in order to ensure that all
components have the same level of understanding on the platform. The
discussions have been organized in the following small working groups:

o Persistence Working Group
o Monitoring Working Group
o Test Management Working Group
o Data Management Working Group

- To facilitate the communication across developers different Slack channels (#)
are used in the project.

- For the fine-grained management of the previous and ongoing tasks each WP
leader manages a Trello board.

- The platform is designed as a Service Oriented Infrastructure (SOI) where the
direct interaction between software modules uses to be synchronous through
REST APIs, however for certain cases the systems within ElasTest will be able to
react asynchronously based on events forwarded by other modules or systems
of the platform.

- The interactions and the information exchanged between components have
been captured early during the design phase through the specification of the
interfaces exposed by the components following the OpenAPI initiative.

- Software components releases follow Semantic Versioning approach which
proposes a simple set of rules and requirements that dictate how version
numbers are assigned and incremented.

4.4 Components Specification

Chapter 4 illustrates the functionality and interactions between the ElasTest software
systems by means of sample use cases. Detailed specifications for the individual
software modules are then provided in Sections 5 to 8.

A software module is in general characterized by its objectives, system prerequisites,
technical requirements and interactions with other software modules:

- Objectives: Objectives are the capabilities that the software modules provide to
the platform and/or to other software modules or systems within the
architecture.

- System Prerequisites and Technical Requirements Specification: Each software
module should fulfil certain requirements to be efficient and useful to the
overall platform. Each of them may have basic prerequisites, or may require
certain technologies or configuration data to specify system parameters or to
build/adapt the software modules.

- Interactions among Software Modules: Each software module interacts with
other modules by relying on inputs from and/or providing outputs to other
modules. Exchanged information can be static or dynamic. The direct
interaction between software modules uses to be synchronous through REST
APIs, however for certain cases the systems within ElasTest will be able to react

D2.3 ElasTest requirements, use-cases and architecture

53

asynchronously based on events forwarded by other modules or systems of the
platform.

- Additional information: Besides the above three characteristics, the description
of the software modules may contain further information about the specific
implementation (such as, functions, existing implementations, possible
adaptations and scalability of the modules).

5 ElasTest Core Components

These are the set of components needed to initialize the platform at the very
beginning when the platform is started. More information can be derived from Table 1
in section 4. For an in depth understanding of the core components, the reader is
referred to D3.1 [3] of work package 3.

5.1 ElasTest Tests Manager (ETM)

The ElasTest Tests Manager (ETM) is the brain of ElasTest and the main entry point for
developers. ETM provides a web interface to be used by testers (main users) and
administrators. It also provides a remote API currently used by ElasTest Jenkins Plugin
(EJ). Other tools are also using this API to integrate with ElasTest Platform.

5.1.1 Objectives

The main objectives of ETM can be grouped in the following areas:

- Test management: The main use case of ElasTest is allow users to manage jobs
to execute tests (TJobs). The tester can specify test jobs, execute them and
analyze its results (in real time and after execution). The main information
gathered during TJob’s execution are test results, logs and metrics. ETM
provides to the user a rich user interface specifically tailored to ease the
management of that kind of information. For example, is worth noting the Log
Analyzer, a part of ElasTest designed to inspect all logs gathered during test
executions. All these features allows the tester discover more easily (compared
with state of the art tools) the root of the problem when a test fails.

- SUT management: Testers are able to specify the Software under Test (SuT)
associated to TJobs so that tests can be executed against it. SuT can be
deployed by ElasTest (using Docker or Docker Compose) or can be already
deployed outside ElasTest. In the latter case, ElasTest can instrument the SuT
(by means of ElasTest Instrumentation Manager) or can be instrumented
manually. The instrumentation is used to gather SuT information (metrics and
logs) to provide observability.

- Test Support Services: Besides all features provided by ElasTest than can be
used by testers in the web interface, ElasTest also provides services that can be
managed programmatically from the test code. These services are called Test
Support Services (TSS) and allows the tester to create powerful tests with ease.
For example, one of the most used TSS when testing web applications is the
ElasTest User Impersonation Service (EUS), that provides web browsers to

D2.3 ElasTest requirements, use-cases and architecture

54

tests. Browsers, controlled by WebDriver protocol, can exercise the web
application SUT and assert the expected result. When a TJob is specified in
ElasTest, it defines what TSSs are needed. When a TJob is executed, ETM first
instantiates required TSSs and then execute test code, providing to it the
network endpoint to use those TSSs.

- Test Engines: ElasTest core functionality is provided by ETM and other core
components like Data Manager (EDM), Platform Manager (EPM), etc. But this
core functionality is augmented by means of so called Test Engines (TE). A Test
Engine is a component that provides complementary features. ElasTest
currently offers two engines: ElasTest Cost Engine (ECE) (responsible to manage
the cost of TJob executions) and ElasTest Recommendation Engine (ERE) (that
provides recommendations about tests to the user). More engines are also
planned to be included in the following releases. ETM is responsible to manage
the lifecycle of Test Engines. Specifically, ETM loads the engine when requested
by the user (by delegating it to ESM), it embeds graphical user interface into
the main ElasTest one, and also it provides the remote API to allow engines to
access to all information about TJobs, executios, SuTs, etc.

- Test execution comparison: ElasTest provides monitoring services for the SuT.
That is, a tester is able to know the CPU, memory and IO consumption of the
SuT while the test is executing against it. In some cases, it is important to
compare several executions of the same test against different SuT
configurations. ElasTest will provide the feature of comparing the information
gathered during the execution of related tests.

ETM is the controller of all ElasTest core features. It also exposes the public remote API
for clients and the internal API needed for Test Engines and Test Support Services.

5.1.2 Systems Prerequisites and Technical Requirements specification

As the other ElasTest core components, ETM will be deployed as a docker container. In
that sense, it is necessary a Docker engine to execute it. Also, it is needed some sort of
coordination between all components to communicate each other. That management
is provided by ElasTest Toolbox (ET).

5.1.3 Component Design

Figure 5 shows main ElasTest components in a FMC diagram. As you can see, ElasTest
Test Orchestration and Recommendation Manager (TORM) is composed by ETM, the
Test Engines (TEs) and the ElastTest Instrumentation Manager (EIM). ElasTest Tests
Manager (ETM) is the entry point of ElasTest Platform and is the central part of it. ETM
uses ElasTest Data Manager (EDM) to persist and query all kinds of information. For
example, when a previous test execution is shown in the web interface, all information
is loaded from data manager (files, logs, test status, etc). ETM uses ElasTest Platform
Manager (EPM) to control the resources used in ElasTest to execute TJobs and internal
SuTs.

D2.3 ElasTest requirements, use-cases and architecture

55

Figure 5. ETM FMC Diagram.

ETM remote API is used by external tools (like ElasTest Jenkins plugin) and also by
other ElasTest components (for example, the ElasTest Cost Engine). Figure 6 shows the
data model managed by ETM. A SuT definition is an instance of SuT entity. A SuT
execution is an instance of SuTExecution entity. As a SuT can be executed multiple
times, there is a one to many relation between SuT and SuTExecution. A TJob
definition is an instance of TJob which can also be executed several times. Finally, the
same SuT can be associated to multiple TJobs.

Figure 6. Main data model managed by ETM

As ETM is the main entry point of ElasTest features, it requires all other ElasTest core
components to work properly. That is, this component requires all the following
components:

- Elastest Platform Manager (EPM): The component that provides the ability to
instantiate execution entities (like docker containers or virtual machines).

- Elastest Service Manager (ESM): The component that provides the ability to

D2.3 ElasTest requirements, use-cases and architecture

56

instantiate Test Support Services (TSSs) and Test Engines (TEs). EMS uses the
same underlying EPM to manage low level execution entities.

- Elastest Data Manager (EDM): The component that provides specialized
persistence service to the rest of the platform.

- Elastest Instrumentation Manager (EIM): The component that allows ElasTest
to instrumentalize already deployed SuT when tests are executed against it.

ElasTest architecture is inspired in a microservices architecture, in which every
component is implemented as an independent process communicated with other
components using remote protocols or APIs. Specifically, the following protocols are
used:

- EPM: ETM interacts with EPM using a REST API. The API is defined for ElasTest
project.

- ESM: ETM interacts with ESM using a REST API. The REST API is based on OSBA
standard with extensions required by ElasTest.

- EDM: ETM interacts with persistence service provided by EDM using several
protocols. Specifically, it uses native MySQL protocol to communicate with
MySQL. It uses the ElasticSearch REST API to communicate with it. Also, the
Logstash component, used by ETM, is connected with ElasticSearch by means
of the native protocol between ElasticSearch and Logstash.

- EIM: ETM interacts with EIM using a REST API. The API is defined for ElasTest
project.

The remote API published by ETM is divided in two parts: A REST API to manipulate the
resources managed by ETM (TJobs, SuTs, executions…) and a WebSocket STOMP API to
allow clients to receive realtime events from ElasTest.

D2.3 ElasTest requirements, use-cases and architecture

57

Use cases

The main use case for ETM is to define a TJob and execute it as shown in Figure 7:

Figure 7. ETM use case - Define a TJob and execute it.

D2.3 ElasTest requirements, use-cases and architecture

58

And also, using a TSS in the TJob as shown in Figure 8:

Figure 8. ETM use case - Define a TJob using the ElasTest services and execute it.

5.1.4 Interactions

D2.3 ElasTest requirements, use-cases and architecture

59

Table 6. Input to ETM.

Input Provided by Remarks

TJob description Tester Initialization

SuT description Tester Initialization

Execution metrics Agents, EPM, ESM, Jenkins During execution

Logs Agents, EPM, ESM, Jenkins During execution

Test results TJobExecution Finalization

TJobExecution ID Platform Manager Deployment

Table 7. Output from ETM.

Output Provided to

TJob description Platform Manager

SuT description Platform Manager

Metrics / Logs Data Manager, Web Interface

Test Results Data Manager, Web Interface

5.2 ElasTest Platform Manager (EPM)

The ElasTest Platform Manager is the interface between ElasTest components (e.g.
TORM, Test Support Services, etc.) and the cloud infrastructure where ElasTest is
deployed. Hence, this Platform Manager must abstract the cloud services so that
ElasTest becomes fully agnostic to them and provide this abstraction via Software
Development Toolkits (SDK) or REST APIs to the northbound consumers (i.e. the
TORM). The ElasTest Platform Manager enabling ElasTest to be deployed and to
execute seamlessly in the target cloud infrastructure that the consortium considers as
appropriate (e.g. OpenStack, CloudStack, Mantl, AWS, Docker, etc.).

5.2.1 Objectives

The ElasTest Platform Manager shall support the following functionalities:

- Provide the appropriate mechanisms enabling other ElasTest components to
deploy and provision the required virtual resources in target cloud
environments.

- Abstraction of underlying cloud infrastructure technologies via the Northbound
APIs of the EPM to make other ElasTest components to be agnostic to various
technologies.

5.2.2 System Prerequisites and Technical Requirements Specification

As the other ElasTest core components, the EPM is delivered as a Docker container.
Hence, it is required to have the Docker engine up and running with access to Docker
Hub in order to download EPM’s Docker image. There are no dependencies to other

D2.3 ElasTest requirements, use-cases and architecture

60

ElasTest components besides the EMP and EMS which are required in case monitoring
of virtual resources or log forwarding is desired.

5.2.3 Component Design

This section gives a High level description of the ElasTest Platform Manager. The
architectural overview (see Figure 9) follows a black box approach but basically the
EPM exposes an RESTful API at the northbound interface in order to allow the
consumer (e.g. TORM, ESM) to manage virtual resources in a target cloud
environment. It allows to allocate, terminate, update virtual resources (e.g. compute,
network) and request information of those as well, execute runtime operations, and
register and configure new workers. For maintaining state and to allow the user to
retrieve state and information of the allocated virtual ressources, the EPM maintains
data in a repository. The EPM follows a modular architecture where the Core is
decoupled from so called EPM Adapters that provide an abstracted way to interact
with any kind of cloud environment. The northbound interface is exposed to the Core
and abstracted in such a way, that the Core does not need to take care about the type
of the target cloud environment - it just needs to know to which adapter to send the
requests. The southbound interface is dependent on the type of target cloud
environment. This allows an easy way to provide any kind of cloud environment by
providing an adapter without changing anything in the core. The EPM Adapter takes
also care about the configuration of logging and monitoring of the virtualized
resources by receiving those information by the EPM component either defined by the
Consumer itself or the default configuration.

Figure 9. Architectural overview of EPM.

D2.3 ElasTest requirements, use-cases and architecture

61

The EPM is intermediate component between other ElasTest components and the
underlying virtual infrastructure cloud technologies. The EPM remote API is consumed
by other ElasTest components (e.g. ETM, ESM) in order to provision and manage
virtual resources in the target cloud infrastructure. Therefore, the consumer can define
the virtual resource requirements in two ways by either using the information model
exposed by the EPM or technology-specific templates directly (e.g docker-compose or
Ansible templates).

The EPM and its remote API are consumed by the following ElasTest components:

- ETM: The ETM uses EPM in order to provision virtual resources and manage

runtime operations (e.g. TJobs, SuTs, executions).

- ESM: The ESM uses EPM in order to provision TSS as virtual resources.

- ...

The EPM itself is not dependent directly on any other ElasTest components but uses
the following indirectly:

- EMS: As part of the provisioning of virtual resource the EPM configures those

to forward logs and to get monitored by the ESM.

- EMP: If the EPM is in charge of deploying other ElasTest components or

Workers, it configures those to get monitored by the EMP.

- ...

5.2.4 Interactions

The Inbound Interfaces are exposed using a RESTful API and its usage is simplified by
java and python clients. These clients provide a programmatic integration with the
EPM and are meant to be used by the TORM and the other ElasTest components.

Table 8. Input to EPM.

Input Provided by

Virtual resource description ETM, ESM, other ElasTest components

Runtime management operation ETM, other ElasTest components

 Virtual resource lifecycle operations ETM, other ElasTest components

Table 9. Output from EPM.

Output Provided to

Details ETM, ESM, other ElasTest components

Runtime management operation ETM, other ElasTest components

D2.3 ElasTest requirements, use-cases and architecture

62

The Outbound Interfaces are provided by the EPM Adapters discussed above. They
connect to the different Cloud Environments and thus providing the options for
handling the required resource management functionalities.

5.3 ElasTest Monitoring Platform (EMP)

ElasTest platform monitoring (EMP) is a service that monitors the core modules of
ElasTest platform itself. The service is designed to be provisioned on demand, but will
be utilized as long lived service.

5.3.1 Objectives

The principal objectives are -

- Ability to track system metrics of ElasTest core modules
- Sensible data visualization allowing comparative analysis amongst components

in terms of resource consumption
- Health status panel showing at a glance state of every core component
- Sufficiently rich query interface allowing failure tracing and bottleneck

identification amongst ElasTest core components
- Alerting capability allowing proactive notification to control modules when a

critical component under observation becomes unhealthy.

5.3.2 System Prerequisites and Technical Requirements Specification

EMP makes use of agent processes and/or properly instrumented code for collection
of relevant data/metric streams for visualization and analysis needs. EMP agents and
core itself have been containerized, thus requires hosts’ capability of executing
containers. It is necessary to deploy EMP agents in all physical/virtual nodes where
ElasTest core components are to be executed.

Table 10. EMP requirements.

Requirement Description

EMP-REQ1 EMP framework must be able to allow log ingestion as well
as metric stream injection.

EMP-REQ2 Framework must to be able to enforce data retention
policy set by admin or users of EMP

EMP-REQ3 Administration interface (RESTful and/or GUI) must exist
for users to create / modify monitoring spaces and series in
EMP.

EMP-REQ4 EMP must have alerting capability which allows creation of
rule based alerts based on health status of critical
components under observation.

EMP-REQ5 EMP should at a glance show liveness status of group of

D2.3 ElasTest requirements, use-cases and architecture

63

components that make up TORM.

EMP-REQ6 EMP must allow advance query spanning multiple spaces,
and series (belonging to the same user) allowing correlated
analysis of data trends, or facilitating bug identification.

EMP-REQ7 API security and proper access control capabilities should
exist safeguarding one user’s data from another.

5.3.3 Component Design

Figure 10 shows the high level architecture of EMP.

Figure 10. Architecture diagram of EMP.

Key components shown in the Figure 10 above are -

- EMP: provides the RESTful API as well as a graphical web UI for the users of
EMP.

- Messaging cluster: messaging framework via which all EMP agents send
relevant metric stream to EMP

- EMP agents: client side processes that gather useful data from the target
operating environment for sending to the EMP framework

- Relational DB: SQL data store that keeps user account data as well as
configured space and series information

- TSDB: time series data store that is used to optimally store the timestamped
metric stream sent to EMP from agent processes

D2.3 ElasTest requirements, use-cases and architecture

64

Sequence Diagrams showing interactions among various actors are shown next. In
order to fully comprehend EMP workflows, it is important to clarify few terminologies.

- EMP space: it is a container where all relevant data streams for a project,
application, group of services, etc. are marked as being part of.

- EMP series: each space can contain multiple series, each series stores data
streams coming from one instance of EMP agent. Logically, series data belong
to a module or component of larger service, application.

To clarify the concept with an example, consider a web service called Thimble_store. In
order to service clients of Thimble_store, there are multiple microservices behind the
scenes, such as authentication service, db-stores, etc. The provider of Thimble_store
can create an EMP space called - Thimble_store_Space. And inside this space, he could
create series such as Thimble_store_Space-series_for-Auth_data and
Thimble_store_Space-series_for-DB_access_logs. Let’s keep the above anology in mind
which reading the sequence diagrams presented below.

Figure 11. Registration and EMP setup phase interactions.

Once the user accounts have been properly setup, and the users have registered EMP
spaces and series within spaces, the framework is ready to accept data streams from
various agents via the messaging cluster. Users in ElasTest context are TORM / TJob
owners.

D2.3 ElasTest requirements, use-cases and architecture

65

Figure 12. Data processing workflow in EMP

Figure 13. Query processing in EMP.

The query processing workflow described above also facilitates data visualization and
feed data stream into the visualization engine. The visualization engine is configured to
periodically query EMP and update the charts accordingly.

D2.3 ElasTest requirements, use-cases and architecture

66

5.3.4 Interactions

Table 11. Input to EMP.

Input Provided by

Account data User or service proxy who wishes to use
EMP

Monitored space and series configuration User or service who is using EMP

 Metrics data stream EMP agents after proper configuration and
upon activation

 Log stream EMP agents after proper configuration and
activation

 Alert definition User or process using EMP

 Query parameters User or process using EMP

Table 12. Output from EMP.

Output Provided to

Agent-configuration parameters End user / process to enable proper
configuration of EMP-agents

Query responses User / process / grafana / web interface

 Alert triggers Registered alert endpoints / callback hook

5.4 ElasTest Service Manager (ESM)

The function and purpose of the ElasTest Service Manager (ESM) can be seen from two
main perspectives: the service consumer (the requester of a service instance) and the
service provider (the entity that offers their software as a service to service
consumers).

From the perspective of the service consumer, the overarching goal of the ESM is to
deliver, on request/demand, service instances of particular service types that are
required to support the execution of TJobs in the ElasTest platform. Once the service
instance is created the ESM has the responsibility to manage the lifecycle of that
service instance. This means that testers and/or developers will not need to worry
about how to deploy, provision or scale them and the service instances are delivered
using the as-a-Service model.

From the service provider perspective, the initial focus of the ESM will be easy on-
boarding of software to be offered as a service. It will be important not to lock the
service provider into any specific resource management platform (e.g. OpenStack,
Docker Swarm, Kubernetes) and as such will take avail of the services of the ElasTest
Platform Manager (EPM) as one option to remove this potential lock-in threat.

D2.3 ElasTest requirements, use-cases and architecture

67

5.4.1 Objectives

The objectives from a service owner’s perspective follows. A service owner has created

software that they wish to offer as a service. The service/application is composed of a

number of components and optionally other support services. By agreement between

all ElasTest partners, and hence by default, the services components are packaged as

docker containers. The service/application requires resources to execute, which should

be acquired from the EPM. The service owner know approximately how much

resources you require and can describe this in a manifest that is specific to the

resource provider (the EPM by default).

To provide a means to register your service implementation with the ESM so that end

users (incl. the TORM) can request that a service instance can be created on-demand.

The service owner will provide/make available the service implementation to the ESM

packaged as docker containers. The service owner will also provide resource

specifications that are required to run the service implementation. The ESM will take

the resource requirements for the service implementation and create these every time

a unique new request for a service instance is received. Once the resources are

created, the ESM will configure the service instance and ready it for operation. The

ESM will then begin to monitor the service instance from the external perspective.

Optionally, the ESM could also monitor the software components of the service

implementation. Once configured and monitored the ESM will make the instance

available to the end-user.

5.4.2 System Prerequisites and Technical Requirement Specification

The ESM’s internal technical prerequisites are as follows:

- Docker. As agreed project-wide. This will be used as the base of describing a
service, its components and optionally the amount of resources needed per
component

- Internal datastore: initially mongodb was selected, however reuse of existing
ElasTest platform components motivated the use of MySQL as is present in the
ElasTest Data Manager (EDM)

The ElasTest-specific prerequisites are as follows:

- ElasTest Platform Manager: used in order to acquire the resources necessary
to execute service workloads (the components comprising a service)

The optional but recommended prerequisites for the ESM are as follows

- ElasTest Monitoring Platform (EMP): If no monitoring service is provided then
consequently no monitoring of service instances can be carried out.

- AAA service. If no AAA service then no access, authorisation or accounting can
be carried out. This has the effect of identifying tenants (in a multitenant
environment) to their service instances difficult. In order to provide this

D2.3 ElasTest requirements, use-cases and architecture

68

functionality, OpenStack Keystone3 has been proposed internally and accepted.
- Billing service. If no billing service is provided then charging for service

instances cannot be carried out. This is of lesser priority from a fundamental
perspective, however in order to bind service cost models with the TORM (both
in terms of static and also dynamic pricing estimation) it needs to be provided.
To date Cyclops4 has been offered as a suitable solution.

In the Table 13 below the detailed requirements that should be satisfied by the ESM
are described.

Table 13. ESM requirements.

Requirement Description

List available service
types

Supplies a list of services registered with the ESM that can
be instantiated

Create a service instance
of a specific service type

Creates the requested service instance. Will install service’s
software components upon resources provided by the
EPM. Service consumers can receive notification of task
completion through the “poll service instance status”
requirement.

Poll service instance
status

Allows a service consumer query the current state of their
service instance

Access service instance Provides service instance access details to the service
consumer for example, user-name and password
information to access a service’s API (e.g. JDBC URL)

Configure service
instance

Provides configuration parameters to the service instance
to enable completion of service instance creation.

Get service instance
details

Gives a description of the service instance.

Get service instance
metrics

Supplies summary metrics of the service instance and also
optionally provides a URL to the monitoring service where
further service instance metrics can be retrieved

Update service instance This changes the service plan that a service instance is
currently operating with.

Remove access to a
service instance

Disables access information of a service instance that was
previously associated with it

Delete a service instance Completely deletes (uninstalls) the service instance. This
means that all configuration, data of the service instance is
removed and then all resources (EPM) that were executing
the instance are removed. Service consumers can receive
notification of task completion through the “poll service

3 openstack, https://docs.openstack.org/keystone/latest/
4 Cyclops, http://icclab.github.io/cyclops/

D2.3 ElasTest requirements, use-cases and architecture

69

instance status” requirement.

Other aspects that will be considered in an architectural revision include:

- Service composition, creating pre-req services for the target service. this is the
case in EBS and EPM (EBS requires EPM)

- Starting and stopping a service but not destroying it

5.4.3 Component Design

In this section the details of the ESM architecture will be shown.

Context Diagram

Figure 14 the Fundamental Modeling Concept (FMC) diagram of the ElasTest service
manager. It shows the key components of the ESM and relations to external ElasTest
entities.

Figure 14. Architecture diagram of ESM

There are a number of components to the ESM and here we provide a brief
explanation of each.

- AAA: not provided by ElasTest. Currently uses OpenStack Keystone.
- Billing: not provided by ElasTest. Currently provided by Cyclops.
- Monitoring: Provided by the EMP. monitors service from external perspective

e.g. response time, latency, Round Trip Time (RTT) etc.
- ElasTest Platform Manager (EPM): If service provider uses own resources then

this is optional. For the case of ElasTest it is mandatory to use the EPM.
- “Local” Orchestrator provided by service owner. Orchestration of services and

D2.3 ElasTest requirements, use-cases and architecture

70

dependencies by SM. This abstraction allows the service provider either use its
own system to provide the service’s resources or to use those by the EPM

Further details of the internal components of the ESM can be found in D3.1.1 [3].

Use Case Diagrams

There are two core actors used to model the use cases of the ElasTest service
manager. The ServiceConsumer has specific specialised actors.

- ServiceConsumer: this is the entity that requests the service instance and/or
uses that instance

○ TORM: The ElasTest Test Orchestration Manager
○ ServiceProvider: see below
○ ServiceManagerUI: this is the user interface that may be presented to

reflect the model of the ESM.
- ServiceProvider: this is the entity that provides software on an on-demand basis

as requested by a ServiceConsumer.

Figure 15. Use cases of ServiceConsumer.

Figure 16. Use cases of ServiceProvider.

UML Sequence Diagrams

Based on the needs of each actor, shown in the use case diagrams, and the FMC
architecture, the following UML sequence diagrams (Figure 17 and Figure 18) were
created in order to illustrate the interactions between components within ElasTest of
the ESM. The internal details are not shown but can be found in D3.1.1 [3].

D2.3 ElasTest requirements, use-cases and architecture

71

Service Consumer Interactions

Figure 17. Sequences of ESM functionality - Part 1 of figure.

D2.3 ElasTest requirements, use-cases and architecture

72

Figure 18. Sequences of ESM functionality - Part 2 of figure.

D2.3 ElasTest requirements, use-cases and architecture

73

Service Provider Interactions

The Figure 19 shows the service provider interactions in ESM.

Figure 19. Service provider interactions in ESM.

D2.3 ElasTest requirements, use-cases and architecture

74

Data Model

This data model shown in Figure 20 and Figure 21 is the model that is exposed out of
the ElasTest Service Manager OpenAPI 5 . The PlanCost model as part of the
PlanMetadata is work that is defined in WP4 and is here for completeness. What is not
described in this model is the structure of requests that are sent over HTTP. The
description of these can be found in the ESM’s API OpenAPI definition3.

Figure 20. Data model of ESM - Part 1 of figure.

5 ESM OpenAPI definition, https://github.com/elastest/elastest-service-manager/blob/master/api.yaml

D2.3 ElasTest requirements, use-cases and architecture

75

Figure 21. Data model of ESM - Part 2 of figure.

5.4.4 Interactions

Table 14. Input to ESM.

Input Provided by Provided to

Service instance
request

Service
Consumer6

ESM

Resource
request

ESM EPM

Service
registration info

Service Provider ESM

Service manifest Service Provider ESM

Principal Service Consumer AAA via ESM

6 See Use Case Diagrams

D2.3 ElasTest requirements, use-cases and architecture

76

Principal Service Provider AAA via ESM

Table 15. Output from ESM.

Output Provided to Provided by

Service Metrics /
Logs

EMS ESM

Service
creation/deletion

Billing ESM

Service Instance
Info

TORM ESM

Resource
instances info

ESM EPM

5.5 ElasTest Data Manager (EDM)

The ElasTest Data Manager (EDM) components provides the persistence layer services
for all components of ElasTest, along with some extra capabilities on top. It consists of
databases (MySQL, ElasticSearch), distributed filesystem (HDFS), Kibana for visual
representation of ElasticSearch logs and a web file browser for easy management of
HDFS files. Additionally, EDM provides a REST API to manage (e.g. backup/restore) the
stored data.

5.5.1 Objectives

The objective of EDM is to provide all the required persistence services to all other
ElasTest components, as well as the means to manage these components from a single
entry point. Management of the services in question contains the notion of backing
up/restoring the data, as well as on-demand scaling and monitoring the services. A list
of the requirements is given below:

- To unify all storage requirements of ElasTest under the same umbrella.
- Load data into a log analytics stack for query parsing, search indexing, and

trend visualization
- To provide an API for managing all the gathered data, per the given

requirements.
- To provide a scalable storage layer for the ElasTest platform.

5.5.2 System Prerequisites and Technical Requirements Specification

EDM is provided as a set of Docker containers. The requirements below describe what
is needed to execute EDM standalone, without taking into account any data stored in
the system or scaled up services (for processing capacity). The user is strongly
encouraged to scale up according to their requirements.

D2.3 ElasTest requirements, use-cases and architecture

77

This component is a core part of ElasTest and is required to execute the platform,
hence no specific requirements of EDM on other components exist.

A detailed explanation of the requirements satisfied by EDM in Table 16.

Table 16. EDM requirements.

Requirement Description

Provide an RDBMS An RDBMS system must be provided for all components
that require such functionality.

Provide a flat filesystem
for data storage.

Flat file storage must be provided. The capability to
perform distributed data processing on top of the data
storage layer is required.

Provide a way to
integrate with different
underlying
infrastructures.

All services provided by EDM must operate regardless of
the underlying hardware and management technologies.

Provide a log storage
and processing engine

Stores SuT logs and processes the contents in the context
of test analysis.

Provide a management
UI for the various
components

Provides a way to scale, backup/restore, and perform
administrative tasks to all the components under EDM
umbrella.

Provide health status for
all services.

The management API performs systematic health checks
and provides both an abstract and a detailed status of the
component services to the platform.

5.5.3 Component Design

EDM is a bundled package of services, created to support all persistence requirements
of the ElasTest platform. The component’s architecture is described in this section.

Figure 22 shows the Fundamental Modeling Concept (FMC) diagram of the ElasTest
data manager. The key components of EDM as well as the interactions and relations to
other ElasTest entities is depicted here.

D2.3 ElasTest requirements, use-cases and architecture

78

Figure 22. FMC diagram of EDM.

As seen in the diagram above, EDM provides persistence to many different
components. In addition to that, EDM provides management and visualization
interfaces for some components, as required. As an example, Kibana, Cerebro and
CloudCmd are web interfaces provided by EDM forwarded via TORM to the platform
user for utilization. These interfaces are described in the “interactions” section below.

5.5.4 Interactions

The entries below describe the various ways EDM interacts with external processes /
flows.

Table 17. Input to EDM.

Input Provided by

Logs TJobs/SuTs

Relational data ESM, EPM, TORM

 Unstructured data EBS, ERE

 Backup requests TORM

 Restore requests TORM

 Health status TORM, EPM

Table 18. Output from EDM.

Output Provided to

Logs TORM (UI/API)

Logs UI/API Response

 Files UI (cloudcmd), EBS (Spark API)

D2.3 ElasTest requirements, use-cases and architecture

79

 Health Status TORM, EPM

 Relational data ESM, EPM, TORM

5.6 ElasTest Instrumentation Manager (EIM)

The ElasTest Instrumentation Manager (EIM) component controls and orchestrates the
Instrumentation Agents that are deployed in ElasTest platform. These agents
instrument the operating system kernel of the SuT (Software under Test) host
instances. Thanks to it, the agent is capable of exposing two types of capabilities:

1. Controllability, through which the agent can force custom behaviours on the host’s
network, CPU utilization, memory consumption, process lifecycle management or
system shutdown, etc.

2. Observability, through which the Agent collects all information relevant for testing
or monitoring purposes (e.g. energy consumption, resources utilization, etc.). The
EIM receives through a REST API requests from the SuT Manager within the Test
Orchestration and Recommendation Manager (TORM).

5.6.1 Objectives

- To design, specify and implement, at the northbound of the Instrumentation
Manager, a set of interfaces suitable for controlling and monitoring ElasTest
instrumentation capabilities. This interface shall be consumed by the TORM in
order to generate custom operational conditions for the tests.

- To design, specify and implement at the southbound of the Instrumentation
Manager, a set of interfaces and APIs suitable for enabling the control and
management of the different instrumentation capabilities. This interface must
enable the different types of agents to register into the Manager and to be
controlled by it. It also must enable the manager to receive, through
subscriptions, agents’ status information.

- To design and develop the appropriate mechanisms and technologies enabling
the Instrumentation Manager to work in a robust and scalable way in all types
of cloud infrastructures required by the project.

- To analyze and design the different architectural possibilities for the agent in
relation to the testing infrastructure (e.g. one agent for the whole
infrastructure, one agent per SuT, etc.) and to generate the appropriate
recommendations and technologies enabling its optimal use.

- To provide a toolbox of capabilities enabling the installation, configuration and
provisioning of the Manager in all cloud infrastructures of interest for the
project.

5.6.2 System Prerequisites and Technical Requirements Specification

Requirements Specification

EIM will be hosted as part of the ElasTest platform, this component is in charge of the
lifecycle management of the remote instrumentation agents deployed on top of the

D2.3 ElasTest requirements, use-cases and architecture

80

software that we want to evaluate.

Table 19. EIM requirements.

Requirement Description

Non-intrusive The agents should be as less intrusive as possible in order
to have a low overhead of the instrumentation.

Lightweight The agents should be lightweight enough as it may need to
be deployed within the SuT.

Deploy and configure The ElasTest Platform should be able to deploy the
Instrumentation Agents in the target cloud environments
or provide clear guidelines to allow developers to install
and configure the agents within the SuT.

Pre-bundle The SuT may require that the instrumentation agents can
be pre-bundled.

Interoperability across
OS distributions and
version

The agents shall work, at least, on the Linux kernel. The
agents should be designed to consume well established
operating system interfaces to guarantee interoperability
across distributions and versions.

System Prerequisites

- EIM internal prerequisites:
○ Docker. As agreed project-side.
○ Web server (tested with jetty and apache tomcat) where the EIM web

service will be deployed.
○ The EIM uses a Configuration Management System to install and

configure the instrumentation agents on the remote software under
test. The Conf. Mgnt. System have been dockerized as part of the EIM.

○ EIM has been tested under Ubuntu 14.04 distribution but other OS
systems and versions should be supported as well.

- ElasTest prerequisites:
○ TORM (SuT Manager) will invoke the EIM trough a REST API.
○ Monitoring service – EMS. If no monitoring service is provided the

monitoring collectors will not be able to propagate monitoring
information to other ElasTest modules.

The EIM need to know the target resource to monitor as well as the end point
of the ElasTest Monitoring Service module in order to properly configure the
agents.

5.6.3 Component Design

Instrumentation is a collective term used for measuring instruments, which is the
activity of obtaining and comparing established standard objects and events (used as

D2.3 ElasTest requirements, use-cases and architecture

81

units), the process of measurement gives a number relating the item under study and
the referenced unit of measurement.

The Instrumentation Manager will act as a web service that encapsulates the working
of the several Instrumentation Agents deployed.

Instrumentation within ElasTest refers to extending the interface exposed by a
software system for achieving enhanced controllability (i.e. the ability to modify
behaviour and runtime status) and observability (i.e. the ability to infer information
about the runtime internal state of the system).

The Instrumentation Agent consists of a software agent that instruments the operating
system of the computing nodes (i.e. virtual machines, containers, etc.) where the SuT
is deployed. This agent makes it possible to customize all the resources under the
control of the node’s operating system kernel (e.g. network stack behaviour, CPU
utilization, node shutdown, etc.) In addition, the agent collects information on node
behaviour including metrics for performance, resource consumption, energy, etc. This
is compatible with all types of cloud technologies as it only requires installing and
launching the agents on the nodes where the SuT is deployed.

Context Diagram:

In the Figure 23 as appears in the FMC diagram the EIM communicates with the
Instrumentation Agents deployed over SuT and with the TORM Manager using a REST
API. Fundamental Model Concept (FMC) has been selected for a comprehensive
description of the ElasTest software systems. The notation reference is available for
download7.

Figure 23 shows a graphical notation optimized for human comprehension. The same
notation has been used to design other ElasTest SW modules; therefore you may find
part of the interactions described in the aforementioned figure duplicated across other
ElasTest FMC diagrams. A brief description of the components is provided bellow:

- Instrumentation Manager: Control and orchestrates the Instrumentation
agents.

- Instrumentation Manager: Control and orchestrates the Instrumentation
agents.

- SuT Manager: Invoke the appropriate actions on behalf of the TORM. It uses a
REST interface to interact with the EIM web service interface.

- SuT: It refers to the software that we want to evaluate. It could be locally
deployed where ElasTest is hosted or may need to be accessed remotely.

- Instrumentation Agent: It is a software agent that instruments the target
environment. The agents will be able to perform two different roles over the
SuT, observability role allowing the monitoring of the system and controllability
role allowing the invocations of actions over the system.

- Monitoring as a Service: This system is in charge of filtering the monitoring data
collected by the instrumentation agents as well as distribute this information

7 http://www.fmc-modeling.org/download/notation_reference/FMC-Notation_Reference.pdf

D2.3 ElasTest requirements, use-cases and architecture

82

across the ElasTest modules that wants to receive this information.

Figure 23. EIM FMC diagram.

Use cases:

The main use cases for the ElasTest Instrumentation Manager (EIM) are described in
this section. In addition to the description a sequence diagram divided per use case
shows how EIM interacts with other ElasTest components.

Agent deployment: SuT Manager launch the order of deployment of a new agent. This
order arrives to EIM and it deploys the new agent over the SuT. This use case is
depicted in Figure 24.

D2.3 ElasTest requirements, use-cases and architecture

83

Figure 24. EIM use case - Agent deployment.

Observability operation: SuT Manager launches an observability operation to EIM, the
agent collects data from SuT and this data is sent to the Indexer that filter the data and
the new filtered data is sent to MaaS (Monitoring as a service) component. This use
case is shown in Figure 25.

Figure 25. EIM use case - Observability operation.

D2.3 ElasTest requirements, use-cases and architecture

84

Controllability operation: SuT Manager launch an controllability operation to EIM, the
agent receives the operation and perform it over the SuT. This use case is depicted in
Figure 26.

Figure 26. EIM use case - Controllability operation.

Agent undeployment: SuT Manager launch the order of undeployment of an existing
agent. This order arrives to EIM and it undeploys the existing agente over the SuT. This
use case is shown in Figure 27.

Figure 27. EIM use case - Agent undeployment.

D2.3 ElasTest requirements, use-cases and architecture

85

5.6.4 Interactions

Table 20. Input to EIM

Input Provided by

Agents operations (add, delete, get,
update)

EIM

Monitoring and Instrumentation
operations

EIM

 Operations over agents EIM

Table 21. Output from EIM

Output Provided to

Agents operations (add, delete, get,
update)

SuT Manager

Monitoring and Instrumentation
operations result

SuT Manager, MaaS

 Operations over agents SuT Manager

6 ElasTest Test Support Services

The Test Support Services (TSS) are the services that are offered by ElasTest which can
be used to write TJobs and SuTs. These components are ephemeral in nature, such
that, the component is alive during the execution of the TJob.

More information can be derived from Table 1 in Section 4. For an in depth
understanding of the TSS, the reader is referred to D5.1 [6] of work package 5.

6.1 ElasTest User Impersonation Service (EUS)

The ElasTest User Impersonation Service (EUS) is devoted to provide the appropriate
mechanism for emulating final users in end-to-end tests. This shall be achieved by
automating GUIs (Graphical User Interfaces) controlled in automated fashion. In
addition, EUS enables to measure the end-user's perceived quality so that testing
through the validation of the subjective perceived quality becomes possible. For this,
the following metrics shall be used:

- Indirect QoE metrics based on QoS metrics. These include traffic metrics such
as network latency, network packet loss, network jitter, retransmissions and
consumed/estimated bandwidth.

- Direct QoE metrics. We will analyze the multimedia QoE for audio and video
using existing algorithms, such as Perceptual Evaluation of Speech Quality
(PESQ) for audio or Structural SIMilarity (SSIM) for video to name a few.

D2.3 ElasTest requirements, use-cases and architecture

86

6.1.1 Objectives

EUS component is devoted to provide user impersonation for two types of GUIs:

- Web browsers GUIs. For this, EUS provides a Browser as a Service (BaaS)
capability suitable for exposing browser GUIs through an API in a universal way.
This service have been built on top of the open source web testing framework
Selenium.

- Mobile GUIs. For this, EUS provides a Mobile as a service (MaaS). We
concentrate on the two main platforms in the market for prototyping an
Android device as a Service and an iOS device as a service. This service will be
built on top of the popular open source automation for mobile applications
Appium.

These services are available for ElasTest users following a SaaS model. Therefore, final
users do not need to take into consideration problems related to computing resources
scheduling, software provisioning or system scaling since the ElasTest platform is able
to elastically provide the required resources to web and mobile automation.

In order to drive browsers and mobile devices in an automated fashion, EUS has been
conceived as an extension of the W3C WebDriver recommendation 8 . This
recommendation was based in the so-called JSON Wire Protocol, first developed by
the Selenium team. This protocol defines a REST API instrumented by means of JSON
messages over HTTP. Nowadays, this protocol is being standardized in the WebDriver
API by W3C.

Therefore, the EUS component provides full compatibility with external browser
drivers (e.g. Selenium Grid applications), but enhanced with new capabilities to allow
automated for different kind of GUI applications (including browsers and mobiles)
while allowing advance quality assessment (including QoE and QoS metrics).

6.1.2 System Prerequisites and Technical Requirements Specification

On the one hand, the EUS’s system prerequisites are the following:

- Java. The EUS component has been implemented as a Spring-Boot application,
exposing its capabilities by means of a REST API using JSON over HTTP. All in all,
this application requires at least a JRE (Java Runtime Environment) installed in
the machine hosting ElasTest.

- Docker. As usual, the EUS component is part of at the ElasTest microservices
architecture based in Docker. Therefore, Docker engine is required to execute
EUS as a Docker container.

On the other hand, the ElasTest-specific prerequisites of EUS are the following:

- ElasTest Service Manager (ESM). According to the overall ElasTest architecture,
EUS is one the Test Support Services (TSS). For that reason, EUS instances are
started by ESM. To that aim, a Docker Compose file is provided by EUS as part
of the description file (elastest-service.json).

8 W3C Webdriver recommendation, https://www.w3.org/TR/webdriver/

D2.3 ElasTest requirements, use-cases and architecture

87

- ElasTest Tests Manager (ETM). The EUS has a GUI devoted to trace browsers
executions in ETM. For that reason, in order to use this GUI, ETM should be
available.

- ElasTest Platform Manager (EPM): In order to acquire the resources necessary
to web browsers and/or mobile devices, EUS will act as client of EPM.

6.1.3 Component Design

In Figure 28, a high-level description of EUS and its relationships with the rest of the
ElasTest component is depicted using a FMC diagram. As introduced before, EUS is one
TSS, and therefore, is made available in ElasTest by EPM. In the picture we can see a
direct relationship with ESM, which is in charge of providing EUS instances within
ElasTest. Once EUS is up and running, it is able to create the required browsers for
end-to-end web tests. These browsers interact with the System under Test (SuT).
Typically, EUS is controlled by TJobs, in which end-to-end tests using Selenium bindings
require different types of browsers, created by EUS and controlled by tests. Both TJobs
and browsers export log and metrics information, which is gathered in EMS and then it
is available in ETM.

Figure 28. EUS FMC diagram.

6.1.4 Interactions

The following tables summarizes the relationships in terms of input and output

from/to (respectively) the different ElasTest components to EUS.

Test Manager

(ETM)

EMS

Browser TJob
Exec

EUS
Service

Manager
(ESM)

System Under
Test (SUT)

Platform
Manager

(EPM)

D2.3 ElasTest requirements, use-cases and architecture

88

Table 22. Input to EUS.

Input Provided by Provided to

WebDriver request
messages

TJobExecution EUS

Health-check
requests

ESM EUS

Table 23. Output from EUS.

Output Provided to Provided bt

WebDriver response
messages

TJobExecution EUS

Metrics and logs EMS EUS

Video recordings ETM EUS

Live sessions ETM EUS

6.2 ElasTest Device Emulator Service (EDS)

ElasTest Device Emulator Service (EDS) is a microservice developed in ElasTest as a
Test Support Service (TSS), to emulate devices used in Internet of Things (IoT)
applications. EDS facilitates in rapid prototyping and testing of IoT applications. The
emulated devices include sensors and actuators which form the basis of IoT
applications. Furthermore, EDS can be used to build and test interactive IoT
applications.

6.2.1 Objectives

The core concept of EDS is centered around providing emulated devices such as
sensors and actuators, such that a user can build an IoT application. A typical IoT
application, comprises of:

- One or more sensors which provide data to the application
- An IoT application, which consumes the sensor data to apply a logic and come

to a decision
- One or more actuators, which can be triggered based on the decision take by

the IoT application
For example in a temperature sensing application, we would like to flag an alarm if

temperature goes above 50 degree centigrade. For this a temperature sensor is

provided which feeds data in periodic intervals say 1 second to the logic. The logic

decides if an actuation is needed by checking the temperature provided by sensor is

greater than 50 degrees. If greater than 50 degrees an actuating signal is sent to

actuator which may be an alarm.

D2.3 ElasTest requirements, use-cases and architecture

89

In reality, to build such an IoT application, a prerequisite is the possession of the right

sensor and actuator hardware, which are able to communicate via defined interface to

a computing machine where the IoT application is hosted.

However, with the facility of emulation, real device hardware is not needed. The

software can be built to emulate the behavior of devices. The main objectives of EDS

are:

- To provide the feature where user can request and obtain emulated devices

from the component.

- Use such obtained devices can be programmatically interconnected to realize

meaningful IoT applications.

6.2.2 System Prerequisites and Technical Requirements Specification

The system prerequisites for running EDS are mentioned in the following table:

Table 24. EDS prerequisites.

Pre-requisite Description

Docker The technology used in ElasTest to run mircoservice EDS as
a docker container

ESM ESM is a prerequisite to deploy EDS

ETM ETM is used as an entrypoint, therefore a prerequisite.

OpenMTC OpenMTC is a reference implementation of oneM2M,
M2M communication standard. Interaction with EDS is
possible using OpenMTC.

6.2.3 Component Design

Figure 29 shows a simple FMC diagram of EDS. The ETM acts an entrypoint by

triggering the execution of a TJob which depends on EDS. EDS is being a TSS, is

deployed by ESM. EDS is built using a middleware called OpenMTC9. OpenMTC is a

reference implementation of oneM2M10 standard. oneM2m is a standard for Machine

to Machine (M2M) communication. The System Under test (SuT), is an IoT application

upon which the TJob conducts tests using OpenMTC. The IoT application in the SuT,

explicitly requests emulated devices from EDS and connects them in the application.

The core of EDS comprises of the OpenMTC gateway, the EDS Orchestrator and the

device emulator. The functions of each component is detailed in the technical

deliverable D5.1 [6].

9OpenMTC, www.openmtc.org
10 OneM2M, www.onem2m.org

D2.3 ElasTest requirements, use-cases and architecture

90

Figure 29. EDS FMC diagram.

Figure 30 shows a sequence diagram, which shows a typical interaction between the
user written applications and EDS. Use case, where a user is able to define a SuT
application and call upon ETM to execute a TJob on the SuT.

D2.3 ElasTest requirements, use-cases and architecture

91

Figure 30. EDS use case sequence diagram.

6.2.4 Interactions

The following tables summarizes the relationships in terms of input and output

from/to (respectively) the different ElasTest components to EDS.

Table 25. Input to EDS.

Input Provided by

 Application provision request SuT/User

 Device provision request SuT/User

Health-check requests ESM

 Device modify request SuT/User

 REST API SuT/TJob/User

D2.3 ElasTest requirements, use-cases and architecture

92

Table 26. Output form EDS.

Output Provided to

Application provision response SuT/User

Device provision response SuT/User

Device modify response SuT/User

 Rest API SuT/TJob/User

6.3 ElasTest Security Service (ESS)

The ElasTest Security Service (abbreviated as ESS) is a test support service in Elastest
that facilitates the security testing of the System under Test (SuT).

6.3.1 Objectives

The main objectives of the ESS are listed below.

- Analyze the HTTP traffic generated by tjob execution and detect security
vulnerabilities

- Probe the SuT by sending HTTP requests that mimics attacker behavior and
analyze the corresponding HTTP responses to detect security vulnerabilities

- Provide a detailed security test report to the tester

6.3.2 System Prerequisites and Technical Requirements Specification

ESS is a component within the TORM and it is provided as a docker container.

Table 27. ESS requirements.

Requirement Description

REQ1 Requires the tester to write tjobs that makes HTTP
connections via the man-in-the-middle proxy of the ESS

REQ2 Requires the TORM to provide an environment variable
that can be used by the tester to refer to the man-in-the-
middle proxy of the ESS

REQ3 Requires the TORM API to execute the tjob created by the
tester. The execution of the tjob creates HTTP traffic that
can be analyzed by the ESS for detecting security
vulnerabilities

REQ4 Requires the TORM web GUI to display the interface of ESS

6.3.3 Component Design

The FMC Diagram of ESS is shown in Figure 31 below. The tester can interact directly
with

1. the ESS (via the ESS API or the Web-GUI),

D2.3 ElasTest requirements, use-cases and architecture

93

2. TORM (via the TORM API or the Web-GUI) and
3. the SuT.

ESS needs to interact with the TORM API for executing Tjobs. During the Tjob
execution, the HTTP traffic connections are made directly to a man-in-the-middle
proxy service running within the ESS container and the proxy intern interacts with the
SuT on behalf of the Tjob.

Figure 31. ESS FMC diagram.

The sequence diagram showing the details of the functioning of the ESS is shown in
Figure 31. The following are the details:

Steps 1-2: The tester configures a Tjob that makes HTTP connections via the man in
the middle proxy of ESS

Steps 3-5: The tester provides the details (mainly the TjobId) of the Tjob that must be
analyzed via ESS (Step 3). The ESS uses the TORM API to execute the Tjob (Steps 4 and
5).

Steps 6-9: When the Tjob is executing, the HTTP connections will be made via the ESS’s
man in the middle proxy.

Steps 10-12: After the Tjob finishes execution, the ESS generates the HTTP requests
mimicking attacker behavior (shown a s Security Test’s HTTP Requests in Step 10
Figure 2) and the HTTP responses are analyzed to identify vulnerabilities (Steps 11). In
the end, the details of all the tests run, including the vulnerabilities found are report to
the tester (Step 12).

D2.3 ElasTest requirements, use-cases and architecture

94

Figure 32. ESS use case sequence diagram.

6.3.4 Interactions

Table 28. Input to ESS

Input Provided by

HTTP traffic generated during a TJob
execution

TORM

Report of the security test in HTML
format

TORM

 Details of the TJob to be executed TORM

D2.3 ElasTest requirements, use-cases and architecture

95

Table 29. Output from ESS.

Output Provided to

Report of the security test in HTML
format

TORM

Details of the TJob to be executed TORM

6.3.5 Additional information

It is important to note that while using ESS the tester do not have to write any security
tests by himself/herself. All the security tests are automatically generated by ESS.

6.4 ElasTest Big-Data Service (EBS)

The ElasTest Big-Data Service (EBS) is an ElasTest Test Support Service (TSS) that
provides a computing engine based on Apache Spark to be utilized by tests inside
ElasTest. To achieve that, tests utilizing EBS are built inside a specialized container
which is launched as part of the whole Big Data stack (both EBS and EDM parts). For
usage and developer documentation, check the component documentation and
ElasTest Documentation.

6.4.1 Objectives

- To provide a scalable compute engine for components that should need it.
- To provide a controllable Spark stack to test Big-Data applications.

6.4.2 System Prerequisites and technical Requirements Specification

EBS is provided as a set of Docker containers. The requirements below describe what is
needed to execute EBS standalone, in its minimal form (one spark master and one
spark worker). In order to scale up, the user is strongly encouraged to dimension
accordingly. As EBS does not hold any persistent data, dimensioning is required only on
RAM and CPU.

6.4.3 Component Design

EBS is a Spark service as a set of docker containers, designed to be horizontally scalable

on demand. In Figure 33, a high level description of EBS and its relationships with other

ElasTest components is depicted. As a TSS, EBS lifecycle is managed by EPM, which

makes it available to the rest of ElasTest. Also, ERE (and potentially other services as

well) is using EBS as a calculation engine, to manage large datasets available in EDM.

EBS is capable of utilizing all internal components of EDM as data sources and as data

sinks. After calculations are completed, EBS is capable of either returning results to

TORM, ERE or any other requesting component, or leaving the results stored in EDM

for the other components to access.

D2.3 ElasTest requirements, use-cases and architecture

96

Figure 33. EBS FMC diagram.

Sequence diagrams:

Figure 34. EBS sequence diagram: Use from a TJob.

In this Figure 34, a standard ElasTest workflow is described. The example describes a
user-initiated TJob which requires some data processing on SuT produced data (e.g.
large logs). The specific TJob initiates an EBS instance, which then retrieves all the
required data from EDM components (e.g from Elasticsearch, HDFS, MySQL) and
processes the results. The total calculation result is then returned to TORM, where the
TJob will use it to generate the actual TJob return status that will be provided to the
user.

D2.3 ElasTest requirements, use-cases and architecture

97

6.4.4 Interactions

Table 30. Input to EBS.

Input Provided by

Spark submitted jars TORM

Output Provided to

Text data TORM (UI/API)

Saved files EDS

6.5 ElasTest Monitoring Service (EMS)

The goal of this component is to provide a monitoring infrastructure suitable for
inspecting executions of a SuT and the ElasTest platform itself online.
This service will allow the user and the platform to deploy machines able to process
events in real time and generate complex, higher level events from the incoming
stream of events. This functionality can help to better understand what's happening in
the execution of the test, detect anomalies, correlate issues, and even stress the tests
automatically; all of which aims to maximize the chances of uncover bugs and their
causes.

6.5.1 Obejctives

- Facilitate the publication of events through an extensible entry point capable of
handling a wide range of formats and protocols, thus making it easier to
develop agents, and finally collecting as much information as possible.

- Offer a simple yet powerful Domain Specific Language to discover interesting
complex events based on the flow of incoming events.

- Handle large amounts of events efficiently in terms of time and memory.
- Provide an extensible subscription endpoint that allows many subscribers to

receive events in different formats and protocols.

6.5.2 System Prerequisites and Technical Requirements Specification

1. TORM/ESM: EMS requires syntactically valid Monitoring Machines and
Announcements to be deployed.

2. Event publishers: EMS requires the publishers to properly send well-formed
events.

3. Event subscribers: EMS requires the subscribers to specify an endpoint and a
protocol in which they can properly handle the reception of processed events.

6.5.2.1 System Prerequisites

The EMS will start Logstash instances for incoming and outgoing events, with a few
input and output plugins, so all these need to be installed. The Monitoring Machines
engine will be developed using the Go programming language, so a supported OS with
the necessary libraries is required. Nevertheless, it is planned to package all ElasTest

D2.3 ElasTest requirements, use-cases and architecture

98

services into Docker containers so, in that sense, only a Docker engine will be needed
to execute it.

Table 31. EMS requirements.

Requirement Description

REQ1 From TORM/ESM: EMS requires syntactically valid
Monitoring Machines and Announcements to be deployed.

REQ2 From Event publishers: EMS requires the publishers to
properly send well-formed events.

REQ3 From Event subscribers: EMS requires the subscribers to
specify an endpoint and a protocol in which they can
properly handle the reception of events.

REQ4 From platform: a Docker engine.

D2.3 ElasTest requirements, use-cases and architecture

99

6.5.3 Component Design

Figure 35. EMS FMC diagram.

The Monitoring Service in the system (external architecture diagram) is presented in

Figure 35.

The components present in the previous diagram and their relationship with the EMS
are the following:

- Event publishers: external components, such as the instrumented SuT, the
infrastructure agents and the ElasTest components in general, including the
TORM executing a TJob, who report events to the Monitoring Service.

- Announcers: external components who will provide the rules to infer the
channels of incoming events.

- Monitoring Machines deployers: external components who will deploy and
undeploy the Monitoring Machines, for example, TORM.

- Event subscribers: external components who are willing to receive events sent
over the channels to which they subscribe.

- Flusher: external components who may reset the EMS to its initial state in
order to reuse it.

Monitoring
Service

R

R

R

Event publishers

System under test

Monitoring
Service

 Infrastru
cture

agents

 Instrume
nted
code
under

Elastest plaform

 Infrastru
cture

agents

 Elastest
compon

ents

Event processing
machine deployers

TORM

Event subscribers

TORM Dashboa
rd Persi

stenc

R

Announcers

TORM

Flushers

TORM
R

D2.3 ElasTest requirements, use-cases and architecture

100

Please note that publishers can write directly to any channel, subscribers can read
from any of channel, and the Monitoring Machines can do both (read and write) to any
channel, provided that there are no cycles in the induced digraph. The presented
topology was chosen for the sake of readability. A channel can be an input and an
output channel at the same time, or neither as well.

The system is expected to be spawned and configured by the ESM and the EPM; to get
subscription petitions and feed events to many destinations including, but not limited
to, the dashboard, the logger, the big data analysis engine and the TORM; and to
receive events from many sources including, but not limited to, the agents supervising
the infrastructure in which the SuT is deployed, the agents supervising the
infrastructure in which ElasTest is deployed, the instrumented code of the SuT, the
code of the ElasTest components.

The internal structure of the EMS is the presented in Figure 36:

- Events broker: receives the incoming published events and routes every of
them through the corresponding channel.

- Monitoring Machines Manager: is the component in charge of deploying and
removing the Monitoring Machines into and from the engine.

- Monitoring Machines engine: holds the list of currently deployed Monitoring
Machines, and evaluates each machine for every event received from the
broker, sending the resulting events to the event dispatcher.

- Events dispatcher: the component in charge of feeding the output events
generated by the engine to the corresponding output channels, sent to the
subscribed external components.

- Flush performer: resets the EMS to its initial state upon external request.

D2.3 ElasTest requirements, use-cases and architecture

101

Figure 36. EMS internal components.

Sequence diagrams

Following figures show sequence diagrams depicting the interaction with each
component.

1. Management of the Monitoring Machines (formerly, Event Processing
Machines, therefore the acronym EPM) shown in Figure 37.

2. Subscription to channels shown in Figure 38.
3. Event publishing shown in Figure 39.

Monitoring Service

Even
ts

Brok
er

R Eve

nt
publ

Even
ts

disp
atch
er

 Even
t

subs

 Monitorin
g

R

Monitoring
Machines
Manager

Monitorin
g

R

 Flus
her

Flush performer

R

R

R

R Ann

oun
cer

R

D2.3 ElasTest requirements, use-cases and architecture

102

Figure 37. Sequence diagram showing Management of monitoring machines.

Figure 38. Sequence diagram for subscription of channels.

D2.3 ElasTest requirements, use-cases and architecture

103

Figure 39. Sequence diagram for event publishing.

Sequence diagram for main use cases:

- Executions of a test

Figure 40. EMS use case sequence diagram - execution of a test.

- Debugging of the ElasTest platform

D2.3 ElasTest requirements, use-cases and architecture

104

Figure 41. EMS use case sequence diagram - debugging ElasTest platform.

In all these diagrams, the EPM/ESM starts the EMS. Then the subscribers indicate the
channels they want to listen to, and where and how they should be sent. After that,
TORM deploys the Monitoring Machines along with the Announcements to infer the
channel of unstamped events. Later, the tests are executed and publishers start
emitting events to the EMS, who in turn processes them using the deployed machines
and announcements, and sends the outgoing ones to the subscribers. Finally, the
EPM/ESM shall cleanup or flush the EMS in order to reset it to its initial state and reuse
it for another test.

As a consequence of the indistinguishability between the SuT and the infrastructure in
which it is deployed; and the ElasTest platform and the infrastructure in which it is
deployed in terms of the Monitoring Service, it is feasible to debug ElasTest itself using
the same tools as in the testing of third parties applications. The main difference lies in
the deployed Monitoring Machines, who would focus more on events received from
the ElasTest platform, probably ignoring most of those sent by the running “stub
application”, which in turn would be specifically designed to stress the ElasTest
platform aspects of interest.

D2.3 ElasTest requirements, use-cases and architecture

105

Data Model

Figure 42. EMS data model

In the data model shown in Figure 42, we can see how the different components
interact with each other.

Service Stakeholders:

- EPM: the ElasTest Platform Manager is the interface between the ElasTest

testing components (e.g. TORM, Test Support Services, etc.) and the cloud

infrastructure where ElasTest is deployed. It will be in charge of deploying the

Monitoring Service.

- Dashboard: it is the ElasTest component in charge of visually presenting the

data generated by the test to the user through the use of dashboards.

- Logger: This is the service in charge of persisting the data for its further offline

analysis and consumption.

- Big Data analysis engine: this component is in charge of providing a distributed

system for collecting log data of the ElasTest platform from many sources,

aggregating it, and writing it to a Hadoop Distributed File System (HDFS) where

it can be analyzed.

- TORM: the service in charge of orchestrating the tests, may tune, pause and

stress them in function of the events flowing in the system.

- Infrastructure Agents: these agents will report the status of the infrastructure

running code and low level events that take place in them.

- Instrumented code: the SuT will be instrumented in specific places to feed

information to the testing environment.

- ElasTest components in general: all the ElasTest components (including the

Monitoring Service) may report failures or other information of interest to the

Monitoring Service for its processing and analysis.

- ESM: the ElasTest Service Manager will use the Monitoring service to record

metrics gathered on service instances under its responsibility. It will retrieve

D2.3 ElasTest requirements, use-cases and architecture

106

these metrics either directly or, optionally, provide service consumers (owner

of a service instance) the URL to where service instance metrics can be

retrieved. It will also use alerting capabilities to inform the ESM of an activated

rule.

6.5.4 Interactions

Table 32. Input to EMS.

Input Provided by

Monitoring Machines TORM/ESM

Incoming events Event publishers

 Subscribers endpoints Event subscribers

Table 33. Output from EMS.

Output Provided to

Monitoring Machines DSL TORM/ESM

Supported input protocols Event publishers

 Supported output protocols Event subscribers

7 ElasTest Test Engines

The test engines are the components offered by ElasTest which complement the
features offered by the core components. These components can be started by user of
ElasTest on demand.

More information can be derived from Table 1 in Section 4. For an in depth understand
of the test engines, the reader is referred to D4.1 [4] and D4.2 [5] of work package 4.

7.1 ElasTest Cost Engine (ECE)

ElasTest cost modeling engine task is two-fold, to estimate the cost of running a test
on the ElasTest framework using cloud resources, as well as tracking true cost of a test
execution run post completion. Cloud resources even when maintained internally in an
organization has costs associated - energy, personnel, h/w and s/w costs. One of the
goals of ElasTest is to make developers cost aware of running and testing large scale
systems over public/private clouds.

7.1.1 Objectives

The main objectives are:

- Development of comprehensive cost model which is extensible, and which can
accommodate direct/indirect, own/3rd-party pricing elements

D2.3 ElasTest requirements, use-cases and architecture

107

- Cost estimation engine that can predict the cost of executing a test run over a
time window based on the cost model specified and resource specification

- Accounting and billing engine which generates actual cost of running a test
using actual monitored metrics

7.1.2 System Prerequisites and Technical Requirements Specification

ECE is available as docker image and hence any machine capable of executing docker
containers can easily execute ECE. ECE works with a well-defined cost model, and
every ElasTest support service must use the proposed model syntax when defining
cost as part of their service plan definition. For real cost computation, relevant metrics
from the test monitoring framework (EMS) should be accessible by ECE beyond the
termination of the test job itself.

Table 34. ECE requirements.

Requirement Description

ECE-REQ1 The ECE module should be able to get list of all TJobs, from
ETM and TORM

ECE-REQ2 The ECE module must be able to interact with ESM to fetch
the service plan definitions for support services

ECE-REQ3 ECE must predict the cost of execution of a test based on
cost model parameters and execution parameters

ECE-REQ4 ECE must show the true cost of test execution based on
collected execution metrics by TJob monitoring system

ECE-REQ5 Given a TJob ID, ECE should be able to locate and then
query monitoring API endpoint for execution specific
metrics such as start-time, end-time, resource consumption
data either aggregated or time stamped list of sample
points.

7.1.3 Component Design

The Figure 43 provides a High level description of the ECE.

D2.3 ElasTest requirements, use-cases and architecture

108

Figure 43. FMC diagram of ECE.

Main components shown in the diagram above are:

- Visualization and GUI engine: this component allows user interaction with the
engine, it fetches the list of registered TJobs with ElasTest TORM and allows
users to initiate estimate or calculation of actual cost analysis for the selected
TJob

- Estimation engine: this module computes the estimated cost for running a TJob
together with requested support services using the cost model defined by
various services.

- Cost computation Engine: this module gets all execution run list of a particular
TJob and using actual execution parameters, resource consumption metrics
observed during execution, and defined cost models computes the true cost of
running the test.

- Messaging Client: execution events (start/stop) and monitored metrics are sent
to messaging bus, this module fetches the messages off the queues and
persists them to relational DB or time-series data store based on the nature of
the data.

D2.3 ElasTest requirements, use-cases and architecture

109

The main interaction between involved actors and ECE is shown next via few sequence
diagrams.

Figure 44. Sequence diagram showing steps in cost estimation process.

Figure 44 above shows the interactions involved in estimation execution cost for a
selected TJob. Figure 45 shows the interaction between various ElasTest services and
ECE for computation of actual costs for executing a TJob.

Figure 45. Sequence diagram showing steps for cost calculation of a TJob execution.

The cost model is described in Snippet 1. Example of ECE cost model. It forms the basis
for estimation and computation by ECE for all TJob runs. The brief explanation of
various elements is provided here (more detailed treatment can be found in WP4
deliverable):

D2.3 ElasTest requirements, use-cases and architecture

110

- Components - list of external models this particular model depends on,
currently it is empty

- Description - text describing the model
- Currency - ISO currency label, EUR for Euro, CHF for Swiss Francs, USD etc.
- Methodology - whether the cost is computed based on the time (duration) a

resource was actively consumed, or if cost is computed on the true value of
usage metric as observed by monitoring systems (usage).

- Model - whether the cost model is based on pay-as-you-go or on subscription
style

- Model_param - if subscription model is chosen, this field then defines finer
elements of subscription model. Currently it is undefined and is to be left
empty.

- Fix_cost - this field captures in case there is a one time setup fee for configuring
a service or not.

- Name - name of the cost model object
- Var_rate - this block captures the various physical resources and their cost-

rates, the rates could be time linked, or it could be volume linked. Example of
meters where rates on usage volume makes sense are: cpu_cycles,
network_bytes_in, network_bytes_out, io_bytes_in, etc. Similarly, meter
examples where time linked cost makes sense are: cpu-core, disk-space, ram-
size, etc.

{

 “components”: {},

 “description”: “cost model for EMS support service”,

 “currency”: “EUR”,

 “methodology”: “duration”,

 “model”: “PAYG”,

 “model_param”: {},

 “fix cost”: {

 “setup_cost”:5

 },

 “name”: “ems-model-A”,

 “var_rate”:{

 “cpu”: 50,

 “cpu_unit”: “core-hour”

 “disk”: 1,

 “disk_unit”: “gb-hour”,

 “memory”: 10,

 “memory_unit”: “gb-hour”

 }

}

Snippet 1. Example of ECE cost model.

7.1.4 Interactions

The entries below captures the inputs to be received by ECE and the output from ECE
to/from relevant actors.

D2.3 ElasTest requirements, use-cases and architecture

111

Table 35. Input to ECE.

Input Provided by

T-Jobs TORM (ETM)

Cost Models EPM, ESM

 Monitoring Information for Status EMS + TORM

Table 36. Output from ECE.

Output Provided to

Cost Estimations UI/API Response

Real Cost of running a T-Job UI/API Response

7.2 ElasTest Recommendation Engine (ERE)

ElasTest Recommendation Engine (ERE) is a cognitive system designed to support
software engineers developing automated test cases. It learns from the information
gathered in software engineering repositories (historical test cases, test code features
and code comments), and provides test code recommendations based on learned
knowledge. The engine leverages machine learning algorithms to (1) generate Java
code for new test cases from natural language descriptions provided by the user; and
(2) recommend existing test cases suitable for reuse.

7.2.1 Objectives

The ultimate goal of ERE is to increase both the level of test coverage, and fault
detection potential of the created test suites. This is achieved by:

- Recommending complete implementations of automated test cases based on
natural language descriptions provided by users, so as to reduce time, effort
and resources spent on test automation

- Allowing to directly control and guide the process of test automation, so as to
avoid generating random test cases.

- Recommending a set of test cases suitable for reuse, so as to take most
advantage of existing code resources.

7.2.2 System Prerequisites and Technical Requirements Specification

Requirements Specification

Table 37. ERE requirements.

Requirement Description

REQ1: Generating test
cases

Given a description of a test case in natural language, the
system should generate new code for that test case

D2.3 ElasTest requirements, use-cases and architecture

112

REQ2: Retrieving test
cases for reuse

Given a description of a test case in natural language, the
system should recommend a list of most relevant existing
test cases for reuse

REQ3: Training custom
models

User should be able to download own test data and train
the machine learning model using that data

REQ4: GUI The system should provide Admin UI (for loading data and
training the model) and Tester UI (for accepting queries
and displaying recommendations)

Prerequisites

In order to build custom machine learning models, Recommendation Test Engine
requires training data that is domain- and/or system-specific, and hence must be
provided by the user. The main source of data is project-specific software engineering
repository.

7.2.3 Component Design

Figure 46. Cognitive Engines - FMC diagram.

Context Diagram

FMC diagram presented in Figure 46. shows the Recommendation Test Engine in the
context of ElasTest components which it interacts with. The recommender system
(ERE) is one of two Cognitive Engines that are hosted by the Test Orchestration and
Recommendation Manager. The internal architecture of the recommender consists of:

D2.3 ElasTest requirements, use-cases and architecture

113

- GUI component – embedded into TORM GUI. The interface comprises two
separate parts: Recommender UI and Admin UI. Recommender UI is used by
software testers and its main functions are: (1) to allow testers to input
queries; (2) to display recommendations generated by the recommender
system in response to user queries; (3) to select model to run queries against.
Admin UI is used by system administrators and its main functions are to allow
users (1) launch pre-processing of training data; (2) submit data for training (3)
launch training of new machine learning models.

- Pre-processor – handles pre-processing of user data and saving them in format
suitable for submitting for training.

- ERE client – manages communication with ERE service deployed externally.
- ERE services – to handle requests for machine learning tasks.
- Machine Learning Executor – the set of machine learning algorithms executed

to (1) learn neural representations of source code tokens (2) to generate Java
code from previously unseen natural language descriptions; (3) identify the set
of related test cases suitable for reuse.

ERE use cases involve two human actors: a Tester and an Admin. Two main use cases
for the Tester are:

- Receive recommendations on automating test cases
o User selects adequate model from the available trained models.
o User inputs a short description of the testing task.
o The system generates recommended Java implementation of the test

case.
- Receive recommendations on test cases to reuse.

o User selects adequate model from the available trained models.
o User inputs a short description of the testing task.
o The system identifies a set of most relevant existing test cases for reuse,

and present them to the user.

Main use cases involving Admin user are:

- Pre-process user data.
o Admin user indicates the location of software engineering repository

containing user data.
o The system crawls the repository and extracts relevant data.
o The system parses data to the format that can be consumed by machine

learning algorithms.
- Train custom model:

o Admin user selects pre-processed training data and submits them for
training.

o The system executes machine learning algorithms to train a new model.
o The system reports the results of training.

D2.3 ElasTest requirements, use-cases and architecture

114

Figure 47. ERE use cases.

Figure 47 presents high level use-case diagram. Simplified sequence diagrams for
Tester and Admin actions (assuming happy path – no errors) are presented in Figure 48
and Figure 49 respectively.

Figure 48. ERE sequence diagram (Tester actor).

D2.3 ElasTest requirements, use-cases and architecture

115

Figure 49. ERE sequence diagram (Admin actor).

7.2.4 Interactions

Table 38. Input to ERE.

Input Provided by

Training data User

Pre-processed data EDM

 Pre-process/Load/Train request User (via ETM / ERE_UI)

 Recommendation request User (via ETM / ERE_UI)

Table 39. Output from ERE.

Output Provided to

Pre-processed data EDM

D2.3 ElasTest requirements, use-cases and architecture

116

Test recommendations User (via ETM / ERE_UI)

7.3 ElasTest Question & Answer Engine (EQE)

Cognitive Q&A Engine (EQE) allows testers and developers to ask questions in relation
to testing. The Q&A Engine accepts questions asked in natural language and tries to
identify user’s intention or information need. This requires generating prompts for the
user so that the user formulates the question more precisely or provides additional
constraints. Having identified the intent, the system generates candidate answers,
scored for best linguistic fit.

7.3.1 Objectives

ElasTest Q&A Engine builds on and extends ElasTest Recommendation Engine. Main
objectives of EQE are as follows:

- To help user to take full advantage of ERE by advising on how to formulate
efficient queries. Ambiguous queries to ERE may yield unsatisfactory results.
The task for EQE is to prompt the user for additional information and suggest
most adequate reformulation of queries.

- To leverage knowledge extracted from large open source repositories for
providing natural language suggestions for new test cases required for the
concrete SuT.

7.3.2 System Prerequisites and Technical Requirements Specification

Requirements specification

Table 40. EQE requirements.

Requirement Description

REQ1: Advising on
working with ERE

Assuming that user knows what feature they wish to test,
help user to formulate efficient query for code
recommendation

REQ2: Advising on new
test cases to create

Assuming that user does not know which features/areas
require testing, help user to identify most relevant test
cases by proving natural language descriptions of new
tests.

REQ3: GUI Provide interactive UI interface for receiving user questions
and displaying answers/prompts returned from the engine.

System prerequisites

EQE needs to adjust and match knowledge extracted from open source repositories for
the needs of the specific SuT, and therefore it requires training data provided by the
user. Access to project-specific software engineering repository (containing both test
code and production code) is a prerequisite

D2.3 ElasTest requirements, use-cases and architecture

117

7.3.3 Component Design

Figure 50. Cognitive Engines - FMC diagram.

Context Diagram

FMC diagram presented in Figure 50 shows EQE in context of ElasTest components
which it interacts with. The Q&A system is one of two Cognitive Engines that are
hosted by the Test Orchestration and Recommendation Manager. The internal
architecture of the Q&A system consists of:

- GUI component – embedded into TORM GUI. The interface comprises two
separate parts: Q&A UI and Admin UI. Q&A UI is used by software testers and
its main functions is to allow user to interact with the system in a dialog-like
manner. Admin UI is used by system administrators and its main functions are
to allow users (1) launch pre-processing of training data; (2) submit data for
training (3) launch training of new machine learning models.

- Pre-processor – shared with ERE; handles pre-processing of user data and
saving them in format suitable for submitting for training.

- Dialog manager – enables a conversation between a user and the Q&A engine
(a continuous exchange of messages that form a coherent flow).

- EQE client – manages communication with EQE service deployed externally.
- EQE services – handle requests for machine learning tasks.
- Machine Learning Executor – the set of machine learning algorithms executed

to train and run a machine learning model capable of generating answers to
user questions.

D2.3 ElasTest requirements, use-cases and architecture

118

EQE use cases involve two human actors: a Tester and an Admin. Two main use cases
for the Tester are:

- Ask for advices on working with ERE.
- Ask for advices on new test cases suitable for SuT.

Main use cases involving Admin user (shared with ERE) are as follows:
- Pre-process user data.
- Train custom model

Figure 51. EQE use cases.

High level use-case diagram for EQE is shown Figure 51, whileTester and Admin actions
are captured in sequence diagrams in Figure 52 and Figure 53.

D2.3 ElasTest requirements, use-cases and architecture

119

Figure 52. EQE sequence diagram (Tester actor).

D2.3 ElasTest requirements, use-cases and architecture

120

Figure 53. EQE sequence diagram (Admin actor).

7.3.4 Interactions

Table 41. Input to EQE.

Input Provided by

Training data User

Pre-trained knowledge representations

(re-using outputs of recommender
training)

ERE

 Pre-process/Load/Train request User (via ETM / EQE_UI)

 Questions User (via ETM / EQE_UI)

D2.3 ElasTest requirements, use-cases and architecture

121

Table 42. Output from EQE.

Output Provided to

Pre-processed data EDM

Answers to questions User (via ETM / EQE_UI)

 Prompts for additional input User (via ETM / EQE_UI)

7.4 ElasTest Orchestration Engine (EOE)

In ElasTest, the concept of test orchestration is understood as a novel way to select,
order, and execute a group of TJobs. A TOJob (Test Orchestration Job) consists of a
group of such TJobs, executing in coordination with the objective of validating high-
level properties of the SUT. Hence, from a tester’s perspective a TOJob can be seen as
a “graph” of TJobs, where graph edges correspond with the execution of a TJob and
graph nodes are checkpoints where synchronization and oracle verification for the
composed TJobs can take place. The main objective of the test orchestration is to
generate such graph, which involves composing opportunely the TJob inputs and
inferring the overall outcome assertions.

The ElasTest core functionality is extended by means of the so called engines. The
concept of test orchestration is implemented in the ElasTest component called
ElasTest Orchestration Engine (EOE). The Test Orchestrator Engine (EOE) is the
responsible to orchestrate individual TJobs to create TOJobs.

7.4.1 Objectives

The vision of test orchestration is to create richer test suites using the “divide and
conquer” principle applied to testing, as hypothesized in the ElasTest DoA. To achieve
this, two main mechanisms are proposed in ElasTest to implement test orchestration:

1. Topology generation. The objective is to combine intelligently TJobs for
creating a more complete test suite, called TOJobs.

2. Test augmentation. This objective is to introduce additional TJobs to reproduce
custom operational conditions of the SuT.

7.4.2 System Prerequisites and Technical Requirements Specification

On the one hand, the EOE’s system prerequisites are the following:

- Java. The EOE component is going to be implemented as a Spring-Boot
application, exposing its capabilities by means of a REST API. Therefore, EOE
requires at least a JRE (Java Runtime Environment) installed in the machine
hosting ElasTest.

- Docker. As usual, EOE is part of a the ElasTest microservices architecture based
in Docker. Therefore, Docker engine is required to execute EOE as a Docker
container.

D2.3 ElasTest requirements, use-cases and architecture

122

7.4.3 Component Design

Figure 54, a high-level description of EOE and its relationships with the rest of the
ElasTest component is depicted using a FMC diagram. These relationships are
explained as follows:

● ElasTest Tests Manager (ETM). The EOE has a GUI part in ETM devoted to
configure and execute TOJob. Therefore, ETM will be a client of the EOE API to
expose its capabilities to ElasTest’s users.

● ElasTest Data Manager (EDM). The topology of TOJobs needs to be stored
somehow within ElasTest. For that reason, EOE needs to use the persistence
layer of ElasTest provided by EDM.

● Test Support Services (TSS). EOE can behave as a proxy for TSS. The idea is that
EOE intercepts calls from TJobs to TSSs to share sessions between all TJobs. For
example, and supposing that the tests in the orchestration are using a browser
provided by the ElasTest User impersonation Service (EUS), the browser is
shared between all the tests within a TJob.

Figure 54. EOE FMC diagram.

7.4.4 Interactions

The following tables summarizes the relationships in terms of input and output
from/to (respectively) the different ElasTest components to EOE.

ElasTest
Data

Manager
(EDM)

ElasTest
Orchestration
Engine (EOE)

ElasTest Tests
Manager

(ETM)

Test
Support
Services

(TSS)

D2.3 ElasTest requirements, use-cases and architecture

123

Table 43. Input to EOE.

Input Provided by

TOJob topology ETM

TOJob topology EDM

 TJob input data ETM

 TSS data TSS

Table 44. Output from EOE

Output Provided to

TJob output data ETM

TJob verdict ETM

 TOJob verdict ETM

8 ElasTest Integrations with External Tools

These are the set of tools and plugins developed to facilitate the integration of
ElasTest with external tools. For a deeper understanding of these facilities the reader is
referred to D6.2 [8]. To understand the continuous integration libraries built to
support these facilities, the reader is referred to D6.1 [7] of work package 6.

8.1 ElasTest Jenkins Plugin (EJ)

The ElasTest Jenkins Plugin (EJ) is developed to easy the use of the ElasTest features
from of the most extended CI server open source. In that way the users with theirs
Jobs configured on Jenkins will be able to use ElasTest effortlessly. To aim this, the
plugin can be enable either in an standard Jenkins Job or in a pipeline Jenkins Job.

8.1.1 Objectives

The main objectives of EJ are listed below:

- The integration between Jenkins and ElasTest.
- Allow the use of ElasTest functionalities from a Jenkins Job.

8.1.2 System Prerequisites and Technical Requirements Specification

To run the EJ plugin as a main technical prerequisites is necessary:

- A Jenkins Server where the EJ will be installed.

- An ElasTest Platform to the EJ will be connecedt.

8.1.3 Component Design

This section describes the EJ component architecture and its interaction with ElasTest.

Context Diagram

D2.3 ElasTest requirements, use-cases and architecture

124

Figure 55. EJ FMC diagram.

In the diagram appears some components of the ElasTest Platform that are described
below:

- ElasTest Plugin: Plugin developed to integrate Jenkins with ElasTest. Allows the
Jobs executed on Jenkins send the execution logs to ElasTest and to request the
necessary TSSs to ElasTest.

- Jenkins Job: A Job is a task that you create in Jenkins to do something, such as
downloading your application’s source code from a GitHub repository and
compile it with maven. With the EJ, this Job will be replicate in ElasTest.

- ElasTest: Entity that represents the ElasTest Platform.
- EUS: TSS is responsible for providing browser instances ready for use by users,

by TJobs stored in ElasTest or from a job run from Jenkins.
- TJob Exec: Specific executión of a TJob defined in ElasTest or in Jenkins. This

entity will store the related data associated to that execution, such as logs,
recordings,...

- Browser: Entity that represents the browser instances used in the tests defined
in a TJob.

R ElasTest
Plugin

HTTP

 ElasTest

Brows
er

TJob
Exec

EUS

Jenkins
Job

Jenkins

R

HTTP

TCP

R

D2.3 ElasTest requirements, use-cases and architecture

125

Use Cases

The following diagrams describe the main use cases of the EJ.

Figure 56. EJ use case sequence diagram - setup and test configuration.

D2.3 ElasTest requirements, use-cases and architecture

126

Figure 57. EJ use case sequence diagram - basic integration with ElasTest.

D2.3 ElasTest requirements, use-cases and architecture

127

Figure 58. EJ use case sequence diagram - advance integration with ElasTest.

8.1.4 Interactions

Table 45. Input to EJ.

Output Provided by Provided to

Job definition TestTer EJ/Jenkins

TJob Execution
data

ElasTest EJ/Jenkins

TSS Data ElasTest Jenkins Job

Browser EUS Jenkins Job

D2.3 ElasTest requirements, use-cases and architecture

128

Output Provided by Provided to

Job Logs ElasTest EJ

SuT Logs ElasTest Jenkins Job

SuT Metrics ElasTest Jenkins Job

Test results ElasTest EJ

TSS commands TSS Jenkins Job

Browser
commands

Browser Jenkins Job

8.2 ElasTest Toolbox (ET)

The ElasTest Toolbox (ET) is a dockerized application provided by ElasTest with a
couple of administrative tools to manage ElasTest. The main functionalities that offer
this application are the possibility of to start/stop ElasTest and update it to the next
version in an easy way. In addition to these functionalities, ET offers another set of
functionalities for internal use such as the script to prepare the release of a new stable
version.

8.2.1 Objectives

The main objective of the ET is to provide tools to install and configure ElasTest in the
easiest way possible.

8.2.2 System Prerequisites and Technical Requirements Specification

To run the ET you will need only to have docker installed on your machine with MAC
OS, Windows or Linux OS. But on the other hand, remember that to run ElasTest
without problems your machine need to comply with the following system
specifications11.

8.2.3 Component Design

This section describes the ET component architecture and its interaction with the rest
of the services in ElasTest.

11 https://elastest.io/docs/try-elastest/#system-specs

D2.3 ElasTest requirements, use-cases and architecture

129

Figure 59. ET FMC diagram.

In Figure 59, appears the ET and the structural services started when ElasTest starts:
- ElasTest Toolbox (ET): The component used by the users to start and configure

ElasTest in the easiest way possible.
- Elastest Platform Manager (EPM): The component that provides the ability to

instantiate execution entities (like docker containers or virtual machines).
- Elastest Service Manager (ESM): The component that provides the ability to

instantiate Test Support Services (TSSs) and Test Engines (TEs). EMS use the
same underlying EPM to manage low level execute entities.

- Elastest Data Manager (EDM): The component that provides specialized
persistence service to the rest of the platform.

- Elastest Instrumentation Manager (EIM): The component that allows ElasTest
to instrumentalize already deployed SUT when tests are executed against it.

Use cases

Below you can see the main use cases of the Toolbox. Figure 60 describes what
happens when the start command is executed.

D2.3 ElasTest requirements, use-cases and architecture

130

Figure 60. ET use case sequence diagram - start ElasTest.

In the Figure 61 that represents the execution of the stop command, you can see that

the opposite happens than what is described in Figure 60.

D2.3 ElasTest requirements, use-cases and architecture

131

Figure 61. ET use case sequence diagram - stop ElasTest.

And in Figure 62 the update process is described.

Figure 62. ET use case sequence diagram - update ElasTest.

D2.3 ElasTest requirements, use-cases and architecture

132

8.2.4 Interactions

Table 46. Input to ET.

Input Provided by

Start request Command cli

Stop request Command cli

 Update Command cli

Table 47. Output from ET.

Output Provided to

Start ETM ETM

Start EPM EPM

 Start EIM EIM

 Start EMP EMP

 Start EDM EDM

 Start ESM

9 Conclusions and Future Work

This deliverable attempts to document the efforts of Task 2.2 and Task 2.3 of WP2. The
focus of the deliverable, was to provide an overview of ElasTest. To this end, the
deliverable has listed the user requirements and the use cases for the platform.
Deriving from the use cases, an overall architecture was presented and associated
technologies used to realize the platform. The classification of components as core,
test support services and engines enabled for a better design of the platform.

The high level descriptions of the components were presented.

The tasks T2.2 and T2.3 will continue to focus on understanding and developing the
platform which targets the end user. Collectively enhancing the requirements and
thereby the architecture based on the needs of the demonstrator from WP7, the work
intends to keep track of the development effort by using the build-measure-learn
cycle.

10 References

[1] ElasTest project Description of Action (DoA) – part B. Amendment 1. Reference
Ares(2017)343382. 23 January 2017.

[2] ElasTest Project. D2.2 SotA revision document v1. 30 June 2018.
[3] ElasTest Project. D3.1 ElasTest Platform cloud modules v1. 30 June 2018.
[4] ElasTest Project. D4.1 ElasTest Orchestration basic toolbox v1. 30 June 2018.

D2.3 ElasTest requirements, use-cases and architecture

133

[5] ElasTest Project. D4.2 ElasTest recommendation engines v1. 30 June 2018.
[6] ElasTest Project. D5.1 ElasTest Test Support Services v1. 30 June 2018.
[7] ElasTest Project. D6.1 ElasTest Continuous Integration and Validation Systemv1. 30

June 2018.
[8] ElasTest Project. D6.2 ElasTest platform toolbox and integrations v1. 30 June 2018.
[9] Compositional Structures, Block diagrams – reference sheet, http://www.fmc-

modeling.org/download/notation_reference/Reference_Sheet-Block_Diagram.pdf

