

 D3.1
Version 1.0

Author ATOS

Dissemination PU

Date 29-06-2018

Status FINAL

D3.1 ElasTest Platform Cloud Modules v.1

Project acronym ELASTEST

Project title ElasTest: an elastic platform for testing complex distributed
large software systems

Project duration 01-01-2017 to 31-12-2019

Project type H2020-ICT-2016-1. Software Technologies

Project reference 731535

Project website http://elastest.eu/

Work package WP3

WP leader ATOS

Deliverable nature Report

Lead editor Enric Pages

Planned delivery date 30-06-2108

Actual delivery date 29-06-2108

Keywords Open source software, cloud computing, software
engineering, operating systems, computer languages,
software design & development

Funded by the European Union

http://elastest.eu/

D3.1 ElasTest Platform Cloud Modules v1

2

License

This is a public deliverable that is provided to the community under a Creative
Commons Attribution -ShareAlike 4.0 International License:

http://creativecommons.org/licenses/by-sa/4.0/

You are free to:

Share τ copy and redistribute the material in any medium or format.

Adapt τ remix, transform, and build upon the material for any purpose, even
commercially.

The licensor cannot revoke these freedoms as long as you follow the license
terms.

Under the following terms:

Attribution τ You must give appropriate credit, provide a link to the license,
and indicate if changes were made. You may do so in any reasonable manner,
but not in any way that suggests the licensor endorses you or your use.

ShareAlike τ If you remix, transform, or build upon the material, you must
distribute your contributions under the same license as the original.

No additional restrictions τ You may not apply legal terms or technological
measures that legally restrict others from doing anything the license permits.

Notices:

You do not have to comply with the license for elements of the material in the
public domain or where your use is permitted by an applicable exception or
limitation.

No warranties are given. The license may not give you all of the permissions
necessary for your intended use. For example, other rights such as publicity,
privacy, or moral rights may limit how you use the material.

For a full description of the license legal terms, please refer to:

http://creativecommons.org/licenses/by-sa/4.0/legalcode

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/legalcode

D3.1 ElasTest Platform Cloud Modules v1

3

Contributors

Name Affiliation

Enric Pages ATOS

David Rojo ATOS

Michael Pauls TUB

Piyuhs Harsh ZHAW

Andy Edmonds ZHAW

Micael Gallego URJC

Nick Stavros RELATIONAL

Version history

Version Date Author(s) Description of changes

0.1 02/05/2018 E.Pages ToC

0.2 11/05/2018 ALL Initial contributions

0.3 30/05/2018 M. Pauls Extended EPM parts

0.3 30/05/2018 A. Edmonds ESM contributions

0.3 30/05/2018 P. Harsh EPM contributions

0.3 30/05/2018 D. Rojo EIM contributions

0.4 30/05/2018 M. Gallego TORM scope review

0.4 30/05/2018 E. Pages Integration

0.5 01/06/2018 All Review

0.6 01/06/2018 E. Pages Initial version Quality Review Process

0.7 06/06/2018 M. Gallego, M.
Pauls, A.
Edmonds

!ŘŘŜŘ ŎƻƴǘŜƴǘ ǘƻ άChallenges to
Overcomeέ ǎŜŎǘƛƻƴ

0.8 14/06/2018 P. Harsh Clarified and expanded the role of EMP
supporting various challenges identified
within this document.

0.8 14/06/2018 N. Stavros EDM contributions

0.9 20/06/2018 E. Pages Integrated version addressing comments

1.0 27/06/2018 E. Pages Final version ready for submission

D3.1 ElasTest Platform Cloud Modules v1

4

Table of contents

1 Executive summary ... 13

2 Introduction .. 13
2.1 Overview and Objectives ... 13
2.2 Structure of the Document .. 14
2.3 Target Audiences .. 14

3 ElasTest Cloud Modules .. 14
3.1 Rationale .. 14
3.2 Categories .. 15
3.3 Roadmap .. 15
3.4 Challenges to Overcome .. 16
3.4.1 ElasTest Functional Components/Services .. 17
3.4.2 ElasTest Non-functional Aspects .. 19

4 Platform Management and Monitoring ... 22
4.1 ElasTest Platform Manager (EPM) ... 22
4.1.1 Introduction ... 22
4.1.2 Baseline Concepts and Technologies ... 23
4.1.3 Component Design and Architecture ... 24
4.1.4 Roadmap and Features .. 34
4.1.5 Research Results and Future Plans .. 40
4.2 ElasTest Monitoring Platform (EMP) .. 40
4.2.1 Introduction ... 40
4.2.2 Baseline Concepts and Technologies ... 41
4.2.3 Component Design and Architecture ... 43
4.2.4 Roadmap and Features .. 48
4.2.5 Research Results and Future Plans .. 56
4.2.6 ElasTest Monitoring Platform Integration within ElasTest .. 56

5 Service Lifecycle Management .. 57
5.1 ElasTest Service Manager (ESM) .. 57
5.1.1 Introduction ... 57
5.1.2 Baseline Concepts and Technologies ... 58
5.1.3 Component Design and Architecture ... 62
5.1.4 Roadmap and Features .. 66
5.1.5 Research Results and Future Plans .. 71

6 SuT Management .. 72
6.1 ElasTest Instrumentation Manager (EIM) & Instrumentation Agents 72
6.1.1 Introduction ... 72
6.1.2 Baseline Concepts and Technologies ... 73
6.1.3 Component Design and Architecture ... 74
6.1.4 Roadmap and Features .. 77
6.1.5 Research Results and Future Plans .. 82

7 Data Persistence Management .. 83
7.1 ElasTest Data Manager (EDM) ... 83
7.1.1 Introduction ... 83
7.1.2 Baseline Concepts and Technologies ... 83
7.1.3 Component Design and Architecture ... 84

D3.1 ElasTest Platform Cloud Modules v1

5

7.1.4 Roadmap and Features .. 85

8 Conclusions ... 87

9 References .. 88

10 Appendix .. 89
10.1 ElasTest Service Manager Sequence Diagrams .. 89
10.1.1 ServiceConsumer Sequence Diagrams ... 89
10.1.2 ServiceProvider Sequence Diagrams .. 92

D3.1 ElasTest Platform Cloud Modules v1

6

List of Figures
Figure 1. ElasTest Agile Management Methodology .. 15

Figure 2. WP3 Cloud Components Roadmap ... 16

Figure 3. Flow of interactions between ElasTest services ¡Error! Marcador no definido.

Figure 4. Architectural Overview of EPM ... 25

Figure 5. EPM: Deployment of a Resource Group .. 27

Figure 6. EPM: Deployment of a Package ... 28

Figure 7. EPM: Registration and Configuration of a new worker ... 29

Figure 8. EPM: Data Model ... 29

Figure 9. EPM API: Package .. 37

Figure 10. EPM API: Network ... 37

Figure 11. EPM API: Adapter .. 37

Figure 12. EPM API: PoP ... 38

Figure 13. EPM API: ResourceGroup .. 38

Figure 14. EPM API: TOSCA... 38

Figure 15. EPM API: Runtime .. 39

Figure 16. EPM API: Key and Worker ... 39

Figure 17. EMP design philoshophy, subspace is synonymous to metrics stream described in the text ... 41

Figure 18. Technology landscap in EMP ... 42

Figure 19. FMC diagram showing detailed EMP components .. 43

Figure 20. Sequence diagram showing user registration and monitoring space management 45

Figure 21. Sequence diagram showing metrics streams and data workflow through Sentinel 46

Figure 22. alert management and execution workflow ... 47

Figure 23. data visualisation sequence with Grafana and Sentinel .. 47

Figure 24. user query workflow .. 48

Figure 25. EMP GUI Login screen.. 49

Figure 26. EMP overview page, showing spaces, health checks and any activity alerts 50

Figure 27. EMP space management page .. 50

Figure 28. EMP series management (within a given space) page .. 51

Figure 29. EMP ς recent data point in a series ... 51

Figure 30. EMP embedded data visualisation page ... 52

Figure 31. EMP health-check management page ... 52

Figure 32. ElasTest CI dashboard for EMP test & build pipeline .. 53

Figure 33. EMP code coverage graph [accessed: 2018-05-24] ... 53

Figure 34. OpenAPI specification of EMP REST APIs, Swagger rendering .. 54

Figure 35. Expanded descriptions, methods, status codes for EMP APIs ... 55

Figure 36. EMP visualisation pane tracking ElasTest Platform core modules .. 57

file:///C:/Projects/ELASTEST/WPs/WP3/Deliverables/D3.1/Integrated/Reviewed/Final/ElasTest_Public_Deliverable_3-1_Final-v4.docx%23_Toc517864240

D3.1 ElasTest Platform Cloud Modules v1

7

Figure 37. Open Service Broker API (OSBA) overview .. 59

Figure 38. ESM Data Model .. 61

Figure 39. ESM FMC Diagram ... 62

Figure 40. ESM Lifecycle ... 64

Figure 41. ESM: A listing of services available in the Service Catalog .. 67

Figure 42. ESM: Add Service ... 67

Figure 43. ESM: Onboarding a new Service Type ... 68

Figure 44. ESM: Viewing a Serice Intance Details ... 68

Figure 45. ESM Code Coverage over Time .. 69

Figure 46. ESM: The Catalog API... 70

Figure 47. ESM: API Related to Service Instances .. 71

Figure 48. EIM FMC Diagram .. 75

Figure 49. Instrumentation Manager & Agents technology map. .. 77

Figure 50. Instrumenting SuT from ElasTest dashboard .. 78

Figure 51. Install and configure agents on remote SuT .. 78

Figure 52. Select KPIs to monitor ... 79

Figure 53. Metrics visualisation within the ElasTest dashbaord .. 79

Figure 54. Logs visualisation within the ElasTest dashbaord ... 79

Figure 55. EIM Jenkins buil report .. 81

Figure 56. EIM: Publickey API ... 81

Figure 57. EIM: Agent API ... 81

Figure 58. EIM: AgentConfiguration API ... 82

Figure 59. EDM FMC Diagram .. 84

Figure 60. EDM API Documentation ... 85

Figure 61. EDM Jenkins pipeline ... 86

Figure 62. EDM Coverage Report ... 86

Figure 63. Consumer: List of available service types .. 89

Figure 64. Consumer: Create a service instance .. 89

Figure 65. Consumer: Get/poll serice status .. 90

Figure 66. Consumer: Bind service ... 90

Figure 67. Consumer: Configure service instance .. 90

Figure 68. Consumer: Get service metrics .. 91

Figure 69. Consumer: Unbind service .. 91

Figure 70. Consumer: Delete service .. 92

Figure 71. Provider: List service .. 92

Figure 72. Provider: Register service .. 93

Figure 73. Provider: Update plan and description ... 94

D3.1 ElasTest Platform Cloud Modules v1

8

Figure 74. Provider: Update endpoint .. 94

Figure 75. Provider: Report service metrics ... 95

D3.1 ElasTest Platform Cloud Modules v1

9

List of Tables

Table 1. EPM: Adapter Data Model ... 30

Table 2. EPM: Event Data Model ... 30

Table 3. EPM: Key Data Model .. 30

Table 4. EPM: KeyValuePair Data Model .. 31

Table 5. EPM: Network Data Model .. 31

Table 6. EPM: PoP Data Model... ¡Error! Marcador no definido.

Table 7. EPM: ResourceGroup Data Model ... 32

Table 8. EPM: VDU Data Model .. 33

Table 9. EPM: Worker Data Model.. 34

Table 10. EPM: RoadMap & Features ... 34

Table 11. Set of ESM Use Cases and their Implementation Status ... 65

Table 12. EIM: Baseline technology. ... 73

Table 13. EIM: PublicKey Data Model ... 76

Table 14. EIM: Agent Data Model ... 76

Table 15. EIM: Host Data Model ... 76

Table 15. EIM: AgentConfiguration Data Model ... 76

D3.1 ElasTest Platform Cloud Modules v1

10

Glossary of acronyms

Acronym Description

CI (Continuous Integration) This refers to the software development practice with
that name.

FOSS (Free Open Source
Software)

This refers to software released under open source
licenses.

IaaS (Infrastructure as a
Service), PaaS (Platform as
a Service) and SaaS
(Software as a Service)

This refers to different models of exposing cloud
capabilities and services to third parties.

Instrumentation This refers to extending the interface exposed by a
software system for achieving enhanced controllability
and observability

QoS (Quality of Service)
and QoE (Quality of
Experience)

In this proposal, QoS and QoE refer to nonfunctional
attributes of systems. QoS is related to objective quality
metrics such as latency or packet loss. QoE is related to
the subjective quality perception of users. In ElasTest,
QoS and QoE are particularly important for the
characterization of multimedia systems and applications
through custom metrics.

SiL (Systems in the Large) A SiL is a large distributed system exposing applications
and services involving complex architectures on highly
interconnected and heterogeneous environments. SiLs
are typically created interconnecting, scaling and
orchestrating different SiS. For example, a complex
microservice-architected system deployed in a cloud
environment and providing a service with elastic
scalability is considered a SiL.

SiS (Systems in the Small) SiS are systems basing on monolithic (i.e. non
distributed) architectures. For us, a SiS can be seen as a
component that provides a specific functional capability
to a larger system.

SuT (Software under Test) This refers to the software that a test is validating. In this
project, SuT typically refers to a SiL that is under
validation.

TO (Test Orchestration) The term orchestration typically refers to test
orchestration understood as a technique for executing
tests in coordination. This should not be confused with
cloud orchestration, which is a completely different
concept related to the orchestration of systems in a
cloud environment.

TORM (Test Orchestration Is an ElasTest functional set of components that abstracts

D3.1 ElasTest Platform Cloud Modules v1

11

and Recommendation
Manager)

and exposes to testers the capabilities of the ElasTest
orchestration and recommendation engines.

TJob (Testing Job) We define a TJob as a monolithic (i.e. single process)
program devoted to validating some specific attribute of
a system. Current Continuous Integration tools are
designed for automating the execution of TJobs. TJobs
may have different flavors such as unit tests, which
validate a specific function of a SiS, or integration and
system tests, which may validate properties on a SiL as a
whole.

TiL (Test in the Large) A TiL refers to a set of tests that execute in coordination
and that are suitable for validating complex functional
and/or non-functional properties of a SiL on realistic
operational conditions. We understand that a TiL can be
created by orchestrating the execution of several TJob.

ICT Information and Communication Technology

IT Information Technology

WP Work Package

FMC Fundamental Model Concept

ETM ElasTest Test Manager

EPM ElasTest Platform Manager

EMP ElasTest Monitoring Platform

ESM ElasTest Service Manager

EIM ElasTest Instrumentation Manager

EDM ElasTest Data Manager

TSS Test Support Service

EUS ElasTest User Impersonation Service

ESS ElasTest Security Service

ECE ElasTest Cost Engine

PoP Point of Presence

REST Representational State Transfer

VDU Virtual Deployment Unit

AWS Amazon Web Services

AAA Authentication, Authorization, Accounting

TOSCA Topology and Orchestration Specification for Cloud
Applications

API Application Programming Interface

SDK Software Development Kit

D3.1 ElasTest Platform Cloud Modules v1

12

SSH Secure Shell

CPU Central Processing Unit

R&D Research and Development

OSBA Open Service Broker API

SLA Service Level Agreement

DoA Description of Actions

UI User Interface

GUI Graphical User Interface

VM Virtual Machine

KVM Kernel-based Virtual Machine

JDK Java Development Kit

KPI Key Performance Indicator

R Release

MS Milestone

D3.1 ElasTest Platform Cloud Modules v1

13

1 Executive summary

ElasTest is a cloud platform designed for helping developers to test and validate large
software systems while maintaining compatibility with current continuous integration
practices and tools. ElasTest enables developers to test large software systems
through complex test suites created by orchestrating simple testing units (so-called
TJobs).

ElasTest platform is Free Open Source Software and a community of users and
contributors is being created, who can help transforming ElasTest into a worldwide
reference in the area of large software systems testing and guaranteeing the long term
platform sustainability.

The ElasTest platform is designed as a Service Oriented Infrastructure (SOI) where each
of the modules constitutes a fine-grained SOA (micro-service). The software modules
ƛƳǇƭŜƳŜƴǘŜŘ ǿƛǘƘƛƴ ά²tо /ƭƻǳŘ /ƻƳǇƻƴŜƴǘǎέ ƘŀǾŜ ǘƘŜ ƻōƧŜŎǘƛǾŜ ƻŦ ŎǊŜŀǘƛƴƎ ŀƭƭ ŎƭƻǳŘ
components and mechanisms required by the ElasTest platform. These components
are split into different categories; on one hand we can find the cloud components for
the ElasTest platform which offers management capabilities at the level of
computational resource as well as manages the lifecycle of the cloud based services
deployed on top of the aforementioned resources. On the other hand ElasTest offers
Instrumentation Components which actuates at application level offering management
capabilities over the Software under Test (SuT).

The content of this report is focused on the specification, design and implementation
of the intermediate version of the ElasTest Cloud Components; the work carried out in
ǘƘƛǎ ²t ƛǎ ƎƻƛƴƎ ǘƻ ōŜ ǊŜǇƻǊǘŜŘ ǿƛǘƘƛƴ ǘǿƻ ƛǘŜǊŀǘƛƻƴǎΥ άD.3.1 ElasTest Platform cloud
modules v1 [6]έ ƛǎ ƎƻƛƴƎ ǘƻ ōŜ delivered in month 18 as the intermediate version of the
software modules together with the accompanying documentation of this version,
ά5ΦоΦнΦ 9ƭŀǎ¢Ŝǎǘ ǇƭŀǘŦƻǊƳ ŎƭƻǳŘ ƳƻŘǳƭŜǎ Ǿн [12]έ ǿƛƭƭ ōŜ ǎǳōƳƛǘǘŜŘ ƻƴ aос ƛƴŎƭǳŘƛƴƎ
the final software artifacts and updated documentation of the platform modules.

2 Introduction

2.1 Overview and Objectives

This report presents the software artifacts implemented in the scope of the WP3
during the first period of the project until M18. The Platform modules covered in this
report are the Platform Manager (EPM), the Service Manager (ESM), the
Instrumentation Agents (EIA), and the Instrumentation Manager (EIM). The work
carried out within WP3 has the objective of creating all cloud components and
subsystems required by the project. These components are split into two main
categories. The Cloud Components for the ElasTest platform which are executed as
part of ElasTest and the Instrumentation components, these components can be
executed out of ElasTest and as part of the SuT. Additionally, this report also presents
the Data Manager (EDM) used by different modules across all technical work packages.

D3.1 ElasTest Platform Cloud Modules v1

14

2.2 Structure of the Document

The outline of this document is as follows: First section introduces the document and
its objectives. The second chapter presents the ElasTest Cloud modules describing how
they are categorised and its overall roadmap. The next sections describes the enablers
for managing the platform in a target cloud provider (Sec 4), the mechanism and
interfaces offered for managing the on-demand cloud based services within ElasTest
(Sec 5), as well as the mechanisms used to instrument the target applications under
evaluation (Sec 6). In addition, the service that offers data management capabilities to
the components of the platform is presented (Sec 7). Finally the last section includes
the conclusion (Sec 8).

2.3 Target Audiences

The primary targets of the document are internal ElasTest technicians from WP3 to
WP6 involved in the prototyping and implementation of the platform. In addition, this
document is targeting technical personnel interested in testing as well as QA managers
interested in adopt our solution.

3 ElasTest Cloud Modules

3.1 Rationale

New advances in ICT technology influence the way software is developed and tested,
the proliferation of large scale applications targeting thousands of users that can be
connected concurrently and expect real time interactions; makes the testing strategy a
crucial aspect for the release management process of the applications.

Nowadays cloud technologies are creating advantages for organizations that adopt it
such as: speed, agility, scalability, accessibility and flexibility; therefore ElasTest aims to
extend the adoption of the aforementioned benefits offered by the cloud to testers
through the creation of a cloud platform (ElasTest Platform) designed for helping to
validate large software systems that require complex test suites and validation
processes.

Since the irruption of the cloud computing (together with the virtualization era) as a
disruptive technology, the increased use of the cloud introduced new business
opportunities and challenges during the last years allowing developers to apply more
easily the principles of mass production into the IT world. The current panorama
reveals that a whole range of IT functions can be thought of as commodity services.

The ElasTest cloud components described within this report are in charge of the
management and monitoring of the resources that the platform needs to operate; as
well as of the lifecycle management associated to the on-demand testing support
services catalogue which can be requested by the ElasTest Platform user dynamically.
In addition to the cloud components in charge of the platform management, the
report also includes other kind of cloud based component not targeting the platform
itself but offering management capabilities over the software system under
evaluation.

D3.1 ElasTest Platform Cloud Modules v1

15

3.2 Categories

The different categories identified have a direct relationship with the tasks described
ǿƛǘƘƛƴ ǘƘŜ ά²tо /ƭƻǳŘ ŎƻƳǇƻƴŜƴǘǎέΦ ¢ŀǎƪ оΦм ƛƳǇƭŜƳŜƴǘǎ ǘƘŜ ŜƴŀōƭŜǊǎ ŦƻǊ ǘƘŜ
platform components to be deployed in a target cloud being able as well to monitor its
usage recovering in seamless way information related to the runtime execution of the
platform. Task 3.2 implements the appropriate mechanism enabling the lifecycle
management of the Test Support Services catalogue offered by ElasTest. Finally, Tasks
3.3 & 3.4 are devoted to the instrumentation capabilities offered over the software
under evaluation.

As it has been introduced in the previous paragraph, different categories have been
considered:

- Software modules for managing the computational resources of the platform.
- Software modules for managing the cloud based services offered by the platform.
- Software modules for managing the applications under test.

3.3 Roadmap

ElasTest uses an Agile Management methodology, which is suitable for innovation
management. This methodology has been designed for transforming ideas into
profitable products. For this, it focuses on
learning and discovering how to fit a
technology into the market instead on
how to carry out the technological
developments themselves.
The methodology is based on a
continuous feedback loop repeated
cyclically every four months aligned with
the ElasTest software releases, according
to ElasTest initial planning nine releases
will be generated during the project
duration. The content of this report
covers the developments performed up to
R4 where the first integrated version of the software components is delivered.

The methodology used for the specification and design phases as well as for the
ŘŜǾŜƭƻǇƳŜƴǘκǘŜǎǘƛƴƎκǊŜƭŜŀǎŜ ǇƘŀǎŜǎ ƘŀǾŜ ōŜŜƴ ŜƭŀōƻǊŀǘŜŘ ƛƴ ǘƘŜ ǎŎƻǇŜ ƻŦ ά¢ŀǎƪ нΦнΦ
Agile conception based on end-ǳǎŜǊ ŦŜŜŘōŀŎƪέΣ ŦǳǊǘƘŜǊ ŘŜǘŀƛƭǎ ŀōƻǳǘ ǘƘŜ ƳŜǘƘƻŘƻƭƻƎȅ
itself wiƭƭ ōŜ ŘŜǎŎǊƛōŜŘ ƛƴ ǘƘŜ ǇǳōƭƛŎ ǊŜǇƻǊǘ ά5ΦнΦоΦ 9ƭŀǎ¢Ŝǎǘ ǊŜǉǳƛǊŜƳŜƴǘǎΣ ǳǎŜ-cases
and architecture v1 [5]έΤ ǿƘŜǊŜ ǘƘŜ ǎǘŜǇǎ ŦƻƭƭƻǿŜŘ ōȅ 9ƭŀǎ¢Ŝǎǘ ǘŜŎƘƴƛŎŀƭ ǘŜŀƳǎ ŀǊŜ
further described.

The figure below depicts the alignment between the project milestones and the
software component releases.

Figure 1. ElasTest Agile Management Methodology

D3.1 ElasTest Platform Cloud Modules v1

16

Figure 2. WP3 Cloud Components Roadmap

3.4 Challenges to Overcome

ElasTest is a platform designed to facilitate the build, execution and reporting of end-
to-end tests of complex distributed applications. These types of applications present
some properties like elasticity and fault tolerance that need to be tested with end-to-
end tests. To execute these complex distributed applications and scalable tests,
enabling resources and supporting services are needed. The primary reason that such
elements must be provided is to remove the tester from the responsibility of having to
manage these resources and services themselves and in doing so allow them to focus
on their core business, writing complete tests that validate the SuT.

Not only resources and services should be provided for TJobs, additional cloud
components must also be provided in order to allow ElasTest deploy and execute a SuT
on the behalf of the tester and also deploy and execute the components required to
Ǌǳƴ ǘƘŜ 9ƭŀǎ¢Ŝǎǘ ǇƭŀǘŦƻǊƳ ƛǘǎŜƭŦΦ Lƴ ǎǳƳƳŀǊȅ ²tоΩǎ Ƴŀƛƴ Ǝƻŀƭǎ ŀǊŜΥ

¶ Provide resources and services to execute TJobs

¶ Provide resources to deploy and execute SuTs

¶ Provide resources and components that support the complete ElasTest
platform

¶ Provide necessary insights into the current and past state of ElasTest core
components in order to facilitate stable operation of the platform itself

The key aim and contribution of WP3 to ElasTest is to provide the enabling facilities
required by the Elastest Tests Manager (ETM), the main component of the TORM, to
carry out its task of orchestration and executing tester supplied TJobs. As such it can
be thought of as the enabling platform for the ETM.

The work in WP3 has to cover these key areas of functionality:
1. Provide the resources on-demand to allow for the execution of TJobs
2. Provide the services on-demand to allow for the support and augmentation of

TJob functionality
3. Provide the means to manage all resources and services delivered to the ETM

To overcome these needs, the ElasTest architecture has the following characteristics:

D3.1 ElasTest Platform Cloud Modules v1

17

¶ Microservices inspired architecture: ElasTestΩǎ ŀǊŎƘƛǘŜŎǘǳǊŜ has been divided in
several decoupled components that communicate via remote protocols. In that
way, ElasTest can horizontally scale executing every component in a different
computational node when necessary.

¶ Decoupled test execution: To execute a set of tests in ElasTest is necessary to
configure a TJob. A TJob is defined with the following information: a) How to
obtain and execute the tests; b) How to connect to a SUT already deployed or
how to execute the SUT inside ElasTest and c) What support services are
necessary to execute the tests. Using the same strategy as with the core
components, the tests, SUT (if necessary) and support services (if necessary)
are executed in decoupled components that communicate using remote
protocols. In that way, every TJob can be executed in a different computational
node, favouring the scalability of the platform. Hence, a TJob that needs more
computational resources than available in a computational node can be split in
several computational nodes.

¶ No vendor dependency (lock-in): ElasTest Platform Manager (EPM) introduces
an adapter mechanism which means the adapters use a standardized
northbound interface whereas the southbound interface is specific to a certain
cloud infrastructure technology. In addition, to provide a standardized way of
defining virtual resources, the platform manager supports native TOSCA
templates. Further details are covered under the non-functional aspects of the
platform.

¶ No internal state persistency: All ElasTest components can be configured to be
stateless, except ElasTest Data Manager (EDM). This allows all persistency to be
grouped in one specific component, while the rest of the platform is stateless.
In addition, EDM via Alluxio allows the usage of external services (such as
Amazon S3) for persistent data, in a way that is transparent to the rest of the
ElasTest platform. Hence, by moving between different hardware/cloud
platforms, the only component that needs to be ported to fit is EDM, or it can
be swapped out in favor of local services that offer the same functionality.

¶ Test Engines: ElasTest can be augmented with additional components called
Test engines (TE). These components are executed as decoupled components
and core components can communicate with them using remote protocols.
This leads to advantages mentioned to the other parts of the platform.

¶ Test Support Services: Test Support Services (TSSs) are services used by tests
via TJobs. They augment the capability of a test by providing some specific
features. The TSSs are not covered within this document but they are
mentioned here as the ESM covered within this report is the component who
manages the TSS lifecycle as well as offers them on-demand. For further
ƛƴŦƻǊƳŀǘƛƻƴ ǎǇŜŎƛŦƛŎ ǘƻ ǘƘŜ ¢{{Σ ǇƭŜŀǎŜ ǊŜŦŜǊ ǘƻ ά5ΦрΦм 9ƭŀǎ¢Ŝst Test Support
{ŜǊǾƛŎŜǎ Ǿмέ [9].

3.4.1 ElasTest Functional Components/Services

As it can be seen, ElasTest platform is composed by several decoupled components
that communicate using remote protocols. This characteristic allows the platform to
be split across several physical nodes if the resources needed are not available in a

D3.1 ElasTest Platform Cloud Modules v1

18

single node. Hence, we can consider that ElasTest is scalable to take advantage of
cloud native design and on-demand use of resources and service to grow and shrink
according to load. Also, some of the components are executed on demand and this
gives elasticity to the platform. Concretely, tests engines are executed only when they
are used. In tƘŜ ǎŀƳŜ ǎŜƴǎŜΣ ¢WƻōΩǎ ŎƻƳǇƻƴŜƴǘǎ ŀǊŜ ŜȄŜŎǳǘŜŘ ŀƭǎƻ ƻƴ ŘŜƳŀƴŘΦ

The core components of ElasTest are:

¶ ElasTest Tests Manager (ETM)

¶ ElasTest Services Manager (ESM)

¶ ElasTest Platform Manager (EPM)

¶ ElasTest Monitoring Platform (EMP)

¶ ElasTest Instrumentation Manage (EIM)

¶ ElasTest Data Manager (EDM)

The ElasTest Platform Manager (EPM) is the base component in charge of executing
ElasTest components in several underlying platforms, abstracting ETM (the brain of
ElasTest) of this management. Also, as several cloud resource management platforms
are supported, ElasTest can be deployed in any of them without any change. To offer
this abstraction of the underlying platform, EPM requires that components are
packaged as docker containers. This format have been selected because is a
lightweight standardized format with a standard distribution mechanism. Also, this
format is widely supported in the industry. In addition, when a component is
composed by several containers, docker compose descriptor file can be used to
describe the component. In the current version, EPM can be executed in a single
machine with docker daemon installed. This node is used to execute ElasTest core
components. Other nodes can be added dynamically to EPM to execute dynamic
ElasTest components like TJob components or test engines. In the future versions,
Kubernetes, AWS and OpenStack platforms will be supported natively in EPM to
support the real elasticity of the platform.

It is very important to monitor how computational resources are been used to avoid or
adapt to overload of the system, given that TJobs are executed dynamically on-
demand. If the system is above some load threshold, new TJobs can be queued until
resources are available or ask to underlying platform for more nodes to execute
components. The ElasTest Monitoring Platform (EMP) is the component in charge of
monitoring ElasTest platform. This component works closely with EPM to allow the
mentioned autoscaling features. Also, EMP shows system metrics it gathers from the
underlying platform to the user. This is especially important for administrative tasks.
However, not all platforms allow the autoscaling feature, then, monitoring information
is being used to control the fixed resources available.

Through the ElasTest Service Manager (ESM), ElasTest is able to provide on-demand
test support services (TSSs) to testers (as defined in their TJobs) to make easier to
implement complex tests and delegate non-core functionality to an internal or
external service provider. For example, some of the services provided by default in
ElasTest like the ElasTest User Impersonation Service (EUS), provides browsers on
demand. Other TSS available is the ElasTest Security Service (ESS) that provides
dynamic security tools to testers. These tools can be managed from test code using a

D3.1 ElasTest Platform Cloud Modules v1

19

remote protocol. In addition to the tests included by default, ElasTest allows users to
create and install new services. All of this is done without vendor lock-in by using the
Open Service Broker API standard. ElasTest Service Manager (ESM) is the component
that manages the register and management of TSS. It uses EPM to instantiate new
services on demand when are required by ETM. ETM will ask to ESM for a new service
instance if this TSS is defined in the TJob to be used by the tests. ESM also works
closely with EMP which keeps tracks of health status of support services created and
managed by ESM. EMP has proactive alarming capability which is the key feature of
interest for ESM.

While the aforementioned components deals with the platform resources, the
ElasTest Instrumentation Manager (EIM), controls and orchestrates the monitoring
and controllability agents which are deployed when an external SUT is tested. In that
way, tester doŜǎƴΩǘ ƴŜŜŘ ǘƻ Ƴŀƴǳŀƭƭȅ ŎƻƴŦƛƎǳǊŜ ǘƘŜǎŜ ŀƎŜƴǘǎ ǘƻ ƻōǘŀƛƴ ǊŜƭŜǾŀƴǘ
monitoring information about SUT. Using EIM, user will be able to instrument external
SUT to simulate real behaviour simulating CPU load or network issues.

In addition, ElasTest Data Manager (EDM) provides persistence services to the
platform. It is used by several components as data management service. The ElasTest
Data Manager was built to separate the persistence layer of ElasTest from the rest of
the platform.

3.4.2 ElasTest Non-functional Aspects

Elasticity

The ElasTest services and resources must be provided on-demand, when and only
when the tester actually needs them. By having the capability, the overall cost to run a
test suite against a SuT is reduced when compared to having resources and services
running all the time. For example, if ElasTest is used to test the elasticity of a SUT like a
video conference system, the tests should request hundreds or thousands of
simultaneous browsers simulating users connecting to the platform. Then, ElasTest
should execute all these browsers.

Further, by being able to request resources and services on-demand enables the
capability of dynamically scaling up (or down) the set of resources and/or services
assigned to a particular test suite at any point in time. In doing so, the platform is
amenable to elasticity. However, before having this capability the components need to
be designed in such a way to be scalable. Furthermore, monitoring and timely alerting
is a key prerequisite for effective elastic control; EMP objectives already cover this
element to support elastic control and management of underlying resources. EMP
allows instrumented metrics to be directly sent to it via different language specific
libraries. This capability can be used in conjunction with a more fine grained alert
condition creation within EMP wherein the destination of the alert is the relevant
application endpoint itself, it is very much possible to achieve a parallel elastic control
mechanism that is self-triggered by the application and not just managed by the EPM.

Authentication, Authorization and Accounting (AAA)

ElasTest needs to provide the means for users to be identified uniquely so that specific
resources, services can be associated with them and ultimately allow for the charging

D3.1 ElasTest Platform Cloud Modules v1

20

of those services and resources to the specific user. ElasTest also needs to provide this
from an audit and security perspective: who did what where, when and how.

To provide this an AAA (Authentication, Authorisation and Accounting) service/
component is typically used. With an AAA element as part of ElasTest and used down
through the full stack (from user, through ETM and onto ESM and EPM), multi-
tenancy, isolation and per user billing can be enabled. These characteristics are
fundamental to cloud computing (See NIST definition1, publication 800-145) of which
ElasTest is founded on.

AAA is an ElasTest platform service to support many services and components in
ElasTest. As such the proposal is to include AAA as part of WP3. No developments
upon AAA topics will be carried out or upon Keystone (where necessary). In order to
provide AAA within ElasTest the proposal is to use OpenStack's Keystone project2 to
enable AAA. Keystone will runs as an additional service within the ElasTest platform
and so will be the responsibility of the ElasTest Toolkit to start the service.

In the basic scenario the onus is upon the User to acquire the token from the Keystone
service. This can be accomplished either via API3 or using the Keystone command line
client4 (which is now part of the main openstack command line client5).

With its basic usage, access to any Keystone mediated resource given by having a valid
Keystone token relayed in HTTP headers. The header name used is X- Auth - Token and
its value is the token issued by the keystone service.

It should be noted that keystone integration per component must be provided in a
configurable way, in order to use Keystone a service needs 2 things:

1. A running instance of keystone: to do this you can use the following docker
project6 to bring up a keystone instance. You can review the README7 for basic
usage and refer to the OpenStack Keystone8 project for further detail and
information.

2. Client code that accesses and uses keystone: how this is accomplished is
rather specific to the language and frameworks you use to implement your
service/component.

Vendor Lock-in

A vendor lock-in limits the user to the usage of a certain solution or technology, and,
hence, it reduces also the capabilities of the solution itself only able to cover a limited
set of scenarios and use cases. As a comprehensive testing platform for highly
distributed applications, one of the main goals is to avoid a vendor lock-in at the
ElasTest platform level to let the freedom of choice for a certain cloud virtualization

1
 NIST Definition, https://csrc.nist.gov/publications/detail/sp/800-145/final

2
 OpenStack Keystone, https://docs.openstack.org/keystone/latest/

3
 OpenStack API, https://developer.openstack.org/api-ref/identity/v3/index.html

4
 KeyStone CLI, https://docs.openstack.org/mitaka/cli-reference/openstack.html

5
 KeyStone CLI-reference, https://docs.openstack.org/mitaka/cli-reference/openstack.html

6
 Keystone docker project, https://github.com/dizz/dock-os-keystone

7
 README file, https://github.com/dizz/dock-os-keystone/blob/master/README.md

8
 OpenStack Keystone, https:// docs.openstack.org/keystone/latest/

http://csrc.nist.gov/publications/PubsSPs.html#800-145
https://csrc.nist.gov/publications/detail/sp/800-145/final
https://docs.openstack.org/keystone/latest/
https://developer.openstack.org/api-ref/identity/v3/index.html
https://docs.openstack.org/mitaka/cli-reference/openstack.html
https://docs.openstack.org/mitaka/cli-reference/openstack.html
https://github.com/dizz/dock-os-keystone
https://github.com/dizz/dock-os-keystone/blob/master/README.md
https://docs.openstack.org/keystone/latest/

D3.1 ElasTest Platform Cloud Modules v1

21

infrastructure up to the users and their requirements. A proper approach had to be
developed in order to overcome this issue which is following a plug-and-play approach.

There are two services that could be limited by vendor locking: the ElasTest Service
Manager (ESM) and the ElasTest Platform Manager (EPM).

The ESM, avoids the issue of lock-in by adopting a widely adopted API, the Open
Service Broker API9. Behind this API, the implementation of the ESM, is implemented
such that pluggable backends are used for storage (the DB in the case of the ESM;
supports simple in-memory, MongoDB and MySQL) and resource acquisition (currently
local docker engines and the EPM). Should another DB or resource acquisition
software be required, this is achieved by implementing the software interface for
either DB10 or resource acquisition11 modules.

The EPM, introduces an adapter mechanism which means the adapters use a
standardized northbound interface whereas the southbound interface is specific to a
certain cloud infrastructure technology. Based on the requirements of the project
consortium, the northbound interfaces was designed in a way that it allows 1) the
definition of the virtual resource requirements following the internal information
model of the EPM and 2) cloud infrastructure-specific templates. In this way the EPM
can potentially support any type of technology assuming the corresponding adapter is
in place. Currently, the focus of the adapter development is aligned with what the
project consortium has seen as appropriate (Docker12, docker-compose13, Ansible14,
VirtualBox15). In the future the need of further adapters will be explored to support,
for instance, OpenStack16, OpenStack Heat17, AWS18, or complex orchestration
solutions, such as, Aria19 or OpenBaton20.

In addition, to provide a standardized way of defining virtual resources, the platform
manager supports native TOSCA21 templates. TOSCA is a domain specific language and
portable model for describing cloud applications. The TOSCA model is a widely
recognized format and therefore would also provide an easy way for users to
transition to ElasTest. The TOSCA Simple Profile for YAML 1.0 describes the way to
represent the TOSCA meta-model in a simplified format using YAML22. The platform

9
 OpenAPI Initiative https://www.openservicebrokerapi.org

10
 ESM Store, https://github.com/elastest/elastest-service-

manager/blob/master/src/adapters/store.py#L51
11

 ESM Resource, https://github.com/elastest/elastest-service-
manager/blob/master/src/adapters/resources.py#L39
12

 Docker, https://www.docker.com/
13

 Docker-compose, https://docs.docker.com/compose/
14

 Ansible, https://www.ansible.com/
15

 Oracle VirtualBox, https://www.virtualbox.org/
16

 OpenStack, https://www.openstack.org/
17

 OpenStack Heat, https://wiki.openstack.org/wiki/Heat
18

 Amazon Web Services, https://aws.amazon.com/
19

 Apache Aria, http://ariatosca.incubator.apache.org/
20

 Open Baton, https://openbaton.github.io/
21

 OASIS Topology and Orchestration Specification for Cloud Applications (TOSCA), https://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=tosca
22

 YAML, http://yaml.org/

https://github.com/elastest/elastest-service-manager/blob/master/src/adapters/store.py#L51
https://github.com/elastest/elastest-service-manager/blob/master/src/adapters/store.py#L51
https://github.com/elastest/elastest-service-manager/blob/master/src/adapters/resources.py#L39
https://github.com/elastest/elastest-service-manager/blob/master/src/adapters/resources.py#L39
https://www.docker.com/
https://docs.docker.com/compose/
https://www.ansible.com/
https://www.virtualbox.org/
https://www.openstack.org/
https://wiki.openstack.org/wiki/Heat
https://aws.amazon.com/
http://ariatosca.incubator.apache.org/
https://openbaton.github.io/
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca
http://yaml.org/

D3.1 ElasTest Platform Cloud Modules v1

22

provides the option to render TOSCA templates to the internal information model
following the TOSCA Simple Profile for YAML 1.0, to provide the option for users
familiar with the specification to make use of its generalized model for defining cloud
systems.

4 Platform Management and Monitoring

The following section introduces the core components in charge of the management
and monitoring of the platform; and provides the details of the requirements,
architecture, interfaces and features for each of them.

4.1 ElasTest Platform Manager (EPM)

4.1.1 Introduction

The ElasTest Platform Manager (EPM) implements the enablers for ElasTest
components to be deployed in a target cloud.

DoA [1] specifies the following objectives for the EPM:

¶ To develop the appropriate technologies enabling ElasTest to be deployed in
the target cloud environment. For this, the Platform Manager shall need to
provide the required cloud orchestration services for the deployment and
provisioning of all ElasTest components. This will require the Platform Manager
to consume, at its southbound, the APIs exposed by the target cloud
infrastructure.

¶ To create the appropriate technologies enabling the management of the
underlying cloud resources on behalf of the TORM and of the rest of ElasTest
services. These technologies shall provide the capability of instantiating
computing resources, of deploying artifacts on them (e.g. TJob instances, Test
Support Service instances, etc.) and of managing their lifecycle. Remark that
the autoscaling of computing resources used by ElasTest shall be part of this
mechanism.

¶ To expose, at its northbound, all these capabilities through a comprehensive
and coherent API (or directly Software Development Kit) that the TORM and
the rest of ElasTest testing services shall consume in runtime for implementing
their logic.

¶ To develop a toolbox enabling the installation and management of all such
capabilities in ElasTest.

¶ To expose a catalogue of Support Services. The Platform Manager will provide
this catalogue in order to allow any developer to select the appropriate
Support Services required in the experiment.

The ElasTest Platform Manager is the interface between ElasTest components (e.g.
TORM, Test Support Services, etc.) and the cloud infrastructure where ElasTest is
deployed. Hence, this Platform Manager must abstract the cloud services so that

D3.1 ElasTest Platform Cloud Modules v1

23

ElasTest becomes fully agnostic to them and provide this abstraction via Software
Development Toolkits (SDK) or REST APIs to the northbound consumers (i.e. the
TORM). The ElasTest Platform Manager enabling ElasTest to be deployed and to
execute seamlessly in the target cloud infrastructure that the consortium considers as
appropriate (e.g. OpenStack, CloudStack23, Mantl24, AWS, Docker, etc.).

The EPM provides two options to describe and deploy the virtual resources:

¶ All-in-one Package Deployment: the package approach is designed to make use
of template-dependent technologies such as docker-compose, Ansible or
OpenStack Heat. The EPM gets such a template with additional metadata
information which is forwarded directly to the target infrastructure to trigger
the deployment as a whole.

¶ Step-by-Step Deployment: this step-by-step approach is designed for
technologies such as Docker, OpenStack or AWS where the EPM receives the
resources description which is compliant to the data model of the EPM or
TOSCA. That information about virtual resources is then translated to individual
ŎƻƳƳŀƴŘǎ ŎŀƭƭƛƴƎ ǘƘŜ ǘŜŎƘƴƻƭƻƎƛŜǎΩ !tLΦ

Both approaches together make the EPM independent to the underlying infrastructure
and give the consumer of the EPM the opportunity to use already existing templates or
the data model exposed by the EPM. However, in both cases the EPM returns the
information in a uniform format following the data model.

To avoid a vendor lock-in situation, the ElasTest Platform Manager introduces an
adapter mechanism which means the adapters use a standardized northbound
interface whereas the southbound interface is specific to a certain cloud infrastructure
technology. Based on the requirements of the project consortium, the northbound
interface was designed in a way that it allows 1) the definition of the virtual resource
requirements following the internal information model of the EPM and 2) cloud
infrastructure-specific templates. In this way the EPM can potentially support any type
of technology assuming the corresponding adapter is in place. Currently, the focus of
the adapter development is aligned with what the project consortium has seen as
appropriate (Docker, docker-compose, Ansible, VirtualBox). In the future the need of
further adapters will be explored to support, for instance, OpenStack, OpenStack Heat,
AWS, or complex orchestration solutions, such as, Aria or Open Baton. A major
challenge in this regard is that all adapters have to provide the same capabilities, such
as, runtime management to access instances for certain operations (see Features
table).

4.1.2 Baseline Concepts and Technologies

The EPM itself is implemented in Java making use of the Spring framework25. Data
persistency is provided via SQL where by default it uses an in-memory database

23

 Apache CloudStack, https://cloudstack.apache.org/
24

 Mantl, https://www.mantl.com/

25

 Spring Framework, https://spring.io/

https://cloudstack.apache.org/
https://www.mantl.com/
https://spring.io/

D3.1 ElasTest Platform Cloud Modules v1

24

(HyperSQL26). Nevertheless, other SQL databases (e.g. MySQL27) can be easily
integrated by changing the configuration inside the main properties file following the
spring configuration guide.

The current version of the EPM supports the following virtual infrastructure
technologies: Docker, docker-compose and Ansible. Two approaches are supported by
the EPM in the meaning of tƘŜ ŎƻƴǎǳƳŜǊ Ŏŀƴ ŜƛǘƘŜǊ ƳŀƪŜ ǳǎŜ ƻŦ ǘƘŜ 9taΩǎ Řŀǘŀ ƳƻŘŜƭ
or TOSCA to describe the deployment scenario or use directly templates of a certain
technology. Thanks to the modular approach, other virtualization infrastructures can
be easily supported by providing adapters for certain technologies. This adapter
mechanism is provided via gRPC which manages the communication between the EPM
itself and the corresponding adapter.

The Access, Authorization and Accounting (AAA) system can be activated for the EPM
where ǘƘŜ ƛƴǘŜƎǊŀǘŜŘ ǎȅǎǘŜƳ ƛǎ hǇŜƴ{ǘŀŎƪΩǎ YŜȅǎǘƻƴŜΦ

In addition, the EPM makes indirectly use of several supporting services by configuring
the virtual instances for the purpose of log forwarding (e.g. Logstash28) or monitoring
(e.g. Dockbeat29) which are then provided indirectly to other services for further
processing, such as, the ElasTest Monitoring Service, ElasTest Monitoring Platform, or
the ElasTest Test Manager.

The EPM and all the available adapters are delivered as Docker containers which are
available in Docker Hub. In addition, several docker-compose files are provided in the
GitHub repositories to start easily the EPM with the additional components and
services to ease the deployment and configuration.

4.1.3 Component Design and Architecture

This section gives an architectural overview of the ElasTest Platform Manager. The
architecture (see Figure 4) is composed of several components:

26

 HyperSQL, https://spring.io/
27

 Oracle MySQL, https://www.mysql.com/
28

 Logstash, https://www.elastic.co/products/logstash
29

 DockBeat, https://www.elastic.co/blog/dockbeat-a-new-addition-to-the-beats-community

https://spring.io/
https://www.mysql.com/
https://www.elastic.co/products/logstash
https://www.elastic.co/blog/dockbeat-a-new-addition-to-the-beats-community

D3.1 ElasTest Platform Cloud Modules v1

25

Figure 3. Architectural Overview of EPM

API: The API exposes a ReSTful API in order to allow the consumer (e.g. ETM, ESM) to
manage virtual resources in a target cloud environment. It allows to allocate,
terminate, update virtual resources (e.g. compute, network) and request information
of those as well, execute runtime operations, and register and configure new workers.
Moreover, in order to allow a programmatic usage of the EPM, a python and java
client are provided that eases the usage of the EPM.

Repository: The repository persists information of managed Workers, VDUs, networks,
and PoPs as well. The following gives an overview of what those entities are:

¶ Worker: A worker is a machine, where the EPM can set up a cloud environment
and make it ready to be registered as a Point-of-Presence.

¶ PoP: A PoP is a Point-of-Presence that defines details of a cloud environment.
This includes information about the endpoint, type and access details.

¶ VDU: A VDU is a Virtual Deployment Unit which reflects an abstraction of
virtual compute resources. It contains information about software, network
connectivity and the target cloud environment.

¶ Network: A network reflects the virtualized network resource which provides
connectivity between VDUs.

Core: The core consists of several management units and provides the basic
management functionality in order to manage PoPs, VDUs and networks. The core has
access to the Repository in order to persist and request information of managed
entities (PoP, VDU, and Network). In order to issue operations on different types of

D3.1 ElasTest Platform Cloud Modules v1

26

cloud environments (Docker, OpenStack, Kubernetes, AWS), the Core component
makes use of PoP adapters which allows the Core to interact with the PoP over well-
defined interfaces.

¶ PoP Management: This component handles the PoPs. It is in charge of
registering, unregistering and providing information of a requested PoP.

¶ VDU Management: This component manages virtualized resource related to
the compute domain. It allocates compute resources, connects them to
networks, receives details of allocated resources and releases resources in the
target PoP.

¶ Network Management: This component manages virtualized resource related
to the network domain. It creates and deletes network in the target PoP.

¶ Runtime Management: This component is responsible for managing runtime
operations (e.g. download/upload files, execute commands, etc.) for already
allocated virtual ressources.

¶ Package Management: This component is in charge of handling packages (e.g.
docker-compose, ansible, etc.) and forwards it to the corresponding adapters.
The packages contain virtualization technology-specific templates.

¶ Placement Management: This component is in charge of the placement of
virtual resources in case no specific PoP is selected where the virtual resources
have to be deployed.

¶ Worker Management: This component takes care of the installation and
configuration of new workers added at runtime to the EPM as potential PoPs.
Certain scripts are provided which will install and setup the needed artifacts so
that the Worker is ready to be used as a PoP.

EPM Adapter: An EPM Adapter provides an abstracted way to interact with any kind of
cloud environment. The northbound interface is exposed to the Core and abstracted in
such a way, that the Core do not need to take care about the type of the target cloud
environment. The southbound interface is dependent on the type of cloud
environment under consideration. This allows an easy way to provide any kind of cloud
environment by providing an adapter without changing anything in the core. The PoP
Adapter takes also care about the configuration of logging and monitoring of the
virtualized resources by receiving that information by the Core component.

4.1.3.1 Use Cases & Sequence Diagrams

This section presents three main use cases with the help of sequence diagrams. Those
use cases are the Step-by-Step Deployment where the consumer describes the virtual
resources to be deployed by the EPM by using the internal data model or TOSCA
language, the All-in-one Package deployment where the consumer can reuse existing
templates from certain cloud infrastructure technologies (e.g. docker-compose,
Ansible) and the Worker registration and configuration where the consumer can add
new machines at runtime which can be used for virtual deployments later.

4.1.3.1.1 #1 Step-by-Step Deployment

This scenario depicts the workflow for allocating virtual resources based on the
definition using the internal information model, so called resources groups. This

D3.1 ElasTest Platform Cloud Modules v1

27

approach follows the assumption that the consumer can define the requirements in a
uniformed format so that it is agnostic to the actual cloud environment where virtual
resource shall be allocated. This allows the user to use the same definition to be used
for various cloud infrastructures. To be aligned with the adapter approach, the EPM
will generate a package containing that information with an additional metadata file
that will be passed to the corresponding EPM Adapter. The EPM Adapter extracts the
required information from the package and initiates the step-by-step deployment
starting with setting up the networking before allocating the virtual compute
resources. The adapter populates the resource group with deployment information
and returns it to the EPM which is then returned to the initial consumer.

 Figure 4. EPM: Deployment of a Resource Group

4.1.3.1.2 #2 All-in-one Package deployment

The sequence diagram below shows the workflow for the All-in-one Package
deployment. This was designed in order to give the consumer of the EPM the freedom
to use pre-existing templates without translating the requirements to the internal
information model of the EPM. The consumer has to generate a package in advance
which contains basically a metadata file (containing meta information, such as, the
name of the service and the type of PoP) and the actual template (or several files) to
be used for the deployment. Once the package is received by the EPM, the EPM will
extract required information from the metadata file and forward the package to the
corresponding adapter which takes care to trigger the deployment with the actual
template file. Once the deployment has finished and the adapter received the

D3.1 ElasTest Platform Cloud Modules v1

28

infrastructure-depended information, the EPM adapter translates those to the internal
information model of the EPM and returns it to the consumer via the EPM.

Figure 5. EPM: Deployment of a Package

4.1.3.1.3 #3 Worker registration and configuration

The sequence diagram below depicts the workflow of the worker registration and
configuration. This feature has been designed in order to give the consumer the ability
to register new machines (physical or virtual) on demand, basically, to provide more
computation power if needed. Hence, the user needs to provide a key which allows
the EPM to access those machines via SSH in order to install and configure the
required artifacts. Once the key is available the user can register a new worker
providing the IP so that the EPM can execute the installation and configuration steps.
As shown in the sequence diagram, the EPM can optionally configure the monitoring
agent to get monitored by the EMP. In the second step the EPM issues certain
installation and configuration steps via ssh depending on the defined type (e.g. Docker,
docker-compose, Ansible) of the worker. Once the required artifacts are installed, the
EPM ensures to have this new worker ready to be used which requires the registration
as a new PoP and optionally the configuration of adapters (e.g. for docker-compose).
Finally, the consumer gets returned the information of this request.

D3.1 ElasTest Platform Cloud Modules v1

29

Figure 6. EPM: Registration and Configuration of a new worker

4.1.3.2 Data Model

Figure 8 shows the data model exposed to the consumer of the EPM where those
entities can be retrieved and managed via the APIs that are described in the section
below.

Figure 7. EPM: Data Model

D3.1 ElasTest Platform Cloud Modules v1

30

4.1.3.2.1 Adapter

An adapter is the intermediate component between the EPM and the cloud
infrastructure technology. Basically, the EPM forwards deployment and management
request to the adapter whereas the adapter translates those requests to the cloud
technology-dependent commands. It follows a plug-in approach which allows the
maintainer of the EPM to plug-in new adapters at any point in time without
reconfiguring or even touching the EPM itself. Developing new adapters can also be
done without changing the source code of the EPM.
Table 1. EPM: Adapter Data Model

Name Description Schema

endpoint
required

The endpoint where the Adapter is reachable.

Example : "localhost:50052"

string

id optional Identifier for the Adapter. string

type required The type of virtualization technology, that the adapter is
designed to connect to.

Example : "docker - compose"

string

4.1.3.2.2 Event

An event contains certain life cycle information of the VDU at a specific time.

Table 2. EPM: Event Data Model

Name Description Schema

description

required

Example : "testEvent1" string

id

optional

Example : "1234 - abcd" string

timestamp

required

The recorded time of the Event. string
(string)

4.1.3.2.3 Key

A private key for executing commands on a worker.

Table 3. EPM: Key Data Model

Name Description Schema

id

optional

The identifier of the Key string

key

required

This is the key itself as String. string

D3.1 ElasTest Platform Cloud Modules v1

31

name

required

The name of the key. This will be used for referencing the Key
in a Worker.

Example : "key1"

string

4.1.3.2.4 KeyValuePair

This entity is a Key-Value pair for storing metadata contained in other entities.

Table 4. EPM: KeyValuePair Data Model

Name Description Schema

id

optional

Example : "1234 - abcd" string

key

required

Example : "testKey1" string

value

required

Example : "testValue1" string

4.1.3.2.5 Network

This entity defines the network connectivity and details where the VDUs are connected
to.

Table 5. EPM: Network Data Model

Name Description Schema

cidr

required

Example : "192.168.1.1/24" string

id

optional

The identifier of the Network in the EPM.

Example : "1234 - abcd"

string

name

required

The name of the network, this should correspond to the name
of the network in the virtualization technology.

Example : "testNetwork1"

string

networkId

required

The id of the Network in the virtualization technology.

Example : "1234 - abcd"

string

poPName

required

The PoP where the Network was created. string

4.1.3.2.6 PoP

This entity contains information about the Point-of-Presence (PoP)

Table 6. EPM: PoP Data Model

D3.1 ElasTest Platform Cloud Modules v1

32

Name Description Schema

accessInfo

required

Authentication credentials for accessing the PoP. Examples may
include those to support different authentication schemes, e.g.
OAuth, Token, etc.

<KeyValueP
air> array

id

optional

Identifier of the PoP string

interfaceEnd
point

required

Information about the interface endpoint. An example is a URL.

Example : "localhost"

string

interfaceInfo

required

Information about the interface(s) to the PoP, including PoP
provider type, API version, and protocol type.

Example :
"[{"key": "type","value":&qu
ot;docker"}]"

<KeyValueP
air> array

name

required

Human-readable identifier of this PoP information element

Example : "testPoPName"

string

status

optional

Representing the status of a PoP (INACTIVE, CONFIGURE,
ACTIVE)

enum
(configure
, active,
inactive)

4.1.3.2.7 ResourceGroup

A Resource Group defines a bundle of VDUs and virtual networks which belongs
together. It includes also the Point-of-Presences (PoP) where the virtual resources
have to be allocated.

Table 7. EPM: ResourceGroup Data Model

Name Description Schema

id

optional

The identifier of the Resource Group in the EPM. string

name

required

The name of the Resource Group.

Example : "testResourceGroupName1"

string

networks

optional

The Networks in the Resource Group. <Network>
array

vdus

required

The VDUs of which this Resource Group consists of. <VDU> array

D3.1 ElasTest Platform Cloud Modules v1

33

4.1.3.2.8 VDU

A Virtual Deployment Unit (VDU) describes the capabilities of virtualized computing
(Containers, VMs) and networking resources.

Table 8. EPM: VDU Data Model

Name Description Schema

computeId

required

The identifier of the deployed VDU in the virtualization
technology.

string

events

optional

A list of events recorded for this VDU. < Event >
array

id

optional

The identifier of the VDU in the EPM. string

imageName

required

The name of the image used for the VDU.

Example : "testImage1"

string

ip

required

The IP assigned to the VDU.

Example : "172.0.0.1"

string

metadata

optional

More detailed information about the VDU in a Key-Value
pair format.

<KeyValuePair>
array

name

required

The name of the VDU.

Example : "testVdu1"

string

netName

required

The name of the network to which the VDU is associated
with.

Example : "testNetworkName"

string

poPName

required

The name of the PoP where the VDU is deployed. string

status

optional

The status of the virtualized compute resource. enum
(initializing,
initialized,
deploying,
deployed,
running,
undeploying,
undeployed,
error)

4.1.3.2.9 Worker

A worker object for registering a machine where adapters can be deployed.

https://github.com/elastest/elastest-platform-manager/blob/master/docs/api/definitions.md#event
https://github.com/elastest/elastest-platform-manager/blob/master/docs/api/definitions.md#keyvaluepair

D3.1 ElasTest Platform Cloud Modules v1

34

Table 9. EPM: Worker Data Model

Name Description Schema

epmIp

required

This is the IP where the EPM is reachable for the Worker.
This is needed because the Worker has to be able to reach
the EPM for registering adapters.

string

id

optional

Identifier for the Adapter. string

ip

required

The IP where the Worker is reachable. The EPM will try to
ssh in to the Worker at this IP.

string

keyname

required

The name of the Key, which the EPM will use for ssh in to the
Worker. This refers to the name provided when uploading the
Key to the EPM.

Example : "key1"

string

passphrase

required

This is the Passphrase of the Key provided for connecting to
the Worker.

string

password

optional

This is the password of the user, which can be left blank if no
password is needed.

string

user

required

This is the user, which the EPM will use when trying to ssh in
to the Worker.

Example : "ubuntu"

string

4.1.4 Roadmap and Features

The following table gives an overview of the main features which shall be satisfied by
the EPM.

Table 10. EPM: RoadMap & Features

Feature Description

Allocation of
compute resources

Allocate compute resources in the target cloud environment
based on the requirements.

Termination of
compute resources

 Release compute resources in the target cloud environment

Creation/Deletion of
network resources

Create/delete network resources in the target
cloud environment

Forwarding logs Compute resources/cloud environment have to be configured to
forward logs of running instances to the appropriate location

Forwarding metrics Compute resources/cloud environment have to be configured
to forward measurement results of running instances to the

D3.1 ElasTest Platform Cloud Modules v1

35

appropriate location

Retrieval of resource
information

 External entities should be able to request information of the
allocated resources

Instance
management
operations

EPM must be able to execute operations such as executing
commands inside the instances and downloading/uploading
files so that the consumer of the EPM has full flexibility of
accessing and interact with the virtualized instances

Instance lifecycle
operations

 EPM must be able to execute lifecycle operations such as
start/stop, remove instances and retrieving information of the
instance at runtime so that the consumer of the EPM has full
flexibility of executing lifecycle operations with the virtualized
instances for a proper management at runtime

Platform Elasticity Elasticity must be provided by the EPM so that either other
ElasTest components can be scaled dynamically or the
virtualized resources requested by other ElasTest components
themselves

Management of
external machines

 EPM must be able to manage external machines which are not
deployed by the EPM itself so that the EPM can manage those
machines in order to integrate them as workers into the ElasTest
platform

4.1.4.1 EPM adapters

Hereafter it is given an overview of available adapters.

¶ Docker Adapter: The Docker adapter is used to launch Docker containers. To
describe the Docker instances the EPM and the Docker Adapter use an internal
model called a Resource Group. The Resource group describes Docker
containers and the networks connecting them. The Resource Group is
packaged together with a metadata file which provides specific information
relevant for the EPM and the Virtual Infrastructure which in this case is Docker.
The Docker Adapter connects to Docker through the remote API, which means
that it has a One-to-Many relationship with Docker. The Docker SDK also is
used to execute runtime operations.

¶ Docker-compose Adapter: The docker-compose Adapter is used to launch
docker-compose files. The docker-compose file is passed along with an
additional Metadata file in a package. Due to the fact, that Docker-Compose
does not expose an external API, the Adapter must be launched in the same
Machine, where also docker-compose is installed. This means that the Adapter
has a One-to-One relationship with the virtualization technology. The runtime
operations are executed using the Docker SDK.

¶ Ansible Adapter: The Ansible Adapter is used to launch OpenStack instances
using Ansible. An AƴǎƛōƭŜ άǇƭŀȅέ ŦƛƭŜ ƛǎ ǇŀǎǎŜŘ ŀƭƻƴƎ ǿƛǘƘ ŀƴ ŀŘŘƛǘƛƻƴŀƭ
Metadata file in a package. The adapter then uses the Ansible SDK to launch

D3.1 ElasTest Platform Cloud Modules v1

36

ǘƘŜ άǇƭŀȅέΦ ¢ƘŜ !ƴǎƛōƭŜ !ŘŀǇǘŜǊ Ŏŀƴ ŎƻƴƴŜŎǘ ǘƻ hǇŜƴ{ǘŀŎƪ ƛƴǎǘŀƴŎŜǎ ǊŜƳƻǘŜƭȅΣ
which means that it has an One-to-Many relationship with the virtualization
technology. The runtime operations are executed using SSH.

4.1.4.2 Software Development Kits (SDKs)

¶ Java SDK: The Java SDK makes it possible for integration with the EPM in Java. It
supports all the above mentioned API calls.

¶ Python SDK: The Python SDK makes it possible for integration with the EPM in
Python. It supports all the above mentioned API calls and is also available in the
Python Package Index (pypi).

4.1.4.3 Roadmap

The overall goal in the upcoming release can be splitted in 3 areas:

¶ Extending platform support for other cloud infrastructure technologies: Based
on the requirements of other ElasTest components, use cases and the
demonstrators, the EPM is going to extend the current set of available EPM
Adapters to enable deployments and runtime management for those
technologies (OpenStack/Heat, AWS/CloudFormation30, Aria, Kubernetes31)

¶ Stabilize and improve the platform support for other operating systems: The
EPM itself and also the support for workers shall be capable to support
Windows and Mac Workers as well.

¶ Placement algorithms for automated orchestration: As one of the research
items it is foreseen to provide placement algorithms based on several
parameters. This is used to deploy the virtual resources in appropriate places
which can be defined by users to allow the best allocation of resources.
Automated Orchestration is already provided but uses round-robin to select
the target infrastructure whereas this can be improved by designing algorithms
taking into consideration the current location of PoPs, available CPU or
memory, or other parameters.

4.1.4.4 Code Reports

In ElasTest, EPM has been integrated with the CI system that uses Jenkins for
automated tests and builds after every commit. For calculating the code coverage the
EPM is integrated with Codecov.io.

4.1.4.5 Code Repository

The EPM code repository can be found on GitHub32 and is licensed using Apache 2.0
[3]. Within that repository, there is documentation detailing how to run, use and
extend the EPM.

30

 Cloud Formation, https://aws.amazon.com/es/cloudformation/
31

 Kubernetes, https://kubernetes.io/
32

 EPM GitHub, https://github.com/elastest/elastest-platform-manager

https://aws.amazon.com/es/cloudformation/
https://kubernetes.io/
https://github.com/elastest/elastest-service-manager

D3.1 ElasTest Platform Cloud Modules v1

37

4.1.4.6 APIs

In the figures below it can be found the APIs exposed by the EPM. Those APIs are
basically consumed by the users of the EPM (e.g. TORM, ESM) which are designed
for the requirements coming from the other ElasTest components. They are using
the OpenAPI Specifications (OAS)33 which is a standard, programming-agnostic
interface description for REST APIs which was agreed on and is used ElasTest
platform wide to. Thanks to OAS, it allows the generation of the API description
and was also used to generate the SDKs for python and Java.

Figure 8. EPM API: Package

Figure 9. EPM API: Network

Figure 10. EPM API: Adapter

33

 OpenAPI Initiative, https://www.openapis.org/

https://www.openapis.org/

D3.1 ElasTest Platform Cloud Modules v1

38

Figure 11. EPM API: PoP

Figure 12. EPM API: ResourceGroup

Figure 13. EPM API: TOSCA

D3.1 ElasTest Platform Cloud Modules v1

39

Figure 14. EPM API: Runtime

Figure 15. EPM API: Key and Worker

D3.1 ElasTest Platform Cloud Modules v1

40

4.1.5 Research Results and Future Plans

¶ Customized orchestration solution for testing environments with advanced
functionalities such as runtime operations

¶ Provider vendor lock-in

¶ Integration of several cloud environments for Multi-provider support

¶ Placement of virtual resources

4.2 ElasTest Monitoring Platform (EMP)

4.2.1 Introduction

From the DoA [1], the scope of ElasTest Monitoring Platform (EMP) is captured in
these sentences -

ά
ElasTest is a complex software itself and it needs to be monitored for different purposes
including problem diagnose, resource utilization tracking, energy consumption
tracking, cost tracking, etc. This subtask shall take the responsibility of creating the
appropriate monitoring tools, GUIs and APIs enabling:

To recover in a seamless way information related to the runtime execution of the
different ElasTest components including logs, internal status, resource utilization, etc.
These capabilities shall enable the diagnosis and isolation of problems taking place
inside ElasTest logic.

To collect and expose through an API the appropriate monitoring information related
to resource utilization of the cloud resources consumed by the testing activities (e.g.
TJobs instances, Test Support Service instances, etc.) This information shall include cost
consumption, energy consumption, memory consumption, CPU consumption, etc. This
information shall be made available through a northbound interface to the TORM so
that the appropriate engines (see Task 4.4) can consume them.

To enable the instrumentation of the cloud resources consumed by the testing activities
so that testers shall be able to inspect the status of the different TJob instances and
Service instances, recover logs from them and control their lifecycle (e.g. stopping
them).

To develop a toolbox enabling the installation and management of all such capabilities
in ElasTest.

έ
The above snippet captures the minimal set of functionalities needed for ElasTest but
in a true spirit of R&D, a few additional requirements were included as part of scope of
work to advance the state of the art. Deliverable D2.3 lists the requirements and high
level architecture for EMP. In this section we will delve in depth into EMP, see detailed
architecture, interaction diagrams, and current development status and roadmap for
the remaining duration of the project.

The basis design philosophy behind EMP is quite simple. EMP supports creation of
monitoring spaces. A monitoring space can be thought to be a collection of relevant
metric streams belonging to either a complex system being monitored, or a set of

D3.1 ElasTest Platform Cloud Modules v1

41

related microservices. Within a monitoring space, multiple metric series coexist. A
series can be thought of collection of metrics stream from the single agent. An agent
can be configured to handle log from a microservice, or host metrics, or a single docker
container stats.

The design philosophy can be described succinctly by Figure 1. Series is marked in the
following figure as subspace. Internally, the codeword for EMP implementation is
Sentinel, therefore in the later sections; any reference to Sentinel in the images should
be interpreted as EMP.

Figure 16. EMP design philoshophy, subspace is synonymous to metrics stream described in the text

4.2.2 Baseline Concepts and Technologies

EMP framework has been implemented in Java and has been packaged as Docker
image which facilitates the deployment on a single machine or over a cluster of nodes
in a relatively straightforward manner. The principal functions of any monitoring
platform are -

¶ Enable metrics collection, and retention

¶ Allow information retrieval for analysis

¶ Condition based alerts and alarming functionality

In order to support high volume metrics and log streams, Apache Kafka34 was chosen
for the messaging subsystem for the following reasons:

¶ Fast delivery at scale

¶ Horizontally scalable even across multiple datacentres

¶ Easy programmability

¶ Supports multi-tenancy, geo replication

¶ Topic centric distribution with message containing keys is naturally aligned with
9atΩǎ ƴƻǘƛƻƴ ƻŦ ǎǇŀŎŜǎ ŀƴŘ ǎǳōǎǇŀŎŜǎ όǎŜǊƛŜǎύΦ

¶ Built in resilience, coordination, among other desirable qualities

¶ Flexibility is use as queuing, messaging system, storage or streaming platform.

¶ Large and active community

34

 Apache Kafka: https://kafka.apache.org/intro [accessed: 2018-05-23]

https://kafka.apache.org/intro

D3.1 ElasTest Platform Cloud Modules v1

42

The AAA is handled internally at the moment, but in the near future, use of Keystone is
anticipated as a replacement AAA system for use in EMP.

The persistence is supported by relational as well as time series optimized database.
For static, account related data, file based sqlite is used as a lightweight relational
database. For metric and log streams, InfluxDB35 is used as it implements time based
sharding as well as allows downsampling policies for older data. Figure 2 shows the
catalogue of all relevant technologies that have been used in EMP at the time of
writing of this document.

Figure 17. Technology landscap in EMP

For visualization, Grafana36 has been used as it has a proven integration with InfluxDB
and allows charting of key metrics collected in EMP a relatively straightforward task.

A few EMP agents have been developed and packaged as docker images to facilitate
the metrics collection and transmission into EMP. The agents have been developed in
Python3 to keep memory footprint lower and also demonstrate independence of
language for development of agents. In the current release, the following agents have
been developed:

¶ System stats collector

¶ Docker stats collector

35

 Influx Data, https://www.influxdata.com/
36

 Grafana, https://grafana.com/

https://www.influxdata.com/
https://grafana.com/

D3.1 ElasTest Platform Cloud Modules v1

43

¶ Log file parser, tokenizer and transmission agent (limited to log4j formatted log
files from Java applications).

4.2.3 Component Design and Architecture

A high level EMP architecture is included in D.2.3. [5] along with module descriptions.
Here we present a more detailed version of the same, see Figure 19.

Figure 18. FMC diagram showing detailed EMP components

As can be seen in the figure, the data is gathered by agents (log parsers, system
performance metrics collectors, etc) which are low profile, tiny processes running is
target environment to be monitored and either periodically or on change detection
gathers relevant data, pre-processes packages sending them as a stream to EMP. The
user can use the Management API to create monitoring spaces and series as well as
manage alert rules. The framework has authorization built in and enforces through
Authentication and Authorization module and the data in motion is over industry
grade TLS/SSL connection.

The alarms are stored in the Alarm Registry. The alarm definition which is a well
formed mathematical expression is evaluated using recent values of corresponding
metrics or series of cached recent past data values of a metric through the Online
expression solver. The data ingestion interface in the initial prototype is Kafka and
adding support for RabbitMQ37 is planned. The framework is capable of using several
persistence stores and the interactions are done via the Persistence drivers as shown
in Figure 2 above. The query interface enables users to perform interesting analytics
with the stored data which will enable easy debugging of large scale distributed

37

 RabbitMQ, https://www.rabbitmq.com/

https://www.rabbitmq.com/

