Version 1.0

Author ATOS

Dissemination PU

Elas

Status FINAL

D3.1 ElasTest Platform Cloud Modules v.1

Project title

ElasTest: an elastic platform for testing complex distributed
large software systems

Project duration

01-01-2017 to 31-12-2019

Project type H2020-ICT-2016-1. Software Technologies
Project reference 731535

Project website http://elastest.eu/

Work package WP3

WP leader ATOS

Deliverable nature Report

Lead editor Enric Pages

Planned delivery date 30-06-2108

Actual delivery date 29-06-2108

Keywords

Open source software, cloud computing, software
engineering, operating systems, computer languages,
software design & development

Funded by the European Union

http://elastest.eu/

D3.1 ElasTest Platform Cloud Modules v1 C’_\) ElaS

License

This is a public deliverable that is provided to the community under a Creative
Commons Attribution-ShareAlike 4.0 International License:

http://creativecommons.org/licenses/by-sa/4.0/

You are free to:
Share — copy and redistribute the material in any medium or format.

Adapt — remix, transform, and build upon the material for any purpose, even
commercially.

The licensor cannot revoke these freedoms as long as you follow the license
terms.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license,
and indicate if changes were made. You may do so in any reasonable manner,
but not in any way that suggests the licensor endorses you or your use.

ShareAlike — If you remix, transform, or build upon the material, you must
distribute your contributions under the same license as the original.

No additional restrictions — You may not apply legal terms or technological
measures that legally restrict others from doing anything the license permits.

Notices:

You do not have to comply with the license for elements of the material in the
public domain or where your use is permitted by an applicable exception or
limitation.

No warranties are given. The license may not give you all of the permissions
necessary for your intended use. For example, other rights such as publicity,
privacy, or moral rights may limit how you use the material.

For a full description of the license legal terms, please refer to:

http://creativecommons.org/licenses/by-sa/4.0/legalcode

@O0

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/legalcode

D3.1 ElasTest Platform Cloud Modules v1

Contributors

&7 Elas

Enric Pages ATOS
David Rojo ATOS
Michael Pauls TUB
Piyuhs Harsh ZHAW
Andy Edmonds ZHAW
Micael Gallego URIC
Nick Stavros RELATIONAL
Version history

0.1 02/05/2018 E.Pages ToC
0.2 11/05/2018 ALL Initial contributions
0.3 30/05/2018 M. Pauls Extended EPM parts
0.3 30/05/2018 A. Edmonds ESM contributions
0.3 30/05/2018 P. Harsh EPM contributions
0.3 30/05/2018 D. Rojo EIM contributions
0.4 30/05/2018 M. Gallego TORM scope review
0.4 30/05/2018 E. Pages Integration
0.5 01/06/2018 All Review
0.6 01/06/2018 E. Pages Initial version Quality Review Process
0.7 06/06/2018 M. Gallego, M. Added content to “Challenges to

Pauls, A. Overcome” section

Edmonds
0.8 14/06/2018 P. Harsh Clarified and expanded the role of EMP

supporting various challenges identified
within this document.

0.8 14/06/2018 N. Stavros EDM contributions
0.9 20/06/2018 E. Pages Integrated version addressing comments

1.0 27/06/2018 E. Pages

Final version ready for submission

D3.1 ElasTest Platform Cloud Modules v1 C’_\) ElaS

Table of contents

1 EXECULIVE SUMMAIY ..cicuiiiiiniiiiiniiieniiineeieneieiensisisnessnsisisssssssssessnssessnssssanssssnnsss 13
P 2N 1414 oY [T T 4] 4 PN 13
2.1 OVErview and ODjJECLIVESuuiiiiiiiiee ittt e s e e s sbee e e s sbee e e s sbeeeeesan 13
2.2 Structure of the DOCUMENTuiiiiiiie et e e s rae e e s snaee s 14
2.3 LI L LS A YU Lo 1= ol PSPPSR 14
3 ElasTest Cloud Modulesccccccuiiiiniiimeiiiiniiieniiiiniiieiesisssse 14
31 L Yo] o F- | LU RPRPN 14
3.2 (0} (=Y=Jo] 4 [T ST PP UPPURPPPTOPPPPO 15
33 00T [0 o -1 ISP 15
3.4 ChalleNges tO OVEICOMIEuviiieictieee ettt et e ettt e e e st e e e e sbaeeeesbeaeessbeeeessseeeaeanns 16
3.4.1 ElasTest Functional CoOmPoNENtS/SEIVICEScceevreeireeieeeireeireenteesteeseesresreeereesreesreesanes 17
3.4.2 ElasTest Non-functional ASPECES........ueieeciiiiiiiiiieeciiee e e e 19
4 Platform Management and MoNitoringcccccceiiiireniiiiieniiinienncennennnceeneennnns 22
4.1 ElasTest Platform Manager (EPM)c.ueeciie ettt et e ettt 22
I A [o o Yo [e Yo PSPPSR 22
4.1.2 Baseline Concepts and TECANOIOGIEScuveeiieiiiieieiee e e 23
4.1.3 Component Design and Archit@CtUre...........ooeeciieiieeiiee e e 24
4.1.4 RoaAdmMap and FEATUIESueeiiiiieeecceee ettt et tee e e e tee e e e ebee e e e tee e e earaeeeenrees 34
4.1.5 Research Results and FULUIE Planscoccveieiiiiiie i ettt 40
4.2 ElasTest Monitoring Platform (EMP).......cccuvei ittt et 40
0 R [o o Yo [T o Yo RO U 40
4.2.2 Baseline Concepts and TECANOIOGIESccuvveieiiiieiieeee e e 41
4.2.3 Component Design and Archit@CtUre...........ooeeeviiiieciiee e e 43
4.2.4 RoAdMaP aNd FEAUIES ..eeiiiiiiieiiiiieee e ecctttre e e e e e ee et e e e e e e e s eatbre e e e e e e s essnnnraeeeeeaeesnnnnens 48
4.2.5 Research Results and FULUIe PIansccooiiiiiiiiiiienieceiecsiee ettt 56
4.2.6 ElasTest Monitoring Platform Integration within ElasTestcccceecveviiiceeicciee e, 56
5 Service Lifecycle Managementccccoieeiiiimiiiiniinieicnininieenenennenenssesensessnssenes 57
5.1 ElasTest Service Manager (ESM)ui e ettt ettt e saae s e e aae e s ree e 57
5.0.1 INErOTUCTION ittt ettt st e st e s bt e e sabeesneeesabeesnnes 57
5.1.2 Baseline Concepts and TEChNOIOGIESc.uveeiiiiiieieiiiee e 58
5.1.3 Component Design and Archit@CtUre......cuueiiiiiiiei i 62
5.1.4 R0oadmap and FEAtUIESeiiviiiieeeiiiie ettt e e e ree e e bee e e st e e e s abae e e e nrees 66
5.1.5 Research Results and FULUre Planscoocieoiiiiiiiniiieniee ettt 71
I VI I 1Y/ F= T4 F= == 4 U= o | 72
6.1 ElasTest Instrumentation Manager (EIM) & Instrumentation Agents..........ccccveeeuvennee. 72
20 0 R [o Yo [T o1 4 [o RSP STR 72
6.1.2 Baseline Concepts and TEChNOIOGIEScuuveeiiiiiieiciieee e 73
6.1.3 Component Design and Archit@CtUre......ccuuieiiiiiiiiiiiee e 74
6.1.4 RoAAMAP ANA FEALUIES ..ottt e e e e et e e e e e e e e b e e e e e e e e e e s nnreanees 77
6.1.5 Research Results and FUtUre PIansoooveiii it e 82
7 Data Persistence Management........cccceeereerenerenerencreecrenernsernsernseresesensssnssennes 83
7.1 ElasTest Data Manager (EDIM)cocccuiieeieiiee ettt ettt e erae e e aae e e et e e e e 83
7% R 1o o Yo ¥ ot o Y o USSR 83
7.1.2 Baseline Concepts and TEChNOIOZIESuevieeiiieciiieiee e 83
7.1.3 Component Design and Archit@CtUre.........ooveiii et 84

D3.1 ElasTest Platform Cloud Modules v1 C.’J EIaS

7.1.4 R0oAdmap and FEATUIESoeieiiiieeeiiiie ettt et e et e e e e e e e e et ee e s e atae e s earaeeeenrees 85
< I T4 Yol [T T T3 87
L B 0= == o Vol 88
10 APPENAIX cieeiiiiieiiiiniiiiniiiieniiiieiiieniiineiertniersnsisisnsssnsisssssssssssessnssersnssssanssssnnans 89
10.1 ElasTest Service Manager Sequence DiagramsS........cveecueeeeriiieeesiieeeeessieeeessseeeessneeees 89
10.1.1 ServiceConsumer SEqUENCE DIaBramsS.......uuuiiiiieeieeereeeeeeeeeeererereeererererererermrermm.. 89
10.1.2 ServiceProvider SEqUENCE DIiagramsS.........ceeecueieeiiiieeeeeiiieeeeiieeeeesteeeeeesreeessasseeesssseees 92

D3.1 ElasTest Platform Cloud Modules v1 C’_\) ElaS

List of Figures

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10

Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.

ElasTest Agile Management MethodOoIOgYccuveiiiiiieieiiie e e 15
WP3 Cloud Components ROAAMAPceeeiurieeeiiiieieiieeecireeeestireeeeeeeeestseeeesstaeesesseeessseseesssseenanes 16
Flow of interactions between ElasTest servicesccccceeereerueenne. iError! Marcador no definido.
Architectural OVerview Of EPIMcooiiiiiiiiieie ettt ettt 25
EPM: Deployment of @ RESOUINCE GrOUPueiiuiieiiieiniiieniieeiieesitee sttt et st e sateesbeesabeesbeesareenas 27
EPM: Deployment of @ PACKage........ueiiuiiiiieiiiieiieet ettt st 28
EPM: Registration and Configuration of @ New WOrkerccceeeiiiiiiiniiiiiiene e 29
EPM: Data MOGEL.....eoiiiiiiieiie ettt sreeae e 29
EPIVI APL: PACKAEE . .uvveieiiiiee ettt ettt ettt e e ettt e e ettt e e e st e e e e ataa e e stte e e e ataeesesstaeesasaaaeaantaeseenssneessseaann 37
c EPIEAPE INEEWOIK .ottt ettt et ettt st st saeesbeenbeeneenes 37

EPIME AP AQ@PTET ..ttt ettt ettt ettt ettt ettt e ae e s bt e bb e e bt e bt e e be e e saseesbeeesaneenaeeas 37
EPIVI APLI POP ettt ettt et e sa e e bt e sat e s bt e bt e e bt e e bt e s be e e sanesbeeesnneebeees 38
EPM API: RESOUFCEGIOUP .coiiiiiiiiiee ittt ettt e e e s rar e e e e s snnraee e 38
EPIVI AP TOSCA ...ttt ettt ettt ettt et ettt et e e bt e sat e e bt e e bt e e be e e ssbe e bt e e saneenbeeesaneenneees 38
EPIM APL: RUNTIME. ..ottt 39
EPM APL: KEY @Nd WOTKE ...ttt ettt e et e e e e ate e e e eaaae e st e e e eara e e e eanas 39

EMP design philoshophy, subspace is synonymous to metrics stream described in the text...41

Figure 18. Technology 1andscap iN EIMPuiiiiiiieeeiiiee ettt e st eette e e stae e e eata e e s eabaeeesabaeeeestaeeennees 42
Figure 19. FMC diagram showing detailed EMP COMPONENTS.......cceeviiiiiriiereiiieeeeiieeeeeeeeeesveeeeeereeesnees 43
Figure 20. Sequence diagram showing user registration and monitoring space management................. 45
Figure 21. Sequence diagram showing metrics streams and data workflow through Sentinel 46
Figure 22. alert management and execution WOrkflOWcccuiiiiiiiiiiciiic e 47
Figure 23. data visualisation sequence with Grafana and Sentinel...........ccccccooviieeciiii e, 47
Figure 24. User qUEry WOTKFIOWooi ittt et e et e e e et e e e e eata e e e sabbeeeeataeeeennes 48
FIgUre 25. EIMP GUI LOGIN SCIEEN...uuuuitiiiiiertitttteretereteteteserstetesereseteetteeeeeteteeeteteeete.................—.—.—... 49
Figure 26. EMP overview page, showing spaces, health checks and any activity alertscccccceevvennen. 50
Figure 27. EMP Space ManagemeENt PAEEuueeieeiieriuiiieieeeieiiiiireteeesessstareeesesssssrsrteesessssssssseesesssnsssssseeses 50
Figure 28. EMP series management (within a given Space) Pageccccevecveeeeviieeeeciee e 51
Figure 29. EMP — recent data POiNt iN @ SEIIESc.ueeeeciiiieeeiee e ciiee e ettt e eeere e sre e e e sere e e s sneaeeesnreeesnnsaeeennnees 51
Figure 30. EMP embedded data visualisation Pagecceeeeiiiiiiiiee e 52
Figure 31. EMP health-check Management PAge.......ueviii it 52
Figure 32. ElasTest Cl dashboard for EMP test & build pipelingccccvvvvieiiiiiicii e, 53
Figure 33. EMP code coverage graph [accessed: 2018-05-24]ccccceeeecreeeriieeeeiieeeeseeeeesnreeseseeeeesnees 53
Figure 34. OpenAPI specification of EMP REST APIs, Swagger renderingccccceecveveeeceveeescieeesseeee e 54
Figure 35. Expanded descriptions, methods, status codes for EMP APIS.........cccceeviiveieceeeesciee e 55
Figure 36. EMP visualisation pane tracking ElasTest Platform core modulescccceeevieeivcieeeecieee e, 57

6

file:///C:/Projects/ELASTEST/WPs/WP3/Deliverables/D3.1/Integrated/Reviewed/Final/ElasTest_Public_Deliverable_3-1_Final-v4.docx%23_Toc517864240

D3.1 ElasTest Platform Cloud Modules v1 C.,_\) ElaS

Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.
Figure 48.
Figure 49.
Figure 50.
Figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.
Figure 56.
Figure 57.
Figure 58.
Figure 59.
Figure 60.
Figure 61.
Figure 62.
Figure 63.
Figure 64.
Figure 65.
Figure 66.
Figure 67.
Figure 68.
Figure 69.
Figure 70.
Figure 71.
Figure 72.
Figure 73.

Open Service Broker APl (OSBA) OVEIVIEWeecveeiiieeireeiiieeireesteessseesteeessesssessnsessssessssessnnes 59
ESIM Data IMOTE] ...ttt ettt ettt et sne e s ane e nnee s 61
ESM FIMIC DI@ZIam ...ceeiiiiieiiitiee ittt ettt st s e s e et s e e e s sna e e s e snaeesnnaes 62
ESIM LITECYCIR ettt ettt ettt e bt e s bt e san e e be e e saneenee s 64
ESM: A listing of services available in the Service Catalogcccceecvveeeeiiiie e 67
ESIME AQG SEIVICE ..ttt e e sttt et eb e sb e b e neenesanesanes 67
ESM: Onboarding @ NEW SEIVICE TYPE ..uueeeeiuriieceieie e ciieeeetteeeeetre e e streeeeata e e ssaaaeeesnreeeessaeesnnnnes 68
ESM: Viewing a Serice INtance DetailS........ccuviiiciier ettt ervee e e 68
ESM Code COVErage OVEI TiME....uiiiuieiiiieiiteeiet ettt et ettt s bttt e s bt e sabe s b e sanesbeeesnneenee s 69
ESIM: The Catalog APl ettt ettt ettt e sbe e s be e e sane e sbee e saneenaeees 70
ESM: API Related to Service INSTANCESc.coovueiiiieiiiieieeiet ettt 71
EIM FIMIC DiI@Bram cccccieiiiiiiiiiiiiiiieieieeeieeeeeeeeeeeeeeeeeeeeseeeeeeeeeeseesessseseeseseeesssesessssssssssesesesesessseseserenen 75
Instrumentation Manager & Agents technology Map........cccoeccieeiiiie e 77
Instrumenting SuUT from ElasTest dashboardccccueeeeiiiiiiciiie e e 78
Install and configure agents 0N reMOTE SUTc.uuiiiiiiieieiiie et e e e aa e e 78
SeleCt KPIS t0 MONITOT coutiiiiiiiiii ettt ettt et e st sab e e saneesabeesaneesas 79
Metrics visualisation within the ElasTest dashbaordcccceoviiiiiiniiinii e, 79
Logs visualisation within the ElasTest dashbaordcccooviiiiiiiniinnii e, 79
EIM JENKINS DUIL FEPOIT ...ttt ettt e saee s 81
EIME: PUBICKEY APL ...ttt et e e e e e e et e e e e e s e st a e e e e e e e snsbataeaaeeesennnnranneas 81
1Y Y= 1= o A o PP P PP PPPPPPPPPPPIRE 81
EIM: AZentConfigUuration APl..........eioiuiie ettt et eett e e e st e e e e eate e e e eaaaae e sbaeeeesraeesnnes 82
EDM FIMC DIQBIam ..uueeeiiieieeeieiiiiieeee e e e siiieteeeteesssittteeeeesssesasabaaaeasssesssssanaeesssessssnssaasesesnssssseeees 84
EDM APl DOCUMENTAtION ...oiiiiiiiiiiiiiiiic e 85
EDM JENKINS PIPEIINE ... eeiieeeeiee ettt ettt e et e et e e st e e e e ate e e senaeeeesnaeeeeennnaeesnnnees 86
EDM COVErage REPOIT ..ccieiiiiiiiiiiiiiiieieieeeeeeeteteee ettt et et e ee et ettt e et e e e eeeeetereee e e re s e s e s e s e s e e e ee e e e e e e e e e seeeeeeenene 86
Consumer: List of available Service tYPeS......uuiiiciii ittt 89
Consumer: Create a Service INSTANCEcccvvviiiiiiiiic e 89
Consumer: Get/POll SEIICE STALUS ...ccveiivieeieeiitee ettt ettt e et e et e et e ebeeebeeebeeeeaeeebeseareeenrs 90
CONSUMET: BING SEIVICE ..couuiiiiiiiiiiieciie ettt sttt sb e e s 90
Consumer: Configure SErviCe INSTANCEccccviiiieiiie e ciee e e et r e e e ee e e e e e s sraeeeesnereeeeans 90
Consumer: Get SErVICe MELHICS......iiiuiiiiiiiiie ittt 91
ConSUMEr: UNDING SEIVICE ...oouviiieiiieiieieereeerte ettt s s e re e 91
CONSUMET: DEIELE SEIVICEeiiiiiiiiieitie ettt st s et sb e s nee s 92
PrOVIAEr: LISt SEIVICE....ueiiiiiiiieiiie ettt ettt san e e sne e saneennee s 92
Provider: REGISTEI SEIVICE ..ccci et e e e e e st e e e e e e sttt e e e e e e e seannraeneas 93
Provider: Update plan and descriptionccoouiiiiiiii et e e e e 94

D3.1 ElasTest Platform Cloud Modules v1 C,J Elas

Figure 74. Provider: Update endpoint.........

Figure 75. Provider: Report service metrics

D3.1 ElasTest Platform Cloud Modules v1 C.,_\) ElaS

List of Tables

Table 1. EPM: Adapter Data MOdEl......ooo ittt e e e s e e s sreeeeseans 30
Table 2. EPM: Event Data MOdel.......co.ui ittt st 30
Table 3. EPM: Key Data MOGE].....cco ettt ettt ettt ettt e st e e s e e s sbtaeessbeaeessans 30
Table 4. EPM: KeyValuePair Data MOElccueiiiiiiiiiiiiiie ettt e sree e 31
Table 5. EPM: Network Data MOEl........ccueerieiiiiiiiiieeieceee et 31
Table 6. EPM: PoP Data Model.........ccoceeeiieenieeiiiieiieceieeeee e iError! Marcador no definido.
Table 7. EPM: ResourceGroup Data MOdEl..........ccovcuiiiiiiciiiiiiiiie et 32
Table 8. EPM: VDU Data MOElcoocuiiiiiiiiiieiiie ettt st ettt e e s s 33
Table 9. EPM: Worker Data MOdel..........oouiiiiiiieiienie ettt s e 34
Table 10. EPM: ROAAMAP & FEATUIESccuvveeeieiieee et ettt e et e e e e bt e e e e baae e e ebeneeeenes 34
Table 11. Set of ESM Use Cases and their Implementation Status.........cccceeeeeciieeiecieeecccieeeeeas 65
Table 12. EIM: Baseling tEChNOIOZY. ...cccocuveieieiiiee ettt et e e et e e e sbaeeeeeaes 73
Table 13. EIM: PublicKey Data MOGEleei ittt e et e e e et e e e ebaee e e 76
Table 14. EIM: Agent Data MOelooouieii ittt e et e e e bree e e 76
Table 15. EIM: HOSt Data MOdel ...cccueeiuiiiiiiiieieeeee ettt s s e 76
Table 15. EIM: AgentConfiguration Data Model...........coccuvieiiiiiiiiieciiee e 76

D3.1 ElasTest Platform Cloud Modules v1 C’_\) ElaS

Glossary of acronyms

Cl (Continuous Integration) This refers to the software development practice with

that name.

FOSS (Free Open Source
Software)

This refers to software released under open source
licenses.

laaS (Infrastructure as a
Service), PaaS (Platform as
a Service) and Saa$
(Software as a Service)

This refers to different models of exposing cloud
capabilities and services to third parties.

Instrumentation

This refers to extending the interface exposed by a
software system for achieving enhanced controllability
and observability

QoS (Quality of Service)
and QoE (Quality of
Experience)

In this proposal, QoS and QoE refer to nonfunctional
attributes of systems. QoS is related to objective quality
metrics such as latency or packet loss. QoE is related to
the subjective quality perception of users. In ElasTest,
QoS and QoE are particularly important for the
characterization of multimedia systems and applications
through custom metrics.

SiL (Systems in the Large)

A SiL is a large distributed system exposing applications
and services involving complex architectures on highly
interconnected and heterogeneous environments. Sils
are typically created interconnecting, scaling and
orchestrating different SiS. For example, a complex
microservice-architected system deployed in a cloud
environment and providing a service with elastic
scalability is considered a SilL.

SiS (Systems in the Small)

SiS are systems basing on monolithic (i.e. non
distributed) architectures. For us, a SiS can be seen as a
component that provides a specific functional capability
to a larger system.

SuT (Software under Test)

This refers to the software that a test is validating. In this
project, SuT typically refers to a SiL that is under
validation.

TO (Test Orchestration)

The term orchestration typically refers to test
orchestration understood as a technique for executing
tests in coordination. This should not be confused with
cloud orchestration, which is a completely different
concept related to the orchestration of systems in a
cloud environment.

TORM (Test Orchestration

Is an ElasTest functional set of components that abstracts

10

D3.1 ElasTest Platform Cloud Modules v1 C’_\) ElaS

and Recommendation
Manager)

and exposes to testers the capabilities of the ElasTest
orchestration and recommendation engines.

TJob (Testing Job)

We define a Tlob as a monolithic (i.e. single process)
program devoted to validating some specific attribute of
a system. Current Continuous Integration tools are
designed for automating the execution of TJobs. TJobs
may have different flavors such as unit tests, which
validate a specific function of a SiS, or integration and
system tests, which may validate properties on a SiL as a
whole.

TiL (Test in the Large)

A TiL refers to a set of tests that execute in coordination
and that are suitable for validating complex functional
and/or non-functional properties of a SiL on realistic
operational conditions. We understand that a TiL can be
created by orchestrating the execution of several TJob.

ICT Information and Communication Technology

IT Information Technology

WP Work Package

FMC Fundamental Model Concept

ETM ElasTest Test Manager

EPM ElasTest Platform Manager

EMP ElasTest Monitoring Platform

ESM ElasTest Service Manager

EIM ElasTest Instrumentation Manager

EDM ElasTest Data Manager

TSS Test Support Service

EUS ElasTest User Impersonation Service

ESS ElasTest Security Service

ECE ElasTest Cost Engine

PoP Point of Presence

REST Representational State Transfer

VDU Virtual Deployment Unit

AWS Amazon Web Services

AAA Authentication, Authorization, Accounting

TOSCA Topology and Orchestration Specification for Cloud
Applications

AP| Application Programming Interface

SDK Software Development Kit

11

D3.1 ElasTest Platform Cloud Modules v1 C.’J EIaS

SSH Secure Shell

CPU Central Processing Unit
R&D Research and Development
OSBA Open Service Broker API
SLA Service Level Agreement
DoA Description of Actions

ul User Interface

GUI Graphical User Interface
VM Virtual Machine

KVM Kernel-based Virtual Machine
JDK Java Development Kit

KPI Key Performance Indicator
R Release

MS Milestone

12

D3.1 ElasTest Platform Cloud Modules v1 C’_\) ElaS

1 Executive summary

ElasTest is a cloud platform designed for helping developers to test and validate large
software systems while maintaining compatibility with current continuous integration
practices and tools. ElasTest enables developers to test large software systems
through complex test suites created by orchestrating simple testing units (so-called
TJobs).

ElasTest platform is Free Open Source Software and a community of users and
contributors is being created, who can help transforming ElasTest into a worldwide
reference in the area of large software systems testing and guaranteeing the long term
platform sustainability.

The ElasTest platform is designed as a Service Oriented Infrastructure (SOI) where each
of the modules constitutes a fine-grained SOA (micro-service). The software modules
implemented within “WP3 Cloud Components” have the objective of creating all cloud
components and mechanisms required by the ElasTest platform. These components
are split into different categories; on one hand we can find the cloud components for
the ElasTest platform which offers management capabilities at the level of
computational resource as well as manages the lifecycle of the cloud based services
deployed on top of the aforementioned resources. On the other hand ElasTest offers
Instrumentation Components which actuates at application level offering management
capabilities over the Software under Test (SuT).

The content of this report is focused on the specification, design and implementation
of the intermediate version of the ElasTest Cloud Components; the work carried out in
this WP is going to be reported within two iterations: “D.3.1 ElasTest Platform cloud
modules v1 [6]” is going to be delivered in month 18 as the intermediate version of the
software modules together with the accompanying documentation of this version,
“D.3.2. ElasTest platform cloud modules v2 [12]” will be submitted on M36 including
the final software artifacts and updated documentation of the platform modules.

2 Introduction

2.1 Overview and Objectives

This report presents the software artifacts implemented in the scope of the WP3
during the first period of the project until M18. The Platform modules covered in this
report are the Platform Manager (EPM), the Service Manager (ESM), the
Instrumentation Agents (EIA), and the Instrumentation Manager (EIM). The work
carried out within WP3 has the objective of creating all cloud components and
subsystems required by the project. These components are split into two main
categories. The Cloud Components for the ElasTest platform which are executed as
part of ElasTest and the Instrumentation components, these components can be
executed out of ElasTest and as part of the SuT. Additionally, this report also presents
the Data Manager (EDM) used by different modules across all technical work packages.

13

D3.1 ElasTest Platform Cloud Modules v1 C’_\) ElaS

2.2 Structure of the Document

The outline of this document is as follows: First section introduces the document and
its objectives. The second chapter presents the ElasTest Cloud modules describing how
they are categorised and its overall roadmap. The next sections describes the enablers
for managing the platform in a target cloud provider (Sec 4), the mechanism and
interfaces offered for managing the on-demand cloud based services within ElasTest
(Sec 5), as well as the mechanisms used to instrument the target applications under
evaluation (Sec 6). In addition, the service that offers data management capabilities to
the components of the platform is presented (Sec 7). Finally the last section includes
the conclusion (Sec 8).

2.3 Target Audiences

The primary targets of the document are internal ElasTest technicians from WP3 to
WP6 involved in the prototyping and implementation of the platform. In addition, this
document is targeting technical personnel interested in testing as well as QA managers
interested in adopt our solution.

3 ElasTest Cloud Modules

3.1 Rationale

New advances in ICT technology influence the way software is developed and tested,
the proliferation of large scale applications targeting thousands of users that can be
connected concurrently and expect real time interactions; makes the testing strategy a
crucial aspect for the release management process of the applications.

Nowadays cloud technologies are creating advantages for organizations that adopt it
such as: speed, agility, scalability, accessibility and flexibility; therefore ElasTest aims to
extend the adoption of the aforementioned benefits offered by the cloud to testers
through the creation of a cloud platform (ElasTest Platform) designed for helping to
validate large software systems that require complex test suites and validation
processes.

Since the irruption of the cloud computing (together with the virtualization era) as a
disruptive technology, the increased use of the cloud introduced new business
opportunities and challenges during the last years allowing developers to apply more
easily the principles of mass production into the IT world. The current panorama
reveals that a whole range of IT functions can be thought of as commodity services.

The ElasTest cloud components described within this report are in charge of the
management and monitoring of the resources that the platform needs to operate; as
well as of the lifecycle management associated to the on-demand testing support
services catalogue which can be requested by the ElasTest Platform user dynamically.
In addition to the cloud components in charge of the platform management, the
report also includes other kind of cloud based component not targeting the platform
itself but offering management capabilities over the software system under
evaluation.

14

D3.1 ElasTest Platform Cloud Modules v1 C’_\) ElaS

3.2 Categories

The different categories identified have a direct relationship with the tasks described
within the “WP3 Cloud components”. Task 3.1 implements the enablers for the
platform components to be deployed in a target cloud being able as well to monitor its
usage recovering in seamless way information related to the runtime execution of the
platform. Task 3.2 implements the appropriate mechanism enabling the lifecycle
management of the Test Support Services catalogue offered by ElasTest. Finally, Tasks
3.3 & 3.4 are devoted to the instrumentation capabilities offered over the software
under evaluation.

As it has been introduced in the previous paragraph, different categories have been
considered:

- Software modules for managing the computational resources of the platform.
- Software modules for managing the cloud based services offered by the platform.
- Software modules for managing the applications under test.

3.3 Roadmap

ElasTest uses an Agile Management methodology, which is suitable for innovation
management. This methodology has been designed for transforming ideas into
profitable products. For this, it focuses on

:)) - What the consortium
learning and discovering how to fit a things the market wants
technology into the market instead on ,:’ ‘\
how to carry out the technological s Yy
d | ts th | Internal information driven ~ _ .=~

evelopments themselves. methodology =~
The methodology is based on a PPt

. - Market feedback driven

continuous feedback loop repeated ®- nethodogy

cyclically every four months aligned with Starting point
the ElasTest software releases, according
to ElasTest initial planning nine releases

i i . What the market
will be generated during the project really wants
duration. The content of this report
covers the developments performed up to
R4 where the first integrated version of the software components is delivered.

Figure 1. ElasTest Agile Management Methodology

The methodology used for the specification and design phases as well as for the
development/testing/release phases have been elaborated in the scope of “Task 2.2.
Agile conception based on end-user feedback”, further details about the methodology
itself will be described in the public report “D.2.3. ElasTest requirements, use-cases
and architecture v1 [5]”; where the steps followed by ElasTest technical teams are
further described.

The figure below depicts the alighment between the project milestones and the
software component releases.

15

D3.1 ElasTest Platform Cloud Modules v1 Q EIaS

R2 Ry
&/
Develop initial version of Fristintegrated version of - Final version of software

software components components components
working iselated
R1 Rs
Perform initial set of proof of @ Develop new features @ Intermediate version of
concepts | Adapt baseline including validation test software components
cemponents if it applies. cases and definition of the

integration pipeline process.

Figure 2. WP3 Cloud Components Roadmap

3.4 Challenges to Overcome

ElasTest is a platform designed to facilitate the build, execution and reporting of end-
to-end tests of complex distributed applications. These types of applications present
some properties like elasticity and fault tolerance that need to be tested with end-to-
end tests. To execute these complex distributed applications and scalable tests,
enabling resources and supporting services are needed. The primary reason that such
elements must be provided is to remove the tester from the responsibility of having to
manage these resources and services themselves and in doing so allow them to focus
on their core business, writing complete tests that validate the SuT.

Not only resources and services should be provided for Tlobs, additional cloud
components must also be provided in order to allow ElasTest deploy and execute a SuT
on the behalf of the tester and also deploy and execute the components required to
run the ElasTest platform itself. In summary WP3’s main goals are:

e Provide resources and services to execute TJobs

e Provide resources to deploy and execute SuTs

e Provide resources and components that support the complete ElasTest
platform

e Provide necessary insights into the current and past state of ElasTest core
components in order to facilitate stable operation of the platform itself

The key aim and contribution of WP3 to ElasTest is to provide the enabling facilities
required by the Elastest Tests Manager (ETM), the main component of the TORM, to
carry out its task of orchestration and executing tester supplied Tlobs. As such it can
be thought of as the enabling platform for the ETM.

The work in WP3 has to cover these key areas of functionality:
1. Provide the resources on-demand to allow for the execution of TJobs
2. Provide the services on-demand to allow for the support and augmentation of
TJob functionality
3. Provide the means to manage all resources and services delivered to the ETM

To overcome these needs, the ElasTest architecture has the following characteristics:

16

D3.1 ElasTest Platform Cloud Modules v1 C’_\) ElaS

e Microservices inspired architecture: ElasTest’s architecture has been divided in
several decoupled components that communicate via remote protocols. In that
way, ElasTest can horizontally scale executing every component in a different
computational node when necessary.

e Decoupled test execution: To execute a set of tests in ElasTest is necessary to
configure a TJob. A Tlob is defined with the following information: a) How to
obtain and execute the tests; b) How to connect to a SUT already deployed or
how to execute the SUT inside ElasTest and c) What support services are
necessary to execute the tests. Using the same strategy as with the core
components, the tests, SUT (if necessary) and support services (if necessary)
are executed in decoupled components that communicate using remote
protocols. In that way, every Tlob can be executed in a different computational
node, favouring the scalability of the platform. Hence, a TJob that needs more
computational resources than available in a computational node can be split in
several computational nodes.

e No vendor dependency (lock-in): ElasTest Platform Manager (EPM) introduces
an adapter mechanism which means the adapters use a standardized
northbound interface whereas the southbound interface is specific to a certain
cloud infrastructure technology. In addition, to provide a standardized way of
defining virtual resources, the platform manager supports native TOSCA
templates. Further details are covered under the non-functional aspects of the
platform.

¢ No internal state persistency: All ElasTest components can be configured to be
stateless, except ElasTest Data Manager (EDM). This allows all persistency to be
grouped in one specific component, while the rest of the platform is stateless.
In addition, EDM via Alluxio allows the usage of external services (such as
Amazon S3) for persistent data, in a way that is transparent to the rest of the
ElasTest platform. Hence, by moving between different hardware/cloud
platforms, the only component that needs to be ported to fit is EDM, or it can
be swapped out in favor of local services that offer the same functionality.

e Test Engines: ElasTest can be augmented with additional components called
Test engines (TE). These components are executed as decoupled components
and core components can communicate with them using remote protocols.
This leads to advantages mentioned to the other parts of the platform.

e Test Support Services: Test Support Services (TSSs) are services used by tests
via TJobs. They augment the capability of a test by providing some specific
features. The TSSs are not covered within this document but they are
mentioned here as the ESM covered within this report is the component who
manages the TSS lifecycle as well as offers them on-demand. For further
information specific to the TSS, please refer to “D.5.1 ElasTest Test Support
Services v1” [9].

3.4.1 ElasTest Functional Components/Services

As it can be seen, ElasTest platform is composed by several decoupled components
that communicate using remote protocols. This characteristic allows the platform to
be split across several physical nodes if the resources needed are not available in a

17

D3.1 ElasTest Platform Cloud Modules v1 C’_\) ElaS

single node. Hence, we can consider that ElasTest is scalable to take advantage of
cloud native design and on-demand use of resources and service to grow and shrink
according to load. Also, some of the components are executed on demand and this
gives elasticity to the platform. Concretely, tests engines are executed only when they
are used. In the same sense, TJob’s components are executed also on demand.

The core components of ElasTest are:

e ElasTest Tests Manager (ETM)

e ElasTest Services Manager (ESM)

e ElasTest Platform Manager (EPM)

e ElasTest Monitoring Platform (EMP)

e ElasTest Instrumentation Manage (EIM)
e ElasTest Data Manager (EDM)

The ElasTest Platform Manager (EPM) is the base component in charge of executing
ElasTest components in several underlying platforms, abstracting ETM (the brain of
ElasTest) of this management. Also, as several cloud resource management platforms
are supported, ElasTest can be deployed in any of them without any change. To offer
this abstraction of the underlying platform, EPM requires that components are
packaged as docker containers. This format have been selected because is a
lightweight standardized format with a standard distribution mechanism. Also, this
format is widely supported in the industry. In addition, when a component is
composed by several containers, docker compose descriptor file can be used to
describe the component. In the current version, EPM can be executed in a single
machine with docker daemon installed. This node is used to execute ElasTest core
components. Other nodes can be added dynamically to EPM to execute dynamic
ElasTest components like Tlob components or test engines. In the future versions,
Kubernetes, AWS and OpenStack platforms will be supported natively in EPM to
support the real elasticity of the platform.

It is very important to monitor how computational resources are been used to avoid or
adapt to overload of the system, given that TJobs are executed dynamically on-
demand. If the system is above some load threshold, new TJobs can be queued until
resources are available or ask to underlying platform for more nodes to execute
components. The ElasTest Monitoring Platform (EMP) is the component in charge of
monitoring ElasTest platform. This component works closely with EPM to allow the
mentioned autoscaling features. Also, EMP shows system metrics it gathers from the
underlying platform to the user. This is especially important for administrative tasks.
However, not all platforms allow the autoscaling feature, then, monitoring information
is being used to control the fixed resources available.

Through the ElasTest Service Manager (ESM), ElasTest is able to provide on-demand
test support services (TSSs) to testers (as defined in their TJobs) to make easier to
implement complex tests and delegate non-core functionality to an internal or
external service provider. For example, some of the services provided by default in
ElasTest like the ElasTest User Impersonation Service (EUS), provides browsers on
demand. Other TSS available is the ElasTest Security Service (ESS) that provides
dynamic security tools to testers. These tools can be managed from test code using a

18

D3.1 ElasTest Platform Cloud Modules v1 C’_\) ElaS

remote protocol. In addition to the tests included by default, ElasTest allows users to
create and install new services. All of this is done without vendor lock-in by using the
Open Service Broker API standard. ElasTest Service Manager (ESM) is the component
that manages the register and management of TSS. It uses EPM to instantiate new
services on demand when are required by ETM. ETM will ask to ESM for a new service
instance if this TSS is defined in the Tlob to be used by the tests. ESM also works
closely with EMP which keeps tracks of health status of support services created and
managed by ESM. EMP has proactive alarming capability which is the key feature of
interest for ESM.

While the aforementioned components deals with the platform resources, the
ElasTest Instrumentation Manager (EIM), controls and orchestrates the monitoring
and controllability agents which are deployed when an external SUT is tested. In that
way, tester doesn’t need to manually configure these agents to obtain relevant
monitoring information about SUT. Using EIM, user will be able to instrument external
SUT to simulate real behaviour simulating CPU load or network issues.

In addition, ElasTest Data Manager (EDM) provides persistence services to the
platform. It is used by several components as data management service. The ElasTest
Data Manager was built to separate the persistence layer of ElasTest from the rest of
the platform.

3.4.2 ElasTest Non-functional Aspects
Elasticity

The ElasTest services and resources must be provided on-demand, when and only
when the tester actually needs them. By having the capability, the overall cost to run a
test suite against a SuT is reduced when compared to having resources and services
running all the time. For example, if ElasTest is used to test the elasticity of a SUT like a
video conference system, the tests should request hundreds or thousands of
simultaneous browsers simulating users connecting to the platform. Then, ElasTest
should execute all these browsers.

Further, by being able to request resources and services on-demand enables the
capability of dynamically scaling up (or down) the set of resources and/or services
assigned to a particular test suite at any point in time. In doing so, the platform is
amenable to elasticity. However, before having this capability the components need to
be designed in such a way to be scalable. Furthermore, monitoring and timely alerting
is a key prerequisite for effective elastic control; EMP objectives already cover this
element to support elastic control and management of underlying resources. EMP
allows instrumented metrics to be directly sent to it via different language specific
libraries. This capability can be used in conjunction with a more fine grained alert
condition creation within EMP wherein the destination of the alert is the relevant
application endpoint itself, it is very much possible to achieve a parallel elastic control
mechanism that is self-triggered by the application and not just managed by the EPM.

Authentication, Authorization and Accounting (AAA)

ElasTest needs to provide the means for users to be identified uniquely so that specific
resources, services can be associated with them and ultimately allow for the charging

19

D3.1 ElasTest Platform Cloud Modules v1 C’_\) ElaS

of those services and resources to the specific user. ElasTest also needs to provide this
from an audit and security perspective: who did what where, when and how.

To provide this an AAA (Authentication, Authorisation and Accounting) service/
component is typically used. With an AAA element as part of ElasTest and used down
through the full stack (from user, through ETM and onto ESM and EPM), multi-
tenancy, isolation and per user billing can be enabled. These characteristics are
fundamental to cloud computing (See NIST definition®, publication 800-145) of which
ElasTest is founded on.

AAA is an ElasTest platform service to support many services and components in
ElasTest. As such the proposal is to include AAA as part of WP3. No developments
upon AAA topics will be carried out or upon Keystone (where necessary). In order to
provide AAA within ElasTest the proposal is to use OpenStack's Keystone project2 to
enable AAA. Keystone will runs as an additional service within the ElasTest platform
and so will be the responsibility of the ElasTest Toolkit to start the service.

In the basic scenario the onus is upon the User to acquire the token from the Keystone
service. This can be accomplished either via API® or using the Keystone command line
client* (which is now part of the main openstack command line client5).

With its basic usage, access to any Keystone mediated resource given by having a valid
Keystone token relayed in HTTP headers. The header name used is X-Auth-Token and
its value is the token issued by the keystone service.

It should be noted that keystone integration per component must be provided in a
configurable way, in order to use Keystone a service needs 2 things:

1. A running instance of keystone: to do this you can use the following docker
project® to bring up a keystone instance. You can review the README? for basic
usage and refer to the OpenStack Keystone8 project for further detail and
information.

2. Client code that accesses and uses keystone: how this is accomplished is
rather specific to the language and frameworks you use to implement your
service/component.

Vendor Lock-in

A vendor lock-in limits the user to the usage of a certain solution or technology, and,
hence, it reduces also the capabilities of the solution itself only able to cover a limited
set of scenarios and use cases. As a comprehensive testing platform for highly
distributed applications, one of the main goals is to avoid a vendor lock-in at the
ElasTest platform level to let the freedom of choice for a certain cloud virtualization

LNIST Definition, https://csrc.nist.gov/publications/detail/sp/800-145/final

* OpenStack Keystone, https://docs.openstack.org/keystone/latest/

* OpenStack API, https://developer.openstack.org/api-ref/identity/v3/index.html

* KeyStone CLI, https://docs.openstack.org/mitaka/cli-reference/openstack.html

> KeyStone CLI-reference, https://docs.openstack.org/mitaka/cli-reference/openstack.html
® Keystone docker project, https://github.com/dizz/dock-os-keystone

’ README file, https://github.com/dizz/dock-os-keystone/blob/master/README.md

® OpenStack Keystone, https://docs.openstack.org/keystone/latest/

20

http://csrc.nist.gov/publications/PubsSPs.html#800-145
https://csrc.nist.gov/publications/detail/sp/800-145/final
https://docs.openstack.org/keystone/latest/
https://developer.openstack.org/api-ref/identity/v3/index.html
https://docs.openstack.org/mitaka/cli-reference/openstack.html
https://docs.openstack.org/mitaka/cli-reference/openstack.html
https://github.com/dizz/dock-os-keystone
https://github.com/dizz/dock-os-keystone/blob/master/README.md
https://docs.openstack.org/keystone/latest/

D3.1 ElasTest Platform Cloud Modules v1 C’_\) ElaS

infrastructure up to the users and their requirements. A proper approach had to be
developed in order to overcome this issue which is following a plug-and-play approach.

There are two services that could be limited by vendor locking: the ElasTest Service
Manager (ESM) and the ElasTest Platform Manager (EPM).

The ESM, avoids the issue of lock-in by adopting a widely adopted API, the Open
Service Broker API°. Behind this API, the implementation of the ESM, is implemented
such that pluggable backends are used for storage (the DB in the case of the ESM;
supports simple in-memory, MongoDB and MySQL) and resource acquisition (currently
local docker engines and the EPM). Should another DB or resource acquisition
software be required, this is achieved by implementing the software interface for
either DB or resource acquisition11 modules.

The EPM, introduces an adapter mechanism which means the adapters use a
standardized northbound interface whereas the southbound interface is specific to a
certain cloud infrastructure technology. Based on the requirements of the project
consortium, the northbound interfaces was designed in a way that it allows 1) the
definition of the virtual resource requirements following the internal information
model of the EPM and 2) cloud infrastructure-specific templates. In this way the EPM
can potentially support any type of technology assuming the corresponding adapter is
in place. Currently, the focus of the adapter development is aligned with what the
project consortium has seen as appropriate (Docker'?, docker-compose®®, Ansible®,
VirtualBox™). In the future the need of further adapters will be explored to support,
for instance, OpenStack®, OpenStack Heat'’, AWS®®, or complex orchestration
solutions, such as, Aria*® or OpenBatonzo.

In addition, to provide a standardized way of defining virtual resources, the platform
manager supports native TOSCA*! templates. TOSCA is a domain specific language and
portable model for describing cloud applications. The TOSCA model is a widely
recognized format and therefore would also provide an easy way for users to
transition to ElasTest. The TOSCA Simple Profile for YAML 1.0 describes the way to
represent the TOSCA meta-model in a simplified format using YAML?2. The platform

° OpenAPI Initiative https://www.openservicebrokerapi.org

9 ESM Store, https://github.com/elastest/elastest-service-
manager/blob/master/src/adapters/store.py#L51

1 ESM Resource, https://github.com/elastest/elastest-service-
manager/blob/master/src/adapters/resources.py#L39

2 Docker, https://www.docker.com/

Y Docker-compose, https://docs.docker.com/compose/

1 Ansible, https://www.ansible.com/

> Oracle VirtualBox, https://www.virtualbox.org/

16 OpenStack, https://www.openstack.org/

7 OpenStack Heat, https://wiki.openstack.org/wiki/Heat

'® Amazon Web Services, https://aws.amazon.com/

% Apache Aria, http://ariatosca.incubator.apache.org/

% Open Baton, https://openbaton.github.io/

L oAsIS Topology and Orchestration Specification for Cloud Applications (TOSCA), https://www.oasis-
open.org/committees/tc_home.php?wg _abbrev=tosca

2 YAML, http://yaml.org/

21

https://github.com/elastest/elastest-service-manager/blob/master/src/adapters/store.py#L51
https://github.com/elastest/elastest-service-manager/blob/master/src/adapters/store.py#L51
https://github.com/elastest/elastest-service-manager/blob/master/src/adapters/resources.py#L39
https://github.com/elastest/elastest-service-manager/blob/master/src/adapters/resources.py#L39
https://www.docker.com/
https://docs.docker.com/compose/
https://www.ansible.com/
https://www.virtualbox.org/
https://www.openstack.org/
https://wiki.openstack.org/wiki/Heat
https://aws.amazon.com/
http://ariatosca.incubator.apache.org/
https://openbaton.github.io/
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca
http://yaml.org/

D3.1 ElasTest Platform Cloud Modules v1 C’_\) ElaS

provides the option to render TOSCA templates to the internal information model
following the TOSCA Simple Profile for YAML 1.0, to provide the option for users
familiar with the specification to make use of its generalized model for defining cloud
systems.

4 Platform Management and Monitoring

The following section introduces the core components in charge of the management
and monitoring of the platform; and provides the details of the requirements,
architecture, interfaces and features for each of them.

4.1 ElasTest Platform Manager (EPM)

4.1.1 Introduction

The ElasTest Platform Manager (EPM) implements the enablers for ElasTest
components to be deployed in a target cloud.

DoA [1] specifies the following objectives for the EPM:

e To develop the appropriate technologies enabling ElasTest to be deployed in
the target cloud environment. For this, the Platform Manager shall need to
provide the required cloud orchestration services for the deployment and
provisioning of all ElasTest components. This will require the Platform Manager
to consume, at its southbound, the APIs exposed by the target cloud
infrastructure.

e To create the appropriate technologies enabling the management of the
underlying cloud resources on behalf of the TORM and of the rest of ElasTest
services. These technologies shall provide the capability of instantiating
computing resources, of deploying artifacts on them (e.g. Tlob instances, Test
Support Service instances, etc.) and of managing their lifecycle. Remark that
the autoscaling of computing resources used by ElasTest shall be part of this
mechanism.

e To expose, at its northbound, all these capabilities through a comprehensive
and coherent API (or directly Software Development Kit) that the TORM and
the rest of ElasTest testing services shall consume in runtime for implementing
their logic.

e To develop a toolbox enabling the installation and management of all such
capabilities in ElasTest.

e To expose a catalogue of Support Services. The Platform Manager will provide
this catalogue in order to allow any developer to select the appropriate
Support Services required in the experiment.

The ElasTest Platform Manager is the interface between ElasTest components (e.g.
TORM, Test Support Services, etc.) and the cloud infrastructure where ElasTest is
deployed. Hence, this Platform Manager must abstract the cloud services so that

22

D3.1 ElasTest Platform Cloud Modules v1 C’_\) ElaS

ElasTest becomes fully agnostic to them and provide this abstraction via Software
Development Toolkits (SDK) or REST APIs to the northbound consumers (i.e. the
TORM). The ElasTest Platform Manager enabling ElasTest to be deployed and to
execute seamlessly in the target cloud infrastructure that the consortium considers as
appropriate (e.g. OpenStack, CloudStack®, Mantl**, AWS, Docker, etc.).

The EPM provides two options to describe and deploy the virtual resources:

e All-in-one Package Deployment: the package approach is designed to make use
of template-dependent technologies such as docker-compose, Ansible or
OpenStack Heat. The EPM gets such a template with additional metadata
information which is forwarded directly to the target infrastructure to trigger
the deployment as a whole.

e Step-by-Step Deployment: this step-by-step approach is designed for
technologies such as Docker, OpenStack or AWS where the EPM receives the
resources description which is compliant to the data model of the EPM or
TOSCA. That information about virtual resources is then translated to individual
commands calling the technologies’ API.

Both approaches together make the EPM independent to the underlying infrastructure
and give the consumer of the EPM the opportunity to use already existing templates or
the data model exposed by the EPM. However, in both cases the EPM returns the
information in a uniform format following the data model.

To avoid a vendor lock-in situation, the ElasTest Platform Manager introduces an
adapter mechanism which means the adapters use a standardized northbound
interface whereas the southbound interface is specific to a certain cloud infrastructure
technology. Based on the requirements of the project consortium, the northbound
interface was designed in a way that it allows 1) the definition of the virtual resource
requirements following the internal information model of the EPM and 2) cloud
infrastructure-specific templates. In this way the EPM can potentially support any type
of technology assuming the corresponding adapter is in place. Currently, the focus of
the adapter development is aligned with what the project consortium has seen as
appropriate (Docker, docker-compose, Ansible, VirtualBox). In the future the need of
further adapters will be explored to support, for instance, OpenStack, OpenStack Heat,
AWS, or complex orchestration solutions, such as, Aria or Open Baton. A major
challenge in this regard is that all adapters have to provide the same capabilities, such
as, runtime management to access instances for certain operations (see Features
table).

4.1.2 Baseline Concepts and Technologies

The EPM itself is implemented in Java making use of the Spring framework?. Data
persistency is provided via SQL where by default it uses an in-memory database

** Apache CloudStack, https://cloudstack.apache.org/
24 Mantl, https://www.mantl.com/

» Spring Framework, https://spring.io/
23

https://cloudstack.apache.org/
https://www.mantl.com/
https://spring.io/

D3.1 ElasTest Platform Cloud Modules v1 C’_\) ElaS

(HyperSQL®®). Nevertheless, other SQL databases (e.g. MySQL?’) can be easily
integrated by changing the configuration inside the main properties file following the
spring configuration guide.

The current version of the EPM supports the following virtual infrastructure
technologies: Docker, docker-compose and Ansible. Two approaches are supported by
the EPM in the meaning of the consumer can either make use of the EPM’s data model
or TOSCA to describe the deployment scenario or use directly templates of a certain
technology. Thanks to the modular approach, other virtualization infrastructures can
be easily supported by providing adapters for certain technologies. This adapter
mechanism is provided via gRPC which manages the communication between the EPM
itself and the corresponding adapter.

The Access, Authorization and Accounting (AAA) system can be activated for the EPM
where the integrated system is OpenStack’s Keystone.

In addition, the EPM makes indirectly use of several supporting services by configuring
the virtual instances for the purpose of log forwarding (e.g. Logstash?®) or monitoring
(e.g. Dockbeat®®) which are then provided indirectly to other services for further
processing, such as, the ElasTest Monitoring Service, ElasTest Monitoring Platform, or
the ElasTest Test Manager.

The EPM and all the available adapters are delivered as Docker containers which are
available in Docker Hub. In addition, several docker-compose files are provided in the
GitHub repositories to start easily the EPM with the additional components and
services to ease the deployment and configuration.

4.1.3 Component Design and Architecture

This section gives an architectural overview of the ElasTest Platform Manager. The
architecture (see Figure 4) is composed of several components:

2 HyperSQL, https://spring.io/

% Oracle MySQL, https://www.mysgl.com/

28 Logstash, https://www.elastic.co/products/logstash

2 DockBeat, https://www.elastic.co/blog/dockbeat-a-new-addition-to-the-beats-community

24

https://spring.io/
https://www.mysql.com/
https://www.elastic.co/products/logstash
https://www.elastic.co/blog/dockbeat-a-new-addition-to-the-beats-community

D3.1 ElasTest Platform Cloud Modules v1 C.,_\) ElaS

ElasTest Platform Manager (EPM)

Repository

oo) e) Monitoring

R:’ TOSCA
Parser

——— —
(Network |(Worker |
|) W Rp monitoring of virtual

R :
)] instances

— Core
|'/° I R!’

API

VDU Management | %/ Loggl ng

Z/(Jmnﬂguualion of log

CRUD Service forwarding for services

=/ R| : ‘
| |
Instance | PoP Management ‘ and virtual instances
| |
| |
| |

Network Management

Service
Consumer

Package Management

Runtime Management

Worker Management

Placement Management

T
R Rp forwarding requests to provision
Authenticate o '_('\ virtual resources, configuring

4
to use/access manitoring and logging, and runtime
management

EPM Adapter

a—

R provision virtual resources, configuring
~ monitoring and logging and runtime
management

TORM::AAA

Virtual Infrastructure Technologies

Figure 3. Architectural Overview of EPM

APIL: The API exposes a ReSTful API in order to allow the consumer (e.g. ETM, ESM) to
manage virtual resources in a target cloud environment. It allows to allocate,
terminate, update virtual resources (e.g. compute, network) and request information
of those as well, execute runtime operations, and register and configure new workers.
Moreover, in order to allow a programmatic usage of the EPM, a python and java
client are provided that eases the usage of the EPM.

Repository: The repository persists information of managed Workers, VDUs, networks,
and PoPs as well. The following gives an overview of what those entities are:

e Worker: A worker is a machine, where the EPM can set up a cloud environment
and make it ready to be registered as a Point-of-Presence.

e PoP: A PoP is a Point-of-Presence that defines details of a cloud environment.
This includes information about the endpoint, type and access details.

e VDU: A VDU is a Virtual Deployment Unit which reflects an abstraction of
virtual compute resources. It contains information about software, network
connectivity and the target cloud environment.

e Network: A network reflects the virtualized network resource which provides
connectivity between VDUs.

Core: The core consists of several management units and provides the basic
management functionality in order to manage PoPs, VDUs and networks. The core has
access to the Repository in order to persist and request information of managed
entities (PoP, VDU, and Network). In order to issue operations on different types of

25

D3.1 ElasTest Platform Cloud Modules v1 C’_\) ElaS

cloud environments (Docker, OpenStack, Kubernetes, AWS), the Core component
makes use of PoP adapters which allows the Core to interact with the PoP over well-
defined interfaces.

e PoP Management: This component handles the PoPs. It is in charge of
registering, unregistering and providing information of a requested PoP.

e VDU Management: This component manages virtualized resource related to
the compute domain. It allocates compute resources, connects them to
networks, receives details of allocated resources and releases resources in the
target PoP.

e Network Management: This component manages virtualized resource related
to the network domain. It creates and deletes network in the target PoP.

e Runtime Management: This component is responsible for managing runtime
operations (e.g. download/upload files, execute commands, etc.) for already
allocated virtual ressources.

e Package Management: This component is in charge of handling packages (e.g.
docker-compose, ansible, etc.) and forwards it to the corresponding adapters.
The packages contain virtualization technology-specific templates.

e Placement Management: This component is in charge of the placement of
virtual resources in case no specific PoP is selected where the virtual resources
have to be deployed.

o Worker Management: This component takes care of the installation and
configuration of new workers added at runtime to the EPM as potential PoPs.
Certain scripts are provided which will install and setup the needed artifacts so
that the Worker is ready to be used as a PoP.

EPM Adapter: An EPM Adapter provides an abstracted way to interact with any kind of
cloud environment. The northbound interface is exposed to the Core and abstracted in
such a way, that the Core do not need to take care about the type of the target cloud
environment. The southbound interface is dependent on the type of cloud
environment under consideration. This allows an easy way to provide any kind of cloud
environment by providing an adapter without changing anything in the core. The PoP
Adapter takes also care about the configuration of logging and monitoring of the
virtualized resources by receiving that information by the Core component.

4.1.3.1 Use Cases & Sequence Diagrams

This section presents three main use cases with the help of sequence diagrams. Those
use cases are the Step-by-Step Deployment where the consumer describes the virtual
resources to be deployed by the EPM by using the internal data model or TOSCA
language, the All-in-one Package deployment where the consumer can reuse existing
templates from certain cloud infrastructure technologies (e.g. docker-compose,
Ansible) and the Worker registration and configuration where the consumer can add
new machines at runtime which can be used for virtual deployments later.

4.1.3.1.1 #1 Step-by-Step Deployment

This scenario depicts the workflow for allocating virtual resources based on the
definition using the internal information model, so called resources groups. This

26

D3.1 ElasTest Platform Cloud Modules v1 C.,_\) ElaS

approach follows the assumption that the consumer can define the requirements in a
uniformed format so that it is agnostic to the actual cloud environment where virtual
resource shall be allocated. This allows the user to use the same definition to be used
for various cloud infrastructures. To be aligned with the adapter approach, the EPM
will generate a package containing that information with an additional metadata file
that will be passed to the corresponding EPM Adapter. The EPM Adapter extracts the
required information from the package and initiates the step-by-step deployment
starting with setting up the networking before allocating the virtual compute
resources. The adapter populates the resource group with deployment information
and returns it to the EPM which is then returned to the initial consumer.

Deployment of a Resource Group

; EPM Adapter
Consymer

| f 1
{ request allocaion of a resource group |5

i i

| request allocation of virtual network resources_ |
>

i

generate package

request deployment

Y

- : allocate virtual network resources : -

|
allocate virtual network resources,
>

return network info | |
-
I

:allocate virtual compute resources :

|
allocate virtual compute resources,_ |
>

return virtual compute info | |
-

return resource group information
T

: return information of virtual resources :

|

! return resource group information ‘ [

€ —
|

Consumer EPM Adapter

Figure 4. EPM: Deployment of a Resource Group

4.1.3.1.2 #2 All-in-one Package deployment

The sequence diagram below shows the workflow for the All-in-one Package
deployment. This was designed in order to give the consumer of the EPM the freedom
to use pre-existing templates without translating the requirements to the internal
information model of the EPM. The consumer has to generate a package in advance
which contains basically a metadata file (containing meta information, such as, the
name of the service and the type of PoP) and the actual template (or several files) to
be used for the deployment. Once the package is received by the EPM, the EPM will
extract required information from the metadata file and forward the package to the
corresponding adapter which takes care to trigger the deployment with the actual
template file. Once the deployment has finished and the adapter received the

27

D3.1 ElasTest Platform Cloud Modules v1 C.,_\) EIaS

infrastructure-depended information, the EPM adapter translates those to the internal
information model of the EPM and returns it to the consumer via the EPM.

Deployment of a Package

; ‘ EPM Adapter
Constljmer

1 request deploment

L
r

extract metadata from package

request deployment

Y

request deployment with template

__Y

return information

|
translate information to EPM data model

|
|
|
return resource group information :
|
|

! return resource group information
<

Consumer EPM Adapter

Figure 5. EPM: Deployment of a Package

4.1.3.1.3 #3 Worker registration and configuration

The sequence diagram below depicts the workflow of the worker registration and
configuration. This feature has been designed in order to give the consumer the ability
to register new machines (physical or virtual) on demand, basically, to provide more
computation power if needed. Hence, the user needs to provide a key which allows
the EPM to access those machines via SSH in order to install and configure the
required artifacts. Once the key is available the user can register a new worker
providing the IP so that the EPM can execute the installation and configuration steps.
As shown in the sequence diagram, the EPM can optionally configure the monitoring
agent to get monitored by the EMP. In the second step the EPM issues certain
installation and configuration steps via ssh depending on the defined type (e.g. Docker,
docker-compose, Ansible) of the worker. Once the required artifacts are installed, the
EPM ensures to have this new worker ready to be used which requires the registration
as a new PoP and optionally the configuration of adapters (e.g. for docker-compose).
Finally, the consumer gets returned the information of this request.

28

&7 Elas

D3.1 ElasTest Platform Cloud Modules v1

Registration and Configuration of a new worker

EPM Worker
CDI‘iSlIJr‘I’IEI' : |
1 1 1
' upload key o |
r Fal] I
1 1 1
| response i |
: register and prepare worker_ : :
T - 1
: {Optional) configure EMP agent ‘:
1 Eanl|
: response :
1 1
| execute installation and configuration scripts ,_:
1 0
| Register Adapter and PoP |
| |
:__, return worker information |
(s i
I 1 1
Consumer EPM Worker

Figure 6. EPM: Registration and Configuration of a new worker

4.1.3.2 Data Model

Figure 8 shows the data model exposed to the consumer of the EPM where those
entities can be retrieved and managed via the APIs that are described in the section
below.

(€) Worker
© ResourceGroup
© Adapter o id :String
o ip :String o id :String
o id :String o user :String o name :String
o endpoint :String 0 passphrase :Siring o vdus :VDU[]
O type :Siring O password :Siring O networks Network[]
o epmip :String o pops :PoP]]
O keyname :String
w L}

.

0. 0.1 (©) wou
© PoP o computeld :String
© © Network o evenis :Event]
) o cidr String o accessinfo KeyValuePair(] o id :String i
o id :String o id ‘Sting o id String _ ; O imageName :String
name :String name :Striing o interfaceEndpoint :String O ip :String
o i o e o status :String O metadata :KeyValuePair]
o ¥ sting o PName -Istring o interfaceinfo :KeyValuePair[] o name :String
o P =g o name :String 0O netName :String
O poPName :String
[2 o status :String
|
\
1
1
|II
1.4 0.* 0.9
1
© KeyValuePair @ Event
o id :String o description :String
o key :String o id :String
o value :String o timestamp :String

Figure 7. EPM: Data Model

29

D3.1 ElasTest Platform Cloud Modules v1 C.’J EIaS

4.1.3.2.1 Adapter

An adapter is the intermediate component between the EPM and the cloud
infrastructure technology. Basically, the EPM forwards deployment and management
request to the adapter whereas the adapter translates those requests to the cloud
technology-dependent commands. It follows a plug-in approach which allows the
maintainer of the EPM to plug-in new adapters at any point in time without
reconfiguring or even touching the EPM itself. Developing new adapters can also be
done without changing the source code of the EPM.

Table 1. EPM: Adapter Data Model

endpoint The endpoint where the Adapter is reachable. string

required Example : "localhost:50052"

id optional Identifier for the Adapter. string

type required The type of virtualization technology, that the adapter is string
designed to connect to.

Example : "docker-compose"

4.1.3.2.2 Event

An event contains certain life cycle information of the VDU at a specific time.

Table 2. EPM: Event Data Model

description Example : "testEvent1" string

required

id Example : "1234-abcd" string

optional

timestamp The recorded time of the Event. string

required (string)
4.1.3.2.3 Key

A private key for executing commands on a worker.

Table 3. EPM: Key Data Model

id The identifier of the Key string
optional
key This is the key itself as String. string
required

30

D3.1 ElasTest Platform Cloud Modules v1 Q Elas

name The name of the key. This will be used for referencing the Key string

. in a Worker.
required

Example : "key1"

4.1.3.2.4 KeyValuePair

This entity is a Key-Value pair for storing metadata contained in other entities.

Table 4. EPM: KeyValuePair Data Model

id Example : "1234-abcd" string
optional
key Example : "testKey1™" string
required
value Example : "testvaluel" string
required

4.1.3.2.5 Network

This entity defines the network connectivity and details where the VDUs are connected
to.

Table 5. EPM: Network Data Model

cidr Example : "192.168.1.1/24" string
required
id The identifier of the Network in the EPM. string
optional Example : "1234-abcd"
name The name of the network, this should correspond to the name string
required of the network in the virtualization technology.
Example : "testNetworkl"

networkld The id of the Network in the virtualization technology. string
required Example : "1234-abcd"
poPName The PoP where the Network was created. string
required

4,1.3.2.6 PoP

This entity contains information about the Point-of-Presence (PoP)

Table 6. EPM: PoP Data Model

31

D3.1 ElasTest Platform Cloud Modules v1 C.’J EIaS

accessinfo Authentication credentials for accessing the PoP. Examples may <KeyValueP
include those to support different authentication schemes, e.g. air>array

required

OAuth, Token, etc.
id Identifier of the PoP string
optional

interfaceEnd Information about the interface endpoint. An example isa URL. string

point Example : "localhost"

required

interfacelnfo Information about the interface(s) to the PoP, including PoP<KeyValueP

required provider type, APl version, and protocol type. air> array
Example :
"[{"key" :" type","value" :&qu
ot;docker"}]"
name Human-readable identifier of this PoP information element string
required Example : "testPoPName"
status Representing the status of a PoP (INACTIVE, CONFIGURE, enum
optional ACTIVE) (conflgu re
, active,
inactive)

4.1.3.2.7 ResourceGroup

A Resource Group defines a bundle of VDUs and virtual networks which belongs
together. It includes also the Point-of-Presences (PoP) where the virtual resources
have to be allocated.

Table 7. EPM: ResourceGroup Data Model

id The identifier of the Resource Group in the EPM. string
optional

name The name of the Resource Group. string
required Example : "testResourceGroupNamel"

networks The Networks in the Resource Group. <Network>
optional array

vdus The VDUs of which this Resource Group consists of. <VDU> array
required

32

D3.1 ElasTest Platform Cloud Modules v1 Q EIaS

4.1.3.2.8 VDU

A Virtual Deployment Unit (VDU) describes the capabilities of virtualized computing
(Containers, VMs) and networking resources.

Table 8. EPM: VDU Data Model

computeld The identifier of the deployed VDU in the virtualization string

required technology.

events A list of events recorded for this VDU. < Event >

optional array

id The identifier of the VDU in the EPM. string

optional

imageName The name of the image used for the VDU. string

required Example : "testImagel"

ip The IP assigned to the VDU. string

required Example : "172.0.0.1"

metadata More detailed information about the VDU in a Key-Value <KeyValuePair>

optional pair format. array

name The name of the VDU. string

required Example : "testvdul"

netName The name of the network to which the VDU is associatedstring

required with.

Example : "testNetworkName"

poPName The name of the PoP where the VDU is deployed. string

required

status The status of the virtualized compute resource. enum

optional '(ir?i'.cia.lizing,
initialized,
deploying,
deployed,
running,

undeploying,
undeployed,
error)

4.1.3.2.9 Worker

A worker object for registering a machine where adapters can be deployed.
33

https://github.com/elastest/elastest-platform-manager/blob/master/docs/api/definitions.md#event
https://github.com/elastest/elastest-platform-manager/blob/master/docs/api/definitions.md#keyvaluepair

D3.1 ElasTest Platform Cloud Modules v1

7Y Elas

Table 9. EPM: Worker Data Model

epmip This is the IP where the EPM is reachable for the Worker. string
required This is needed b.ecau.se the Worker has to be able to reach
the EPM for registering adapters.
id Identifier for the Adapter. string
optional
ip The IP where the Worker is reachable. The EPM will try to string
. ssh in to the Worker at this IP.
required
keyname The name of the Key, which the EPM will use for ssh in to the string
required Worker. This refers to the name provided when uploading the
Key to the EPM.
Example : "key1"
passphrase This is the Passphrase of the Key provided for connectingto string
: the Worker.
required
password This is the password of the user, which can be left blank if no string
. password is needed.
optional
user This is the user, which the EPM will use when trying to ssh in string
. to the Worker.
required

Example : "ubuntu"

4.1.4 Roadmap and Features

The following table gives an overview of the main features which shall be satisfied by

the EPM.

Table 10. EPM: RoadMap & Features

Feature

Description

Allocation of
compute resources

Allocate compute resources in the target cloud environment

based on the requirements.

Termination of

Release compute resources in the target cloud environment

compute resources

Creation/Deletion of
network resources

Create/delete network resources in the

cloud environment

Forwarding logs

forward logs of running instances to the appropriate location

Forwarding metrics

34

target

Compute resources/cloud environment have to be configured to

Compute resources/cloud environment have to be configured
to forward measurement results of running instances to the

D3.1 ElasTest Platform Cloud Modules v1 Q Elas

appropriate location

Retrieval of resource External entities should be able to request information of the

information allocated resources

Instance EPM must be able to execute operations such as executing
management commands inside the instances and downloading/uploading
operations files so that the consumer of the EPM has full flexibility of

accessing and interact with the virtualized instances

Instance lifecycle EPM must be able to execute lifecycle operations such as
operations start/stop, remove instances and retrieving information of the

instance at runtime so that the consumer of the EPM has full
flexibility of executing lifecycle operations with the virtualized
instances for a proper management at runtime

Platform Elasticity Elasticity must be provided by the EPM so that either other

ElasTest components can be scaled dynamically or the
virtualized resources requested by other ElasTest components
themselves

Management of EPM must be able to manage external machines which are not
external machines deployed by the EPM itself so that the EPM can manage those

machines in order to integrate them as workers into the ElasTest
platform

4.1.4.1 EPM adapters

Hereafter it is given an overview of available adapters.

Docker Adapter: The Docker adapter is used to launch Docker containers. To

describe the Docker instances the EPM and the Docker Adapter use an internal
model called a Resource Group. The Resource group describes Docker
containers and the networks connecting them. The Resource Group is
packaged together with a metadata file which provides specific information
relevant for the EPM and the Virtual Infrastructure which in this case is Docker.
The Docker Adapter connects to Docker through the remote API, which means
that it has a One-to-Many relationship with Docker. The Docker SDK also is
used to execute runtime operations.

Docker-compose Adapter: The docker-compose Adapter is used to launch
docker-compose files. The docker-compose file is passed along with an
additional Metadata file in a package. Due to the fact, that Docker-Compose
does not expose an external API, the Adapter must be launched in the same
Machine, where also docker-compose is installed. This means that the Adapter
has a One-to-One relationship with the virtualization technology. The runtime
operations are executed using the Docker SDK.

Ansible Adapter: The Ansible Adapter is used to launch OpenStack instances
using Ansible. An Ansible “play” file is passed along with an additional
Metadata file in a package. The adapter then uses the Ansible SDK to launch

35

D3.1 ElasTest Platform Cloud Modules v1 C’_\) ElaS

the “play”. The Ansible Adapter can connect to OpenStack instances remotely,
which means that it has an One-to-Many relationship with the virtualization
technology. The runtime operations are executed using SSH.

4.1.4.2 Software Development Kits (SDKs)

e Java SDK: The Java SDK makes it possible for integration with the EPM in Java. It
supports all the above mentioned API calls.

e Python SDK: The Python SDK makes it possible for integration with the EPM in
Python. It supports all the above mentioned API calls and is also available in the
Python Package Index (pypi).

4.1.4.3 Roadmap
The overall goal in the upcoming release can be splitted in 3 areas:

e Extending platform support for other cloud infrastructure technologies: Based
on the requirements of other ElasTest components, use cases and the
demonstrators, the EPM is going to extend the current set of available EPM
Adapters to enable deployments and runtime management for those
technologies (OpenStack/Heat, AWS/CloudFormation®, Aria, Kubernetes®!)

e Stabilize and improve the platform support for other operating systems: The
EPM itself and also the support for workers shall be capable to support
Windows and Mac Workers as well.

e Placement algorithms for automated orchestration: As one of the research
items it is foreseen to provide placement algorithms based on several
parameters. This is used to deploy the virtual resources in appropriate places
which can be defined by users to allow the best allocation of resources.
Automated Orchestration is already provided but uses round-robin to select
the target infrastructure whereas this can be improved by designing algorithms
taking into consideration the current location of PoPs, available CPU or
memory, or other parameters.

4.1.4.4 Code Reports

In ElasTest, EPM has been integrated with the Cl system that uses Jenkins for
automated tests and builds after every commit. For calculating the code coverage the
EPM is integrated with Codecov.io.

4.1.4.5 Code Repository

The EPM code repository can be found on GitHub*? and is licensed using Apache 2.0
[3]. Within that repository, there is documentation detailing how to run, use and
extend the EPM.

* Cloud Formation, https://aws.amazon.com/es/cloudformation/
! Kubernetes, https://kubernetes.io/

2 EpM GitHub, https://github.com/elastest/elastest-platform-manager

36

https://aws.amazon.com/es/cloudformation/
https://kubernetes.io/
https://github.com/elastest/elastest-service-manager

D3.1 ElasTest Platform Cloud Modules v1 C’J EIaS

4.1.4.6 APIs

In the figures below it can be found the APIs exposed by the EPM. Those APIs are
basically consumed by the users of the EPM (e.g. TORM, ESM) which are designed
for the requirements coming from the other ElasTest components. They are using
the OpenAPI Specifications (OAS)33 which is a standard, programming-agnostic
interface description for REST APIs which was agreed on and is used ElasTest
platform wide to. Thanks to OAS, it allows the generation of the API description
and was also used to generate the SDKs for python and Java.

Package v

‘ m /packages Receives a package. ‘
BT /pecvages/ (i) Dseisapaciace |

Figure 8. EPM API: Package

Network v

m /network Retumns all existing networks.
| m /network Creates a new network.
ﬂ /network/{id} Retumns a network.
m /network/{id} Deletes a network.

PATCH /network/{id} Updates a Network.

Figure 9. EPM API: Network

Adapter v

‘ m /adapters Returns all registered adapters

Figure 10. EPM API: Adapter

3 OpenAPI Initiative, https://www.openapis.org/

37

https://www.openapis.org/

D3.1 ElasTest Platform Cloud Modules v1 (/J ElasTest

PoP v

/pop Returns all PoPs.

/pop Registers a new PoP

/pop/{id} Returnsa PoP.

/pop/{id} Unregisters a PoP.

/pop/{id} Updates a PoP.

Figure 11. EPM API: PoP

ResourceGroup v

/resourceGroup Returns all Resource Groups.

/resourceGroup Creates a new Resource Group.

/resourceGroup/{id} Returns a Resource Group.

/resourceGroup/{id} Deletes a Resource Group.

/resourceGroup/{id} Updates a ResourceGroup.

Figure 12. EPM API: ResourceGroup

TOSCA v

/tosca Deploys a Tosca template.

Figure 13. EPM API: TOSCA

38

D3.1 ElasTest Platform Cloud Modules v1 (/J ElasTest

Runtime

/runtime/{id}/file Downloads a file from a VDU.

/runtime/{id}/£file Uploads afile io a VDU.

/runtime/{id}/path Uploads a file to a VDU.

/runtime/{id}/action/start Starts the given VDU.

/runtime/{id}/action/stop Stops the given VDU.

Executes given
/runtime/{id}/action/execute command onthe
given VDU.

Worker

Figure 14. EPM API: Runtime

v

Sets up the specified worker to |
/workers/{id}/{type} install the specified type of
adapter.

/workers Retumns all registered workers

/workers Registers the worker and saves the information.

/workers/{id} Deletes a Resource Group.

A
®
<

/keys Returns all available Keys

/keys Uploads a key to the EPM.

/keys/{id} Deletes a Key.

Figure 15. EPM API: Key and Worker

39

D3.1 ElasTest Platform Cloud Modules v1 C’_\) ElaS

4.1.5 Research Results and Future Plans

e Customized orchestration solution for testing environments with advanced
functionalities such as runtime operations

e Provider vendor lock-in

e Integration of several cloud environments for Multi-provider support

e Placement of virtual resources

4.2 ElasTest Monitoring Platform (EMP)

4.2.1 Introduction

From the DoA [1], the scope of ElasTest Monitoring Platform (EMP) is captured in
these sentences -

"

ElasTest is a complex software itself and it needs to be monitored for different purposes
including problem diagnose, resource utilization tracking, energy consumption
tracking, cost tracking, etc. This subtask shall take the responsibility of creating the
appropriate monitoring tools, GUIs and APIs enabling:

To recover in a seamless way information related to the runtime execution of the
different ElasTest components including logs, internal status, resource utilization, etc.
These capabilities shall enable the diagnosis and isolation of problems taking place
inside ElasTest logic.

To collect and expose through an API the appropriate monitoring information related
to resource utilization of the cloud resources consumed by the testing activities (e.g.
TJobs instances, Test Support Service instances, etc.) This information shall include cost
consumption, energy consumption, memory consumption, CPU consumption, etc. This
information shall be made available through a northbound interface to the TORM so
that the appropriate engines (see Task 4.4) can consume them.

To enable the instrumentation of the cloud resources consumed by the testing activities
so that testers shall be able to inspect the status of the different Tlob instances and
Service instances, recover logs from them and control their lifecycle (e.g. stopping
them).

To develop a toolbox enabling the installation and management of all such capabilities
in ElasTest.

”

The above snippet captures the minimal set of functionalities needed for ElasTest but
in a true spirit of R&D, a few additional requirements were included as part of scope of
work to advance the state of the art. Deliverable D2.3 lists the requirements and high
level architecture for EMP. In this section we will delve in depth into EMP, see detailed
architecture, interaction diagrams, and current development status and roadmap for
the remaining duration of the project.

The basis design philosophy behind EMP is quite simple. EMP supports creation of
monitoring spaces. A monitoring space can be thought to be a collection of relevant
metric streams belonging to either a complex system being monitored, or a set of

40

D3.1 ElasTest Platform Cloud Modules v1 C’_\) ElaS

related microservices. Within a monitoring space, multiple metric series coexist. A
series can be thought of collection of metrics stream from the single agent. An agent
can be configured to handle log from a microservice, or host metrics, or a single docker
container stats.

The design philosophy can be described succinctly by Figure 1. Series is marked in the
following figure as subspace. Internally, the codeword for EMP implementation is
Sentinel, therefore in the later sections; any reference to Sentinel in the images should
be interpreted as EMP.

subspace B-1

Kafka cluster

loAe| yuawabeue:
12WNSU0d Bxyyey

subspace A-1

subspace A-2

Figure 16. EMP design philoshophy, subspace is synonymous to metrics stream described in the text

4.2.2 Baseline Concepts and Technologies

EMP framework has been implemented in Java and has been packaged as Docker
image which facilitates the deployment on a single machine or over a cluster of nodes
in a relatively straightforward manner. The principal functions of any monitoring
platform are -

e Enable metrics collection, and retention
e Allow information retrieval for analysis
e Condition based alerts and alarming functionality

In order to support high volume metrics and log streams, Apache Kafka®* was chosen
for the messaging subsystem for the following reasons:

e Fast delivery at scale

e Horizontally scalable even across multiple datacentres

e Easy programmability

e Supports multi-tenancy, geo replication

e Topic centric distribution with message containing keys is naturally aligned with
EMP’s notion of spaces and subspaces (series).

e Builtin resilience, coordination, among other desirable qualities

e Flexibility is use as queuing, messaging system, storage or streaming platform.

e Large and active community

** Apache Kafka: https://kafka.apache.org/intro [accessed: 2018-05-23]
41

https://kafka.apache.org/intro

D3.1 ElasTest Platform Cloud Modules v1 C,J Elas

The AAA is handled internally at the moment, but in the near future, use of Keystone is
anticipated as a replacement AAA system for use in EMP.

The persistence is supported by relational as well as time series optimized database.
For static, account related data, file based sqlite is used as a lightweight relational
database. For metric and log streams, InfluxDB*” is used as it implements time based
sharding as well as allows downsampling policies for older data. Figure 2 shows the
catalogue of all relevant technologies that have been used in EMP at the time of
writing of this document.

& InfluxDB
G Grdfnq ixw :

Zookeeper
APACHE -
kafka. .
istributed streaming plattorm @ Spf'hg

u ((by ivotal.

Maven s B8

docker e

i Java8
ZFSPHINX SOLite

Figure 17. Technology landscap in EMP

Python Documentation Generator

For visualization, Grafana®® has been used as it has a proven integration with InfluxDB
and allows charting of key metrics collected in EMP a relatively straightforward task.

A few EMP agents have been developed and packaged as docker images to facilitate
the metrics collection and transmission into EMP. The agents have been developed in
Python3 to keep memory footprint lower and also demonstrate independence of
language for development of agents. In the current release, the following agents have
been developed:

e System stats collector
e Docker stats collector

%% Influx Data, https://www.influxdata.com/
*® Grafana, https://grafana.com/

42

https://www.influxdata.com/
https://grafana.com/

D3.1 ElasTest Platform Cloud Modules v1 C’_\) ElaS

e Log file parser, tokenizer and transmission agent (limited to log4j formatted log
files from Java applications).

4.2.3 Component Design and Architecture

A high level EMP architecture is included in D.2.3. [5] along with module descriptions.
Here we present a more detailed version of the same, see Figure 19.

| External componenis

Collectors, agents ina
O system / component to
be monitored

Visualization addons
(grafana, kibana, etc) 0

Data ingestion

L interface (AMQP or
. Management AP | Query interface similar) - Kafka, Rabbit . .
i interface (Rest based) Notification managers

T N ¢

Authentication and Persi . O AMOP/kafka worker Online expression
Authorization Al process solver C

(T ey A In-memory cache
Alarm registry TETERE (e E = Alarm executors. —
Sentinel Framework

o\

Lag
data

Persistence store

Figure 18. FMC diagram showing detailed EMP components

As can be seen in the figure, the data is gathered by agents (log parsers, system
performance metrics collectors, etc) which are low profile, tiny processes running is
target environment to be monitored and either periodically or on change detection
gathers relevant data, pre-processes packages sending them as a stream to EMP. The
user can use the Management APl to create monitoring spaces and series as well as
manage alert rules. The framework has authorization built in and enforces through
Authentication and Authorization module and the data in motion is over industry
grade TLS/SSL connection.

The alarms are stored in the Alarm Registry. The alarm definition which is a well
formed mathematical expression is evaluated using recent values of corresponding
metrics or series of cached recent past data values of a metric through the Online
expression solver. The data ingestion interface in the initial prototype is Kafka and
adding support for RabbitMQ>’ is planned. The framework is capable of using several
persistence stores and the interactions are done via the Persistence drivers as shown
in Figure 2 above. The query interface enables users to perform interesting analytics
with the stored data which will enable easy debugging of large scale distributed

37 RabbitMQ, https://www.rabbitmg.com/

43

https://www.rabbitmq.com/

D3.1 ElasTest Platform Cloud Modules v1 C’_\) ElaS

services through data correlation studies among different series within the same
monitoring space in EMP.

4.2.3.1 Use cases description

4.2.3.1.1 Use case A: simultaneous tracking of system parameters as well as log
messages

Imagine a situation where a few ElasTest platform core services are not reachable due
to high packet load on the n/w interfaces and not due to a bug in the software itself. A
visual representation of all facets of the platform including system metrics along with
log visualization will be very helpful in identifying this case. Since EMP handles both
metric streams and log messages in a similar manner, it enables simultaneous
visualization of both types of data streams. The ElasTest platform will have both log
agents and system characterization agents sending continuous streams of metrics to
EMP and using a visualization tool such as Grafana, the appropriate visualization charts
can be rendered through the EMP.

4.2.3.1.2 Use case B: correlated query over multiple series in a given time window

An EMP user want to execute a correlated query in a given time window over multiple
data series, s/he sends the query to EMP query interface, EMP query engine
determines how to extract various data snippets from multiple series, performs
appropriate filtering and aggregation as needed and responds back to user’s query.
Such a capability will enable users of EMP to investigate cascading effect of service
degradation over the entire service ecosystem or service-chain in a distributed systems
deployed at large scales. Other uses of correlated queries can be easily imagined.

4.2.3.1.3 Use case C: alert definition and triggering

Scenario: a service with overloaded CPU must be scaled out to spread the load, the
user of EMP creates an alert definition for ex: if mean (last 10 CPU load readings) >
80% then send alert to elasticity manager using a call-back hook! The EMP keeps an
online mean of last 10 CPU readings from the specified data series and using the online
expression solver determines if the triggering conditions are satisfied or not! Is found
to be True, the callback hook is executed.

4.2.3.1.4 Use case D: liveness detection and callback hook

Imagine, ESM needs to track which services managed by it are alive. It needs to take
corrective action in case some services are unresponsive. The ESM can use EMP to
achieve this. ESM process gets an user account and API credentials for EMP. Using API
calls, for each instance of service it provisions, it creates a liveness-check object along
with desired periodicity and the service instance endpoint in EMP. It also specifies a
call-back REST call signature for such object in EMP. The EMP periodically performs the
liveness test against service instance endpoint, and in case a test fails due to service
unreachable error, or a timeout, EMP executes the call-back restful hook with
configured message. Doing so will notify about unresponsiveness of a particular
service instance to ESM. To limit the security footprint of this feature, EMP will only
allow GET calls and a periodicity of no less than a few seconds.

44

D3.1 ElasTest Platform Cloud Modules v1 C.,_\) ElaS

4.2.3.2 Sequence diagrams

The following sequence diagrams illustrates interactions among internal components
of EMP and external entities such as EMP users (TORM / Tlob developer) while

performing following tasks -

e Account creation in EMP, space and series setup, Figure 20

e Metric ingestion and persistence in EMP, Figure 21
e Alerts management, Figure 22

e Data visualization, Figure 23

e Data query, Figure 24

Sentinel Authentication & Monitoring Space creation

| User | | Sentinel |

create account (username, password) 4
Ll

¢ Created (APl Key, data endpoint parameters, access-uri)
create monitoring-space (user-id, api-key, space-name) >

< space created (space uri details)
create series (user-id, api-key, space-name, series-name, msg signaturel.

4 series created (series uri details)
hl
get endpoint parameters (user-id, api-key) >

access endpoint details

Fy

can now configure all sentin

using this information, user
el
agents before starting them

| checks if account exists or nutj

checks for duplication &
APl key validity

checs for duplication &
API key validity

| checs for API key validitﬂ

| User | | Sentinel |

Figure 19. Sequence diagram showing user registration and monitoring space management

Figure 20 shows the messages exchanged between EMP user and the EMP AAA
subsystem for registration of the account. The user account creation is only permitted
to EMP special admin account. Users of EMP at this moment can’t self-register. This
limitation may be removed in a future release. When an account is successfully
registered with EMP, a unique API-key is generated and associated with that account.
Subsequent steps shown in the Figure 4 above such as creation of monitoring space,
metrics series within a space, etc. must be carried out together with the API-key

included in all requests.

45

D3.1 ElasTest Platform Cloud Modules v1 C.,_\) ElaS

Sending metrics into Sentinel and subsequent workflow

Agent Kafka Sentinel-Kafka-Client DB-Worker 0B || Cache-Manager
at fixed periodity Pa—)

¢ ibes to all space:

sends messages as they amivey,

saves messages if no subscribers

exist for a particular space,

sends as soon as a subscriber
ives

msg)y

transforms msg as per
registered signature of

persist metric data (space info, series info, etc.)

ok/failure

metric data

Agent Kafka Sentinel-Kafka-Client DB-Worker

Figure 20. Sequence diagram showing metrics streams and data workflow through Sentinel

Figure 21 shows the interactions among internal components of EMP when a metric is
sent by EMP agents. Kafka is the messaging technology selected and all agents send
their data stream to kafka for a particular topic. The format of all messages sent to
kafka cluster must be in the following style:

{topic, key, message}

Every monitoring space and metric series maps to Kafka topic with a key. This
management of topics is entirely handled by EMP and the users and agents are
oblivious to the process.

In EMP, Kafka worker threads handle all incoming metrics as soon as possible.
Depending on the underlying physical host capability, each worker thread can be
responsible for more than one topic. To keep the Kafka worker lightweight, the job of
persistence is delegated to DB worker agent. Kafka workers, simply send the received
messages to the DB worker agents which are sent to w common thread pool for
scheduling by the underlying thread management subsystem.

There is a provision to keep most recent ‘n’ points from a metrics stream in memory to
facilitate online processing and evaluation of alarms and SLA related triggers. This
functionality is not available in release 0.9.0 at the time of writing of this report and in
planned for the next release.

46

D3.1 ElasTest Platform Cloud Modules v1

| User I

create-alert(user-id.api-key.alert definition.alert endpoint

alert registered

7Y Elas

Alert definition and enforcement workflow

| Sentinel | I Alerts-Registry | | Process-Manager | I Alert-Process

Cache-Manager ” Alert-Endpoint

checks if alert definition
is valid, and expression
parameters exist in series
signature definition

alert definitien.
PR S—

| User I

Figure 22 shows the interaction among various sub modules of EMP for alert
registration and triggering mechanism. The alerts once registered are automatically
scheduled and allocated to a alert process thread. The cache manager upon receiving
newer metrics notifies the alert process which then re-evaluates the alert condition
with newer data points and if the alert condition is met, a notification is sent to the
registered alert-endpoint. A more simplistic version of alert manager is available in the

trigger alert e:enutinn'

evalutes with]
new data set

if resu

| Sentinel | I Alerts-Registry | | Process-Manager | I Alert-Process |

Figure 21. alert management and execution workflow

current release at the time of writing of this document.

EMP uses Grafana for metric visualization. Figure 23 shows the steps necessary by the
users to access the visualization engine. Grafana periodically queries directly the

InfluxDB endpoint to generate live graphs.

User

get-endpoint{user-id, aEi-ken'

Data visualization

Sentinel Grafana

subscribe to specific metric »
.nuliﬁe! when new metric data

It true: alert

h Alert i
C; g P

verifies api-keyl

endpoint details

User

login »

Sentinel-DB

user configures grafana

with appropriate db

parameters, sets query

and refresh intervals

at defined periodicity :

query

¢ guery response set

>

Draws visual element51

charts, tables, etc.

Sentinel Grafana

Sentinel-DB

Figure 22. data visualisation sequence with Grafana and Sentinel

47

D3.1 ElasTest Platform Cloud Modules v1 C.,_\) ElaS

Query Interaction

| User | | Sentinel | I Query-Handler | | Query-Worker ” Sentinel-DB

uery(user-id, api-key, expression

validates api-key

(expression) >

parses andcreates que

evaluates expression,
ry
plan

micro-guery-1 >
fetch data '
¢ result set-1

'
L

v

micro-guery-n >

fetch data >
¢ result set-n
merges all micro-results
applies filters, etc.
¢ result-set
uery-response
| User | | Sentinel | I Query-Handler | | Query-Worker ” Sentinel-DB I

Figure 23. user query workflow

Figure 24 above shows the planned query processing by EMP. User send in a
compound query using a query language to be designed for EMP. Once the query is
received at EMP, the query-handler breaks down the compound query into an
execution plan and sends the constituent parts to query worker processes. Each query
worker independently processes the basic query and sends the result back to the
handler, which then merges the responses, applies filters as necessary and returns the
response back to the user.

4.2.4 Roadmap and Features

The features exposed by EMP can be summarised under these following categories:

Uniform data ingestion interface: EMP utilizes the same common data interface
to gather system stats as well as log streams

First class status to logs and system metrics: the system metrics and log entries
are treated in exactly similar manner in EMP

Alerting capabilities: EMP will support custom alert definitions and execution
call-backs, users of EMP will be able to create alert definitions based on the
monitored metrics and define mathematical operations with one or more
metrics as the trigger mechanism. The alerting subsystem in EMP will support
working with latest live data point, or allow the computation to go back n-
points in the history for execution of the trigger function.

48

D3.1 ElasTest Platform Cloud Modules v1 C’_\) ElaS

Correlated query management and corresponding interface: EMP will integrate
with expressive query language that will enable users to perform correlation
between different metric streams to investigate performance flashpoints in the
ElasTest platform.

Scheduled system liveness test support: EMP will include feature to define REST
based liveness checks of remote services, and corresponding call-backs to
notify dead services.

The EMP exposes a RESTful interface using which an intuitive GUI has also been
developed. The APIs allows the following action:

Creation of new user account

Creation of monitoring spaces

Creation of multiple data series within any space

Fetching of agent configuration parameters to aid with agent deployment
Registration of health checks to track liveness of monitored entities (services)
Query of health check history

The limitation of current APIs are following:

Missing DELETE capabilities for all managed objects: users, spaces, series,
health checks, etc.

Missing UPDATE capability for all managed objects

Missing query interface

Currently this is satisfied via InfluxDB native query interface

The identified limitations are planned to be overcome in the subsequent releases of
EMP. A few screenshots of the EMP GUI developed over RESTful APIs are shown next.
Figures 25 through 31 captures the main elements of the EMP GUI. Other aspects
include retrieval of user data, common configuration parameters needed for agents’
configuration, etc.

Sentinel :: Login

Username

elastest

Password

Figure 24. EMP GUI Login screen

49

7Y Elas

D3.1 ElasTest Platform Cloud Modules v1

Figure 25 above shows a simple and intuitive login screen which not only authenticates
the user but also sets the API key as part of the session parameters which the web-UlI
uses to offer subsequent views to the user. Figures 26 and 27 below shows the
overview page where the EMP user is able to get a gist of relevant information at a
glance. Figure 27 shows all registered spaces and their key parameters to the user.

Sentinel Administration Panel

Summary

Monitored Spaces H Health Checks

Number of monitored spaces Number of health check items

MAIN NAVIGATION

You have 3 space(s) defined! YYou have 0 health-check(s) defined!

A Home
B2 spaces Active Alerts
{ Health Checks Active alerts
Overview of alerts currently active

/A Visualization
You have no active alerts!

© 2017 - 2018 Sentinel by SPLab.
Version: 0.6.0-beta3

Figure 25. EMP overview page, showing spaces, health checks and any activity alerts

Sentinel Administration Panel

@ Registered monitoring spaces

elastest Space: elastest_core H Space: elastest_tss
John.doe@example.com API Endpoint: /api/space/1 API Endpoint: fapi/spacef2

MAIN NAVIGATION

Useful information related to this space: Useful information related to this space:

M Home

B2 Spaces

« Kafka topic name: user-1-elastest_core
+ Data dashboard: hitp://kafka.cloudlab.zhaw.ch:8083/ [link]
+ Data dashboard account: userlelastest_core

« Data dashboard password: TvBWdqShV2SaGNRV

o Kafka topic name: user-1-elastest_tss
« Data dashboard: http://kafka.cloudlab.zhaw.ch:8083/ [link]
» Data dashboard acoount: userelastest_tss

« Data dashboard password: sBZ6CAr7b3ucN23g

@ Health Checks

A Visualization

use the card menu to explore more about this space: use the card menu to explore more about this space

Space: test_space
‘API Endpoint: /apl/space/3

Useful information related to this space:

+ Kafkatopic name: user-1-test_space
« Data dashboard: hitp:/kafka.cloudlab zhaw.ch:8083/ [link]
 Data dashboard account: userltest_space

+ Data dashboard password: S3xA8LtynJAbSQLm

use the card menu to explore more about this space:

Management actions

Create new monitored space

‘The space name must be unique among all your registered spaces. Please do not use dashes
- }in the name, underscore () Is allowed.

space name (no spaces and no dash

® 2017 - 2018 Sentinel by SPLab.
Version: 0.6 0-beta3

Figure 26. EMP space management page

50

D3.1 ElasTest Platform Cloud Modules v1 J EIaS

Figure 28 shows the series management view of the EMP web-Ul. It allows all
functionalities to the user which they can perform using the RESTful APIs over
command line.

Sentinel Administration Panel

@ Registered series in this space (elastest_core)
elastest Series: Series Name: sys-stats H Series: Series Name: docker-stats
John.doe@example.com API Endpoint: /api/series/1 API Endpoint: fapi/series/2
MAIN NAVIGATION
Useful information related to this series: Useful information related to this series:
Home
« Defined message format: unixtime:ms hoststring cpu_user:float . format; unixtime:s
cpu_system float cpu_idle:float cpu_percent:float ram_percent:float « Associated with topic name: user-T-elastest_core

Spaces

i s disk_percent:ficat

* Associated with topic name: user-1-elastest_core
P Associated configuration values for agents sending data into this series:
{0 Health Checks

Associated configuration values for agents sending data into this series:
 Kafka endpoint: kafka cloudlab.zhaw.ch:9092

/¥ Visualization « Key Serializer: StringSerializer
« Kafka endpoint: kafka.cloudlab.zhaw.ch:9092 « Value Serializer: StringSerializer
* Key Serializer: StringSerializer
* Value Serializer: StringSerializer

use the card menu to explore more about this series

use the card menu to explore more about this series

Management actions

Create new data series in this space
The serles name must be unique among all your registered series in this space. Please do not use spaces () in the name, underscore (_) or dash (-) Is allowed.

[override with your own format below (ignores any
selected option)

message format create series.

series name (no spaces) - select from predefined formats — j

© 2017 - 2018 Sentinel by SPLab.
Version: 0.6.0-beta3

Figure 27. EMP series management (within a given space) page

Sentinel Administration Panel

@ Latest (max 50 rows, |atest shown first) data points in series: sys-stats

elastest time cpu_idie cpu_percent cpu_system cpu_user disk_percent host ram_percent
John.doc@example.com
20180524T11:2913.0722 14552345 0800000011920029 6283.18994140625 7650.39990234375 9.600000381469727 kafka.cloudia 21.799999237060547
MAIN NAVIGATION
20180524T1129.097342 144028025 17999999523162842 63722998046875 228009609375 90 sentinel loudlab 14.399999618530273
A Home
2018.0524T1128:43.0552 1455116125 1.2000000476837158 6262.85000765625 7649.81982421875 9.600000381469727 kafka.cloudlab 21.799999237060547
E% spaces 2018.0524T1128:897052 1440162625 1.5 637177978515625 22799.44921875 90 sentinel.cloudlab 14.399999618530273
. 20180524T1128:13.0242 1454998125 0.800000011920929 626231082421875 76490 9.600000381469727 kafka.cloudlab 21.799999237060547
(0 Health Checks
2018.0524T11:26:09.682 1440084875 17995999523162842 6371299B046875 22798.130858375 9.0 sentinel loudlab 14.399989618530273
VisuaReation 2018.05.24T11:27:43.022 1452880.0 08999909761561421 628183984375 7648.5498046875 9.600000381469727 Kafka.cloudlsb 21.799999237060547
2018.05.24711:27:39.652 143992735 15 63707998046875 2279644921875 90 sentinel cloudlab 14.399999618530273
20180524T1127:129882 14547610 10 628133984375 76480 9.600000381469727 kafka.cloudlab 21.799999237060547
2018.0524T11:27:09.622 1439809625 1.399599976158142 6370240234375 22795279296875 9.0 sentinel loudlab 14.300000150734863
20180524T1126:420502 1454642125 1.0 620097021484375 7647.22021484375 9.600000381469727 kafka.cloudlab 21.799999237060547
20180524T11:26:20.5892 14396915 12999999523162842 6369.77001953125 2279416015625 20 sentinelcloudiab 14.300000150734863
20180524T1126:129932 145452325 1.100000023841858 6260.5 764652001953125 9.600000381469727 kafka.cloudlab 21.799999237060547
20180524T1126:005662 143957325 1.399509976158142 6369.330078125 22793.140625 90 sentinel cloudlab 14.300000150734863
2018.0524T1125:420052 14584045 0.800000011920029 6280.08984375 7645001953125 9.600000381469727 Kafka.cloudiab 21.799999237060547
20180524T1125:89.5342 143945525 12000000476837158 6368.81082421875 22792099609375 9.0 sentinel cloudlab 14.300000190734863
© 2017 - 2018 Sentinel by SPLab.
Version: 0.6.0-beta3 20180524T1125:128752 14542855 1.2000000476837158 6296201171875 7645240234375 9.600000881469727 kafka cloudlab 21.799999237060547

Figure 28. EMP - recent data point in a series

Figure 29 shows the page showing the user those latest 50 data values that were
received by EMP as part of a series stream. In the recent releases of EMP, the data
visualization is done via open source tool Grafana. Figure 30 provides a glimpse of that
integration.

51

D3.1 ElasTest Platform Cloud Modules v1 Q EIaS

Sentinel Administration Panel

Data Visualization

Configurable Dashboard
Dashboard: http://kafka.cloudlab.zhaw.ch:3000
MAIN NAVIGATION
Use the dashboard (link) to configure and create existing / new Asample is as an example.
A Home
B2 spaces I5 - €% elastest - e B @ ¢ zoomout > O Last30 minutes o e
@ Health Checks Host Statistics Active Containers

/¥ Visualization

0 V \ \ IV
13:00 13:05 13:10 1315 13:20 13:25

== disk-full % == cpu used % == ram used %

©2017 - 2018 Sentinel by SPLab.
Version: 0.6.0-beta3

Figure 29. EMP embedded data visualisation page

Sentinel Administration Panel

@ Health check summary

elastest No registered health checks found!
John.doe@example.com
MAIN NAVIGATION .
Active Alerts

A Home

Active alerts

Overview of alerts curently active
% spaces e act!
'@ Health Checks YYou have no active alerts!

A Visualization Management actions

Create new health check entry
Please fill in all the fields below.

@ target service check endpoint e reporting url, to be called when health check fails - select check periodicty — j

@ check method hint: [code] or [body,<element> <expected_values] - select tolerance factor — j register new health check

© 2017 - 2018 Sentinel by SPLab.
Version: 0.6.0-beta3

Figure 30. EMP health-check management page

Figure 31 above shows the view where user can create and monitor the state of all the
health-check objects registered within EMP. If any active alert is ongoing, it is clearly
shown as a prominent element in the web view to the user.

4.2.4.1 Code Reports

In ElasTest, EMP has been integrated with the Cl system38 that uses Jenkins>>. The EMP
is tested comprehensively using around 105 unit tests, and the code coverage attained
has been consistently around 70%. Figure 32 shows the build pipeline within ElasTest
Cl system.

% ElasTest Cl service: https://ci.elastest.io/jenkins/
% Jenkins, https://jenkins.io/

52

https://ci.elastest.io/jenkins/
https://jenkins.io/

D3.1 ElasTest Platform Cloud Modules v1 C’J EIaS

Test Result Trend

Last Successful Artifacts 100
sentinel-0.9.0-jar-with-dependencies jar 132.68 MB 7 view
sentinel-0.9.0.jar 81.02MB 7 view &0
ool
3
Recent Changes S el
ol
Stage View $ 3 § i g
{just show failures) enlarge
e et Setup Tests Package Ar_chlve Build image - Run image Publish
Prep for emp atifacts Package
1min 8s 7s 1min 21s 1min 3s 155 19s 1s 28s
4352
Lol L @ 1min 18s 1min 26s min 4
05:06
#351
L) @ 1min 32s 1min 27s min 4s
05:52
#350
i & 1min 26s 1min 38s min 5s 5 17 1 28s
12:02
#3439
Lok ® nin 1s min 16s 1mi
10:21
4348
L @ 30s 1min Os 1min Os 6 2¢ 29s
09:50

Figure 31. ElasTest CI dashboard for EMP test & build pipeline

The Java plugin Cobertura®is used to generate code coverage reports and then it is
visualized using an external service: codecov.io*. Figure 33 shows