

 D3.1
Version 1.0

Author ATOS

Dissemination PU

Date 29-06-2018

Status FINAL

D3.1 ElasTest Platform Cloud Modules v.1

Project acronym ELASTEST

Project title ElasTest: an elastic platform for testing complex distributed
large software systems

Project duration 01-01-2017 to 31-12-2019

Project type H2020-ICT-2016-1. Software Technologies

Project reference 731535

Project website http://elastest.eu/

Work package WP3

WP leader ATOS

Deliverable nature Report

Lead editor Enric Pages

Planned delivery date 30-06-2108

Actual delivery date 29-06-2108

Keywords Open source software, cloud computing, software
engineering, operating systems, computer languages,
software design & development

Funded by the European Union

http://elastest.eu/

D3.1 ElasTest Platform Cloud Modules v1

2

License

This is a public deliverable that is provided to the community under a Creative
Commons Attribution-ShareAlike 4.0 International License:

http://creativecommons.org/licenses/by-sa/4.0/

You are free to:

Share — copy and redistribute the material in any medium or format.

Adapt — remix, transform, and build upon the material for any purpose, even
commercially.

The licensor cannot revoke these freedoms as long as you follow the license
terms.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license,
and indicate if changes were made. You may do so in any reasonable manner,
but not in any way that suggests the licensor endorses you or your use.

ShareAlike — If you remix, transform, or build upon the material, you must
distribute your contributions under the same license as the original.

No additional restrictions — You may not apply legal terms or technological
measures that legally restrict others from doing anything the license permits.

Notices:

You do not have to comply with the license for elements of the material in the
public domain or where your use is permitted by an applicable exception or
limitation.

No warranties are given. The license may not give you all of the permissions
necessary for your intended use. For example, other rights such as publicity,
privacy, or moral rights may limit how you use the material.

For a full description of the license legal terms, please refer to:

http://creativecommons.org/licenses/by-sa/4.0/legalcode

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/legalcode

D3.1 ElasTest Platform Cloud Modules v1

3

Contributors

Name Affiliation

Enric Pages ATOS

David Rojo ATOS

Michael Pauls TUB

Piyuhs Harsh ZHAW

Andy Edmonds ZHAW

Micael Gallego URJC

Nick Stavros RELATIONAL

Version history

Version Date Author(s) Description of changes

0.1 02/05/2018 E.Pages ToC

0.2 11/05/2018 ALL Initial contributions

0.3 30/05/2018 M. Pauls Extended EPM parts

0.3 30/05/2018 A. Edmonds ESM contributions

0.3 30/05/2018 P. Harsh EPM contributions

0.3 30/05/2018 D. Rojo EIM contributions

0.4 30/05/2018 M. Gallego TORM scope review

0.4 30/05/2018 E. Pages Integration

0.5 01/06/2018 All Review

0.6 01/06/2018 E. Pages Initial version Quality Review Process

0.7 06/06/2018 M. Gallego, M.
Pauls, A.
Edmonds

Added content to “Challenges to
Overcome” section

0.8 14/06/2018 P. Harsh Clarified and expanded the role of EMP
supporting various challenges identified
within this document.

0.8 14/06/2018 N. Stavros EDM contributions

0.9 20/06/2018 E. Pages Integrated version addressing comments

1.0 27/06/2018 E. Pages Final version ready for submission

D3.1 ElasTest Platform Cloud Modules v1

4

Table of contents

1 Executive summary ... 13

2 Introduction .. 13
2.1 Overview and Objectives ... 13
2.2 Structure of the Document .. 14
2.3 Target Audiences .. 14

3 ElasTest Cloud Modules .. 14
3.1 Rationale .. 14
3.2 Categories .. 15
3.3 Roadmap .. 15
3.4 Challenges to Overcome .. 16
3.4.1 ElasTest Functional Components/Services .. 17
3.4.2 ElasTest Non-functional Aspects .. 19

4 Platform Management and Monitoring ... 22
4.1 ElasTest Platform Manager (EPM) ... 22
4.1.1 Introduction ... 22
4.1.2 Baseline Concepts and Technologies ... 23
4.1.3 Component Design and Architecture ... 24
4.1.4 Roadmap and Features .. 34
4.1.5 Research Results and Future Plans .. 40
4.2 ElasTest Monitoring Platform (EMP) .. 40
4.2.1 Introduction ... 40
4.2.2 Baseline Concepts and Technologies ... 41
4.2.3 Component Design and Architecture ... 43
4.2.4 Roadmap and Features .. 48
4.2.5 Research Results and Future Plans .. 56
4.2.6 ElasTest Monitoring Platform Integration within ElasTest .. 56

5 Service Lifecycle Management .. 57
5.1 ElasTest Service Manager (ESM) .. 57
5.1.1 Introduction ... 57
5.1.2 Baseline Concepts and Technologies ... 58
5.1.3 Component Design and Architecture ... 62
5.1.4 Roadmap and Features .. 66
5.1.5 Research Results and Future Plans .. 71

6 SuT Management .. 72
6.1 ElasTest Instrumentation Manager (EIM) & Instrumentation Agents 72
6.1.1 Introduction ... 72
6.1.2 Baseline Concepts and Technologies ... 73
6.1.3 Component Design and Architecture ... 74
6.1.4 Roadmap and Features .. 77
6.1.5 Research Results and Future Plans .. 82

7 Data Persistence Management .. 83
7.1 ElasTest Data Manager (EDM) ... 83
7.1.1 Introduction ... 83
7.1.2 Baseline Concepts and Technologies ... 83
7.1.3 Component Design and Architecture ... 84

D3.1 ElasTest Platform Cloud Modules v1

5

7.1.4 Roadmap and Features .. 85

8 Conclusions ... 87

9 References .. 88

10 Appendix .. 89
10.1 ElasTest Service Manager Sequence Diagrams .. 89
10.1.1 ServiceConsumer Sequence Diagrams ... 89
10.1.2 ServiceProvider Sequence Diagrams .. 92

D3.1 ElasTest Platform Cloud Modules v1

6

List of Figures
Figure 1. ElasTest Agile Management Methodology .. 15

Figure 2. WP3 Cloud Components Roadmap ... 16

Figure 3. Flow of interactions between ElasTest services ¡Error! Marcador no definido.

Figure 4. Architectural Overview of EPM ... 25

Figure 5. EPM: Deployment of a Resource Group .. 27

Figure 6. EPM: Deployment of a Package ... 28

Figure 7. EPM: Registration and Configuration of a new worker ... 29

Figure 8. EPM: Data Model ... 29

Figure 9. EPM API: Package .. 37

Figure 10. EPM API: Network ... 37

Figure 11. EPM API: Adapter .. 37

Figure 12. EPM API: PoP ... 38

Figure 13. EPM API: ResourceGroup .. 38

Figure 14. EPM API: TOSCA... 38

Figure 15. EPM API: Runtime .. 39

Figure 16. EPM API: Key and Worker ... 39

Figure 17. EMP design philoshophy, subspace is synonymous to metrics stream described in the text ... 41

Figure 18. Technology landscap in EMP ... 42

Figure 19. FMC diagram showing detailed EMP components .. 43

Figure 20. Sequence diagram showing user registration and monitoring space management 45

Figure 21. Sequence diagram showing metrics streams and data workflow through Sentinel 46

Figure 22. alert management and execution workflow ... 47

Figure 23. data visualisation sequence with Grafana and Sentinel .. 47

Figure 24. user query workflow .. 48

Figure 25. EMP GUI Login screen.. 49

Figure 26. EMP overview page, showing spaces, health checks and any activity alerts 50

Figure 27. EMP space management page .. 50

Figure 28. EMP series management (within a given space) page .. 51

Figure 29. EMP – recent data point in a series ... 51

Figure 30. EMP embedded data visualisation page ... 52

Figure 31. EMP health-check management page ... 52

Figure 32. ElasTest CI dashboard for EMP test & build pipeline .. 53

Figure 33. EMP code coverage graph [accessed: 2018-05-24] ... 53

Figure 34. OpenAPI specification of EMP REST APIs, Swagger rendering .. 54

Figure 35. Expanded descriptions, methods, status codes for EMP APIs ... 55

Figure 36. EMP visualisation pane tracking ElasTest Platform core modules .. 57

file:///C:/Projects/ELASTEST/WPs/WP3/Deliverables/D3.1/Integrated/Reviewed/Final/ElasTest_Public_Deliverable_3-1_Final-v4.docx%23_Toc517864240

D3.1 ElasTest Platform Cloud Modules v1

7

Figure 37. Open Service Broker API (OSBA) overview .. 59

Figure 38. ESM Data Model .. 61

Figure 39. ESM FMC Diagram ... 62

Figure 40. ESM Lifecycle ... 64

Figure 41. ESM: A listing of services available in the Service Catalog .. 67

Figure 42. ESM: Add Service ... 67

Figure 43. ESM: Onboarding a new Service Type ... 68

Figure 44. ESM: Viewing a Serice Intance Details ... 68

Figure 45. ESM Code Coverage over Time .. 69

Figure 46. ESM: The Catalog API... 70

Figure 47. ESM: API Related to Service Instances .. 71

Figure 48. EIM FMC Diagram .. 75

Figure 49. Instrumentation Manager & Agents technology map. .. 77

Figure 50. Instrumenting SuT from ElasTest dashboard .. 78

Figure 51. Install and configure agents on remote SuT .. 78

Figure 52. Select KPIs to monitor ... 79

Figure 53. Metrics visualisation within the ElasTest dashbaord .. 79

Figure 54. Logs visualisation within the ElasTest dashbaord ... 79

Figure 55. EIM Jenkins buil report .. 81

Figure 56. EIM: Publickey API ... 81

Figure 57. EIM: Agent API ... 81

Figure 58. EIM: AgentConfiguration API ... 82

Figure 59. EDM FMC Diagram .. 84

Figure 60. EDM API Documentation ... 85

Figure 61. EDM Jenkins pipeline ... 86

Figure 62. EDM Coverage Report ... 86

Figure 63. Consumer: List of available service types .. 89

Figure 64. Consumer: Create a service instance .. 89

Figure 65. Consumer: Get/poll serice status .. 90

Figure 66. Consumer: Bind service ... 90

Figure 67. Consumer: Configure service instance .. 90

Figure 68. Consumer: Get service metrics .. 91

Figure 69. Consumer: Unbind service .. 91

Figure 70. Consumer: Delete service .. 92

Figure 71. Provider: List service .. 92

Figure 72. Provider: Register service .. 93

Figure 73. Provider: Update plan and description ... 94

D3.1 ElasTest Platform Cloud Modules v1

8

Figure 74. Provider: Update endpoint .. 94

Figure 75. Provider: Report service metrics ... 95

D3.1 ElasTest Platform Cloud Modules v1

9

List of Tables

Table 1. EPM: Adapter Data Model ... 30

Table 2. EPM: Event Data Model ... 30

Table 3. EPM: Key Data Model .. 30

Table 4. EPM: KeyValuePair Data Model .. 31

Table 5. EPM: Network Data Model .. 31

Table 6. EPM: PoP Data Model... ¡Error! Marcador no definido.

Table 7. EPM: ResourceGroup Data Model ... 32

Table 8. EPM: VDU Data Model .. 33

Table 9. EPM: Worker Data Model.. 34

Table 10. EPM: RoadMap & Features ... 34

Table 11. Set of ESM Use Cases and their Implementation Status ... 65

Table 12. EIM: Baseline technology. ... 73

Table 13. EIM: PublicKey Data Model ... 76

Table 14. EIM: Agent Data Model ... 76

Table 15. EIM: Host Data Model ... 76

Table 15. EIM: AgentConfiguration Data Model ... 76

D3.1 ElasTest Platform Cloud Modules v1

10

Glossary of acronyms

Acronym Description

CI (Continuous Integration) This refers to the software development practice with
that name.

FOSS (Free Open Source
Software)

This refers to software released under open source
licenses.

IaaS (Infrastructure as a
Service), PaaS (Platform as
a Service) and SaaS
(Software as a Service)

This refers to different models of exposing cloud
capabilities and services to third parties.

Instrumentation This refers to extending the interface exposed by a
software system for achieving enhanced controllability
and observability

QoS (Quality of Service)
and QoE (Quality of
Experience)

In this proposal, QoS and QoE refer to nonfunctional
attributes of systems. QoS is related to objective quality
metrics such as latency or packet loss. QoE is related to
the subjective quality perception of users. In ElasTest,
QoS and QoE are particularly important for the
characterization of multimedia systems and applications
through custom metrics.

SiL (Systems in the Large) A SiL is a large distributed system exposing applications
and services involving complex architectures on highly
interconnected and heterogeneous environments. SiLs
are typically created interconnecting, scaling and
orchestrating different SiS. For example, a complex
microservice-architected system deployed in a cloud
environment and providing a service with elastic
scalability is considered a SiL.

SiS (Systems in the Small) SiS are systems basing on monolithic (i.e. non
distributed) architectures. For us, a SiS can be seen as a
component that provides a specific functional capability
to a larger system.

SuT (Software under Test) This refers to the software that a test is validating. In this
project, SuT typically refers to a SiL that is under
validation.

TO (Test Orchestration) The term orchestration typically refers to test
orchestration understood as a technique for executing
tests in coordination. This should not be confused with
cloud orchestration, which is a completely different
concept related to the orchestration of systems in a
cloud environment.

TORM (Test Orchestration Is an ElasTest functional set of components that abstracts

D3.1 ElasTest Platform Cloud Modules v1

11

and Recommendation
Manager)

and exposes to testers the capabilities of the ElasTest
orchestration and recommendation engines.

TJob (Testing Job) We define a TJob as a monolithic (i.e. single process)
program devoted to validating some specific attribute of
a system. Current Continuous Integration tools are
designed for automating the execution of TJobs. TJobs
may have different flavors such as unit tests, which
validate a specific function of a SiS, or integration and
system tests, which may validate properties on a SiL as a
whole.

TiL (Test in the Large) A TiL refers to a set of tests that execute in coordination
and that are suitable for validating complex functional
and/or non-functional properties of a SiL on realistic
operational conditions. We understand that a TiL can be
created by orchestrating the execution of several TJob.

ICT Information and Communication Technology

IT Information Technology

WP Work Package

FMC Fundamental Model Concept

ETM ElasTest Test Manager

EPM ElasTest Platform Manager

EMP ElasTest Monitoring Platform

ESM ElasTest Service Manager

EIM ElasTest Instrumentation Manager

EDM ElasTest Data Manager

TSS Test Support Service

EUS ElasTest User Impersonation Service

ESS ElasTest Security Service

ECE ElasTest Cost Engine

PoP Point of Presence

REST Representational State Transfer

VDU Virtual Deployment Unit

AWS Amazon Web Services

AAA Authentication, Authorization, Accounting

TOSCA Topology and Orchestration Specification for Cloud
Applications

API Application Programming Interface

SDK Software Development Kit

D3.1 ElasTest Platform Cloud Modules v1

12

SSH Secure Shell

CPU Central Processing Unit

R&D Research and Development

OSBA Open Service Broker API

SLA Service Level Agreement

DoA Description of Actions

UI User Interface

GUI Graphical User Interface

VM Virtual Machine

KVM Kernel-based Virtual Machine

JDK Java Development Kit

KPI Key Performance Indicator

R Release

MS Milestone

D3.1 ElasTest Platform Cloud Modules v1

13

1 Executive summary

ElasTest is a cloud platform designed for helping developers to test and validate large
software systems while maintaining compatibility with current continuous integration
practices and tools. ElasTest enables developers to test large software systems
through complex test suites created by orchestrating simple testing units (so-called
TJobs).

ElasTest platform is Free Open Source Software and a community of users and
contributors is being created, who can help transforming ElasTest into a worldwide
reference in the area of large software systems testing and guaranteeing the long term
platform sustainability.

The ElasTest platform is designed as a Service Oriented Infrastructure (SOI) where each
of the modules constitutes a fine-grained SOA (micro-service). The software modules
implemented within “WP3 Cloud Components” have the objective of creating all cloud
components and mechanisms required by the ElasTest platform. These components
are split into different categories; on one hand we can find the cloud components for
the ElasTest platform which offers management capabilities at the level of
computational resource as well as manages the lifecycle of the cloud based services
deployed on top of the aforementioned resources. On the other hand ElasTest offers
Instrumentation Components which actuates at application level offering management
capabilities over the Software under Test (SuT).

The content of this report is focused on the specification, design and implementation
of the intermediate version of the ElasTest Cloud Components; the work carried out in
this WP is going to be reported within two iterations: “D.3.1 ElasTest Platform cloud
modules v1 [6]” is going to be delivered in month 18 as the intermediate version of the
software modules together with the accompanying documentation of this version,
“D.3.2. ElasTest platform cloud modules v2 [12]” will be submitted on M36 including
the final software artifacts and updated documentation of the platform modules.

2 Introduction

2.1 Overview and Objectives

This report presents the software artifacts implemented in the scope of the WP3
during the first period of the project until M18. The Platform modules covered in this
report are the Platform Manager (EPM), the Service Manager (ESM), the
Instrumentation Agents (EIA), and the Instrumentation Manager (EIM). The work
carried out within WP3 has the objective of creating all cloud components and
subsystems required by the project. These components are split into two main
categories. The Cloud Components for the ElasTest platform which are executed as
part of ElasTest and the Instrumentation components, these components can be
executed out of ElasTest and as part of the SuT. Additionally, this report also presents
the Data Manager (EDM) used by different modules across all technical work packages.

D3.1 ElasTest Platform Cloud Modules v1

14

2.2 Structure of the Document

The outline of this document is as follows: First section introduces the document and
its objectives. The second chapter presents the ElasTest Cloud modules describing how
they are categorised and its overall roadmap. The next sections describes the enablers
for managing the platform in a target cloud provider (Sec 4), the mechanism and
interfaces offered for managing the on-demand cloud based services within ElasTest
(Sec 5), as well as the mechanisms used to instrument the target applications under
evaluation (Sec 6). In addition, the service that offers data management capabilities to
the components of the platform is presented (Sec 7). Finally the last section includes
the conclusion (Sec 8).

2.3 Target Audiences

The primary targets of the document are internal ElasTest technicians from WP3 to
WP6 involved in the prototyping and implementation of the platform. In addition, this
document is targeting technical personnel interested in testing as well as QA managers
interested in adopt our solution.

3 ElasTest Cloud Modules

3.1 Rationale

New advances in ICT technology influence the way software is developed and tested,
the proliferation of large scale applications targeting thousands of users that can be
connected concurrently and expect real time interactions; makes the testing strategy a
crucial aspect for the release management process of the applications.

Nowadays cloud technologies are creating advantages for organizations that adopt it
such as: speed, agility, scalability, accessibility and flexibility; therefore ElasTest aims to
extend the adoption of the aforementioned benefits offered by the cloud to testers
through the creation of a cloud platform (ElasTest Platform) designed for helping to
validate large software systems that require complex test suites and validation
processes.

Since the irruption of the cloud computing (together with the virtualization era) as a
disruptive technology, the increased use of the cloud introduced new business
opportunities and challenges during the last years allowing developers to apply more
easily the principles of mass production into the IT world. The current panorama
reveals that a whole range of IT functions can be thought of as commodity services.

The ElasTest cloud components described within this report are in charge of the
management and monitoring of the resources that the platform needs to operate; as
well as of the lifecycle management associated to the on-demand testing support
services catalogue which can be requested by the ElasTest Platform user dynamically.
In addition to the cloud components in charge of the platform management, the
report also includes other kind of cloud based component not targeting the platform
itself but offering management capabilities over the software system under
evaluation.

D3.1 ElasTest Platform Cloud Modules v1

15

3.2 Categories

The different categories identified have a direct relationship with the tasks described
within the “WP3 Cloud components”. Task 3.1 implements the enablers for the
platform components to be deployed in a target cloud being able as well to monitor its
usage recovering in seamless way information related to the runtime execution of the
platform. Task 3.2 implements the appropriate mechanism enabling the lifecycle
management of the Test Support Services catalogue offered by ElasTest. Finally, Tasks
3.3 & 3.4 are devoted to the instrumentation capabilities offered over the software
under evaluation.

As it has been introduced in the previous paragraph, different categories have been
considered:

- Software modules for managing the computational resources of the platform.
- Software modules for managing the cloud based services offered by the platform.
- Software modules for managing the applications under test.

3.3 Roadmap

ElasTest uses an Agile Management methodology, which is suitable for innovation
management. This methodology has been designed for transforming ideas into
profitable products. For this, it focuses on
learning and discovering how to fit a
technology into the market instead on
how to carry out the technological
developments themselves.
The methodology is based on a
continuous feedback loop repeated
cyclically every four months aligned with
the ElasTest software releases, according
to ElasTest initial planning nine releases
will be generated during the project
duration. The content of this report
covers the developments performed up to
R4 where the first integrated version of the software components is delivered.

The methodology used for the specification and design phases as well as for the
development/testing/release phases have been elaborated in the scope of “Task 2.2.
Agile conception based on end-user feedback”, further details about the methodology
itself will be described in the public report “D.2.3. ElasTest requirements, use-cases
and architecture v1 [5]”; where the steps followed by ElasTest technical teams are
further described.

The figure below depicts the alignment between the project milestones and the
software component releases.

Figure 1. ElasTest Agile Management Methodology

D3.1 ElasTest Platform Cloud Modules v1

16

Figure 2. WP3 Cloud Components Roadmap

3.4 Challenges to Overcome

ElasTest is a platform designed to facilitate the build, execution and reporting of end-
to-end tests of complex distributed applications. These types of applications present
some properties like elasticity and fault tolerance that need to be tested with end-to-
end tests. To execute these complex distributed applications and scalable tests,
enabling resources and supporting services are needed. The primary reason that such
elements must be provided is to remove the tester from the responsibility of having to
manage these resources and services themselves and in doing so allow them to focus
on their core business, writing complete tests that validate the SuT.

Not only resources and services should be provided for TJobs, additional cloud
components must also be provided in order to allow ElasTest deploy and execute a SuT
on the behalf of the tester and also deploy and execute the components required to
run the ElasTest platform itself. In summary WP3’s main goals are:

 Provide resources and services to execute TJobs

 Provide resources to deploy and execute SuTs

 Provide resources and components that support the complete ElasTest
platform

 Provide necessary insights into the current and past state of ElasTest core
components in order to facilitate stable operation of the platform itself

The key aim and contribution of WP3 to ElasTest is to provide the enabling facilities
required by the Elastest Tests Manager (ETM), the main component of the TORM, to
carry out its task of orchestration and executing tester supplied TJobs. As such it can
be thought of as the enabling platform for the ETM.

The work in WP3 has to cover these key areas of functionality:
1. Provide the resources on-demand to allow for the execution of TJobs
2. Provide the services on-demand to allow for the support and augmentation of

TJob functionality
3. Provide the means to manage all resources and services delivered to the ETM

To overcome these needs, the ElasTest architecture has the following characteristics:

D3.1 ElasTest Platform Cloud Modules v1

17

 Microservices inspired architecture: ElasTest’s architecture has been divided in
several decoupled components that communicate via remote protocols. In that
way, ElasTest can horizontally scale executing every component in a different
computational node when necessary.

 Decoupled test execution: To execute a set of tests in ElasTest is necessary to
configure a TJob. A TJob is defined with the following information: a) How to
obtain and execute the tests; b) How to connect to a SUT already deployed or
how to execute the SUT inside ElasTest and c) What support services are
necessary to execute the tests. Using the same strategy as with the core
components, the tests, SUT (if necessary) and support services (if necessary)
are executed in decoupled components that communicate using remote
protocols. In that way, every TJob can be executed in a different computational
node, favouring the scalability of the platform. Hence, a TJob that needs more
computational resources than available in a computational node can be split in
several computational nodes.

 No vendor dependency (lock-in): ElasTest Platform Manager (EPM) introduces
an adapter mechanism which means the adapters use a standardized
northbound interface whereas the southbound interface is specific to a certain
cloud infrastructure technology. In addition, to provide a standardized way of
defining virtual resources, the platform manager supports native TOSCA
templates. Further details are covered under the non-functional aspects of the
platform.

 No internal state persistency: All ElasTest components can be configured to be
stateless, except ElasTest Data Manager (EDM). This allows all persistency to be
grouped in one specific component, while the rest of the platform is stateless.
In addition, EDM via Alluxio allows the usage of external services (such as
Amazon S3) for persistent data, in a way that is transparent to the rest of the
ElasTest platform. Hence, by moving between different hardware/cloud
platforms, the only component that needs to be ported to fit is EDM, or it can
be swapped out in favor of local services that offer the same functionality.

 Test Engines: ElasTest can be augmented with additional components called
Test engines (TE). These components are executed as decoupled components
and core components can communicate with them using remote protocols.
This leads to advantages mentioned to the other parts of the platform.

 Test Support Services: Test Support Services (TSSs) are services used by tests
via TJobs. They augment the capability of a test by providing some specific
features. The TSSs are not covered within this document but they are
mentioned here as the ESM covered within this report is the component who
manages the TSS lifecycle as well as offers them on-demand. For further
information specific to the TSS, please refer to “D.5.1 ElasTest Test Support
Services v1” [9].

3.4.1 ElasTest Functional Components/Services

As it can be seen, ElasTest platform is composed by several decoupled components
that communicate using remote protocols. This characteristic allows the platform to
be split across several physical nodes if the resources needed are not available in a

D3.1 ElasTest Platform Cloud Modules v1

18

single node. Hence, we can consider that ElasTest is scalable to take advantage of
cloud native design and on-demand use of resources and service to grow and shrink
according to load. Also, some of the components are executed on demand and this
gives elasticity to the platform. Concretely, tests engines are executed only when they
are used. In the same sense, TJob’s components are executed also on demand.

The core components of ElasTest are:

 ElasTest Tests Manager (ETM)

 ElasTest Services Manager (ESM)

 ElasTest Platform Manager (EPM)

 ElasTest Monitoring Platform (EMP)

 ElasTest Instrumentation Manage (EIM)

 ElasTest Data Manager (EDM)

The ElasTest Platform Manager (EPM) is the base component in charge of executing
ElasTest components in several underlying platforms, abstracting ETM (the brain of
ElasTest) of this management. Also, as several cloud resource management platforms
are supported, ElasTest can be deployed in any of them without any change. To offer
this abstraction of the underlying platform, EPM requires that components are
packaged as docker containers. This format have been selected because is a
lightweight standardized format with a standard distribution mechanism. Also, this
format is widely supported in the industry. In addition, when a component is
composed by several containers, docker compose descriptor file can be used to
describe the component. In the current version, EPM can be executed in a single
machine with docker daemon installed. This node is used to execute ElasTest core
components. Other nodes can be added dynamically to EPM to execute dynamic
ElasTest components like TJob components or test engines. In the future versions,
Kubernetes, AWS and OpenStack platforms will be supported natively in EPM to
support the real elasticity of the platform.

It is very important to monitor how computational resources are been used to avoid or
adapt to overload of the system, given that TJobs are executed dynamically on-
demand. If the system is above some load threshold, new TJobs can be queued until
resources are available or ask to underlying platform for more nodes to execute
components. The ElasTest Monitoring Platform (EMP) is the component in charge of
monitoring ElasTest platform. This component works closely with EPM to allow the
mentioned autoscaling features. Also, EMP shows system metrics it gathers from the
underlying platform to the user. This is especially important for administrative tasks.
However, not all platforms allow the autoscaling feature, then, monitoring information
is being used to control the fixed resources available.

Through the ElasTest Service Manager (ESM), ElasTest is able to provide on-demand
test support services (TSSs) to testers (as defined in their TJobs) to make easier to
implement complex tests and delegate non-core functionality to an internal or
external service provider. For example, some of the services provided by default in
ElasTest like the ElasTest User Impersonation Service (EUS), provides browsers on
demand. Other TSS available is the ElasTest Security Service (ESS) that provides
dynamic security tools to testers. These tools can be managed from test code using a

D3.1 ElasTest Platform Cloud Modules v1

19

remote protocol. In addition to the tests included by default, ElasTest allows users to
create and install new services. All of this is done without vendor lock-in by using the
Open Service Broker API standard. ElasTest Service Manager (ESM) is the component
that manages the register and management of TSS. It uses EPM to instantiate new
services on demand when are required by ETM. ETM will ask to ESM for a new service
instance if this TSS is defined in the TJob to be used by the tests. ESM also works
closely with EMP which keeps tracks of health status of support services created and
managed by ESM. EMP has proactive alarming capability which is the key feature of
interest for ESM.

While the aforementioned components deals with the platform resources, the
ElasTest Instrumentation Manager (EIM), controls and orchestrates the monitoring
and controllability agents which are deployed when an external SUT is tested. In that
way, tester doesn’t need to manually configure these agents to obtain relevant
monitoring information about SUT. Using EIM, user will be able to instrument external
SUT to simulate real behaviour simulating CPU load or network issues.

In addition, ElasTest Data Manager (EDM) provides persistence services to the
platform. It is used by several components as data management service. The ElasTest
Data Manager was built to separate the persistence layer of ElasTest from the rest of
the platform.

3.4.2 ElasTest Non-functional Aspects

Elasticity

The ElasTest services and resources must be provided on-demand, when and only
when the tester actually needs them. By having the capability, the overall cost to run a
test suite against a SuT is reduced when compared to having resources and services
running all the time. For example, if ElasTest is used to test the elasticity of a SUT like a
video conference system, the tests should request hundreds or thousands of
simultaneous browsers simulating users connecting to the platform. Then, ElasTest
should execute all these browsers.

Further, by being able to request resources and services on-demand enables the
capability of dynamically scaling up (or down) the set of resources and/or services
assigned to a particular test suite at any point in time. In doing so, the platform is
amenable to elasticity. However, before having this capability the components need to
be designed in such a way to be scalable. Furthermore, monitoring and timely alerting
is a key prerequisite for effective elastic control; EMP objectives already cover this
element to support elastic control and management of underlying resources. EMP
allows instrumented metrics to be directly sent to it via different language specific
libraries. This capability can be used in conjunction with a more fine grained alert
condition creation within EMP wherein the destination of the alert is the relevant
application endpoint itself, it is very much possible to achieve a parallel elastic control
mechanism that is self-triggered by the application and not just managed by the EPM.

Authentication, Authorization and Accounting (AAA)

ElasTest needs to provide the means for users to be identified uniquely so that specific
resources, services can be associated with them and ultimately allow for the charging

D3.1 ElasTest Platform Cloud Modules v1

20

of those services and resources to the specific user. ElasTest also needs to provide this
from an audit and security perspective: who did what where, when and how.

To provide this an AAA (Authentication, Authorisation and Accounting) service/
component is typically used. With an AAA element as part of ElasTest and used down
through the full stack (from user, through ETM and onto ESM and EPM), multi-
tenancy, isolation and per user billing can be enabled. These characteristics are
fundamental to cloud computing (See NIST definition1, publication 800-145) of which
ElasTest is founded on.

AAA is an ElasTest platform service to support many services and components in
ElasTest. As such the proposal is to include AAA as part of WP3. No developments
upon AAA topics will be carried out or upon Keystone (where necessary). In order to
provide AAA within ElasTest the proposal is to use OpenStack's Keystone project2 to
enable AAA. Keystone will runs as an additional service within the ElasTest platform
and so will be the responsibility of the ElasTest Toolkit to start the service.

In the basic scenario the onus is upon the User to acquire the token from the Keystone
service. This can be accomplished either via API3 or using the Keystone command line
client4 (which is now part of the main openstack command line client5).

With its basic usage, access to any Keystone mediated resource given by having a valid
Keystone token relayed in HTTP headers. The header name used is X-Auth-Token and
its value is the token issued by the keystone service.

It should be noted that keystone integration per component must be provided in a
configurable way, in order to use Keystone a service needs 2 things:

1. A running instance of keystone: to do this you can use the following docker
project6 to bring up a keystone instance. You can review the README7 for basic
usage and refer to the OpenStack Keystone8 project for further detail and
information.

2. Client code that accesses and uses keystone: how this is accomplished is
rather specific to the language and frameworks you use to implement your
service/component.

Vendor Lock-in

A vendor lock-in limits the user to the usage of a certain solution or technology, and,
hence, it reduces also the capabilities of the solution itself only able to cover a limited
set of scenarios and use cases. As a comprehensive testing platform for highly
distributed applications, one of the main goals is to avoid a vendor lock-in at the
ElasTest platform level to let the freedom of choice for a certain cloud virtualization

1
 NIST Definition, https://csrc.nist.gov/publications/detail/sp/800-145/final

2
 OpenStack Keystone, https://docs.openstack.org/keystone/latest/

3
 OpenStack API, https://developer.openstack.org/api-ref/identity/v3/index.html

4
 KeyStone CLI, https://docs.openstack.org/mitaka/cli-reference/openstack.html

5
 KeyStone CLI-reference, https://docs.openstack.org/mitaka/cli-reference/openstack.html

6
 Keystone docker project, https://github.com/dizz/dock-os-keystone

7
 README file, https://github.com/dizz/dock-os-keystone/blob/master/README.md

8
 OpenStack Keystone, https://docs.openstack.org/keystone/latest/

http://csrc.nist.gov/publications/PubsSPs.html#800-145
https://csrc.nist.gov/publications/detail/sp/800-145/final
https://docs.openstack.org/keystone/latest/
https://developer.openstack.org/api-ref/identity/v3/index.html
https://docs.openstack.org/mitaka/cli-reference/openstack.html
https://docs.openstack.org/mitaka/cli-reference/openstack.html
https://github.com/dizz/dock-os-keystone
https://github.com/dizz/dock-os-keystone/blob/master/README.md
https://docs.openstack.org/keystone/latest/

D3.1 ElasTest Platform Cloud Modules v1

21

infrastructure up to the users and their requirements. A proper approach had to be
developed in order to overcome this issue which is following a plug-and-play approach.

There are two services that could be limited by vendor locking: the ElasTest Service
Manager (ESM) and the ElasTest Platform Manager (EPM).

The ESM, avoids the issue of lock-in by adopting a widely adopted API, the Open
Service Broker API9. Behind this API, the implementation of the ESM, is implemented
such that pluggable backends are used for storage (the DB in the case of the ESM;
supports simple in-memory, MongoDB and MySQL) and resource acquisition (currently
local docker engines and the EPM). Should another DB or resource acquisition
software be required, this is achieved by implementing the software interface for
either DB10 or resource acquisition11 modules.

The EPM, introduces an adapter mechanism which means the adapters use a
standardized northbound interface whereas the southbound interface is specific to a
certain cloud infrastructure technology. Based on the requirements of the project
consortium, the northbound interfaces was designed in a way that it allows 1) the
definition of the virtual resource requirements following the internal information
model of the EPM and 2) cloud infrastructure-specific templates. In this way the EPM
can potentially support any type of technology assuming the corresponding adapter is
in place. Currently, the focus of the adapter development is aligned with what the
project consortium has seen as appropriate (Docker12, docker-compose13, Ansible14,
VirtualBox15). In the future the need of further adapters will be explored to support,
for instance, OpenStack16 , OpenStack Heat17 , AWS18 , or complex orchestration
solutions, such as, Aria19 or OpenBaton20.

In addition, to provide a standardized way of defining virtual resources, the platform
manager supports native TOSCA21 templates. TOSCA is a domain specific language and
portable model for describing cloud applications. The TOSCA model is a widely
recognized format and therefore would also provide an easy way for users to
transition to ElasTest. The TOSCA Simple Profile for YAML 1.0 describes the way to
represent the TOSCA meta-model in a simplified format using YAML22. The platform

9
 OpenAPI Initiative https://www.openservicebrokerapi.org

10
 ESM Store, https://github.com/elastest/elastest-service-

manager/blob/master/src/adapters/store.py#L51
11

 ESM Resource, https://github.com/elastest/elastest-service-
manager/blob/master/src/adapters/resources.py#L39
12

 Docker, https://www.docker.com/
13

 Docker-compose, https://docs.docker.com/compose/
14

 Ansible, https://www.ansible.com/
15

 Oracle VirtualBox, https://www.virtualbox.org/
16

 OpenStack, https://www.openstack.org/
17

 OpenStack Heat, https://wiki.openstack.org/wiki/Heat
18

 Amazon Web Services, https://aws.amazon.com/
19

 Apache Aria, http://ariatosca.incubator.apache.org/
20

 Open Baton, https://openbaton.github.io/
21

 OASIS Topology and Orchestration Specification for Cloud Applications (TOSCA), https://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=tosca
22

 YAML, http://yaml.org/

https://github.com/elastest/elastest-service-manager/blob/master/src/adapters/store.py#L51
https://github.com/elastest/elastest-service-manager/blob/master/src/adapters/store.py#L51
https://github.com/elastest/elastest-service-manager/blob/master/src/adapters/resources.py#L39
https://github.com/elastest/elastest-service-manager/blob/master/src/adapters/resources.py#L39
https://www.docker.com/
https://docs.docker.com/compose/
https://www.ansible.com/
https://www.virtualbox.org/
https://www.openstack.org/
https://wiki.openstack.org/wiki/Heat
https://aws.amazon.com/
http://ariatosca.incubator.apache.org/
https://openbaton.github.io/
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca
http://yaml.org/

D3.1 ElasTest Platform Cloud Modules v1

22

provides the option to render TOSCA templates to the internal information model
following the TOSCA Simple Profile for YAML 1.0, to provide the option for users
familiar with the specification to make use of its generalized model for defining cloud
systems.

4 Platform Management and Monitoring

The following section introduces the core components in charge of the management
and monitoring of the platform; and provides the details of the requirements,
architecture, interfaces and features for each of them.

4.1 ElasTest Platform Manager (EPM)

4.1.1 Introduction

The ElasTest Platform Manager (EPM) implements the enablers for ElasTest
components to be deployed in a target cloud.

DoA [1] specifies the following objectives for the EPM:

 To develop the appropriate technologies enabling ElasTest to be deployed in
the target cloud environment. For this, the Platform Manager shall need to
provide the required cloud orchestration services for the deployment and
provisioning of all ElasTest components. This will require the Platform Manager
to consume, at its southbound, the APIs exposed by the target cloud
infrastructure.

 To create the appropriate technologies enabling the management of the
underlying cloud resources on behalf of the TORM and of the rest of ElasTest
services. These technologies shall provide the capability of instantiating
computing resources, of deploying artifacts on them (e.g. TJob instances, Test
Support Service instances, etc.) and of managing their lifecycle. Remark that
the autoscaling of computing resources used by ElasTest shall be part of this
mechanism.

 To expose, at its northbound, all these capabilities through a comprehensive
and coherent API (or directly Software Development Kit) that the TORM and
the rest of ElasTest testing services shall consume in runtime for implementing
their logic.

 To develop a toolbox enabling the installation and management of all such
capabilities in ElasTest.

 To expose a catalogue of Support Services. The Platform Manager will provide
this catalogue in order to allow any developer to select the appropriate
Support Services required in the experiment.

The ElasTest Platform Manager is the interface between ElasTest components (e.g.
TORM, Test Support Services, etc.) and the cloud infrastructure where ElasTest is
deployed. Hence, this Platform Manager must abstract the cloud services so that

D3.1 ElasTest Platform Cloud Modules v1

23

ElasTest becomes fully agnostic to them and provide this abstraction via Software
Development Toolkits (SDK) or REST APIs to the northbound consumers (i.e. the
TORM). The ElasTest Platform Manager enabling ElasTest to be deployed and to
execute seamlessly in the target cloud infrastructure that the consortium considers as
appropriate (e.g. OpenStack, CloudStack23, Mantl24, AWS, Docker, etc.).

The EPM provides two options to describe and deploy the virtual resources:

 All-in-one Package Deployment: the package approach is designed to make use
of template-dependent technologies such as docker-compose, Ansible or
OpenStack Heat. The EPM gets such a template with additional metadata
information which is forwarded directly to the target infrastructure to trigger
the deployment as a whole.

 Step-by-Step Deployment: this step-by-step approach is designed for
technologies such as Docker, OpenStack or AWS where the EPM receives the
resources description which is compliant to the data model of the EPM or
TOSCA. That information about virtual resources is then translated to individual
commands calling the technologies’ API.

Both approaches together make the EPM independent to the underlying infrastructure
and give the consumer of the EPM the opportunity to use already existing templates or
the data model exposed by the EPM. However, in both cases the EPM returns the
information in a uniform format following the data model.

To avoid a vendor lock-in situation, the ElasTest Platform Manager introduces an
adapter mechanism which means the adapters use a standardized northbound
interface whereas the southbound interface is specific to a certain cloud infrastructure
technology. Based on the requirements of the project consortium, the northbound
interface was designed in a way that it allows 1) the definition of the virtual resource
requirements following the internal information model of the EPM and 2) cloud
infrastructure-specific templates. In this way the EPM can potentially support any type
of technology assuming the corresponding adapter is in place. Currently, the focus of
the adapter development is aligned with what the project consortium has seen as
appropriate (Docker, docker-compose, Ansible, VirtualBox). In the future the need of
further adapters will be explored to support, for instance, OpenStack, OpenStack Heat,
AWS, or complex orchestration solutions, such as, Aria or Open Baton. A major
challenge in this regard is that all adapters have to provide the same capabilities, such
as, runtime management to access instances for certain operations (see Features
table).

4.1.2 Baseline Concepts and Technologies

The EPM itself is implemented in Java making use of the Spring framework25. Data
persistency is provided via SQL where by default it uses an in-memory database

23

 Apache CloudStack, https://cloudstack.apache.org/
24

 Mantl, https://www.mantl.com/

25

 Spring Framework, https://spring.io/

https://cloudstack.apache.org/
https://www.mantl.com/
https://spring.io/

D3.1 ElasTest Platform Cloud Modules v1

24

(HyperSQL 26). Nevertheless, other SQL databases (e.g. MySQL 27) can be easily
integrated by changing the configuration inside the main properties file following the
spring configuration guide.

The current version of the EPM supports the following virtual infrastructure
technologies: Docker, docker-compose and Ansible. Two approaches are supported by
the EPM in the meaning of the consumer can either make use of the EPM’s data model
or TOSCA to describe the deployment scenario or use directly templates of a certain
technology. Thanks to the modular approach, other virtualization infrastructures can
be easily supported by providing adapters for certain technologies. This adapter
mechanism is provided via gRPC which manages the communication between the EPM
itself and the corresponding adapter.

The Access, Authorization and Accounting (AAA) system can be activated for the EPM
where the integrated system is OpenStack’s Keystone.

In addition, the EPM makes indirectly use of several supporting services by configuring
the virtual instances for the purpose of log forwarding (e.g. Logstash28) or monitoring
(e.g. Dockbeat29) which are then provided indirectly to other services for further
processing, such as, the ElasTest Monitoring Service, ElasTest Monitoring Platform, or
the ElasTest Test Manager.

The EPM and all the available adapters are delivered as Docker containers which are
available in Docker Hub. In addition, several docker-compose files are provided in the
GitHub repositories to start easily the EPM with the additional components and
services to ease the deployment and configuration.

4.1.3 Component Design and Architecture

This section gives an architectural overview of the ElasTest Platform Manager. The
architecture (see Figure 4) is composed of several components:

26

 HyperSQL, https://spring.io/
27

 Oracle MySQL, https://www.mysql.com/
28

 Logstash, https://www.elastic.co/products/logstash
29

 DockBeat, https://www.elastic.co/blog/dockbeat-a-new-addition-to-the-beats-community

https://spring.io/
https://www.mysql.com/
https://www.elastic.co/products/logstash
https://www.elastic.co/blog/dockbeat-a-new-addition-to-the-beats-community

D3.1 ElasTest Platform Cloud Modules v1

25

Figure 3. Architectural Overview of EPM

API: The API exposes a ReSTful API in order to allow the consumer (e.g. ETM, ESM) to
manage virtual resources in a target cloud environment. It allows to allocate,
terminate, update virtual resources (e.g. compute, network) and request information
of those as well, execute runtime operations, and register and configure new workers.
Moreover, in order to allow a programmatic usage of the EPM, a python and java
client are provided that eases the usage of the EPM.

Repository: The repository persists information of managed Workers, VDUs, networks,
and PoPs as well. The following gives an overview of what those entities are:

 Worker: A worker is a machine, where the EPM can set up a cloud environment
and make it ready to be registered as a Point-of-Presence.

 PoP: A PoP is a Point-of-Presence that defines details of a cloud environment.
This includes information about the endpoint, type and access details.

 VDU: A VDU is a Virtual Deployment Unit which reflects an abstraction of
virtual compute resources. It contains information about software, network
connectivity and the target cloud environment.

 Network: A network reflects the virtualized network resource which provides
connectivity between VDUs.

Core: The core consists of several management units and provides the basic
management functionality in order to manage PoPs, VDUs and networks. The core has
access to the Repository in order to persist and request information of managed
entities (PoP, VDU, and Network). In order to issue operations on different types of

D3.1 ElasTest Platform Cloud Modules v1

26

cloud environments (Docker, OpenStack, Kubernetes, AWS), the Core component
makes use of PoP adapters which allows the Core to interact with the PoP over well-
defined interfaces.

 PoP Management: This component handles the PoPs. It is in charge of
registering, unregistering and providing information of a requested PoP.

 VDU Management: This component manages virtualized resource related to
the compute domain. It allocates compute resources, connects them to
networks, receives details of allocated resources and releases resources in the
target PoP.

 Network Management: This component manages virtualized resource related
to the network domain. It creates and deletes network in the target PoP.

 Runtime Management: This component is responsible for managing runtime
operations (e.g. download/upload files, execute commands, etc.) for already
allocated virtual ressources.

 Package Management: This component is in charge of handling packages (e.g.
docker-compose, ansible, etc.) and forwards it to the corresponding adapters.
The packages contain virtualization technology-specific templates.

 Placement Management: This component is in charge of the placement of
virtual resources in case no specific PoP is selected where the virtual resources
have to be deployed.

 Worker Management: This component takes care of the installation and
configuration of new workers added at runtime to the EPM as potential PoPs.
Certain scripts are provided which will install and setup the needed artifacts so
that the Worker is ready to be used as a PoP.

EPM Adapter: An EPM Adapter provides an abstracted way to interact with any kind of
cloud environment. The northbound interface is exposed to the Core and abstracted in
such a way, that the Core do not need to take care about the type of the target cloud
environment. The southbound interface is dependent on the type of cloud
environment under consideration. This allows an easy way to provide any kind of cloud
environment by providing an adapter without changing anything in the core. The PoP
Adapter takes also care about the configuration of logging and monitoring of the
virtualized resources by receiving that information by the Core component.

4.1.3.1 Use Cases & Sequence Diagrams

This section presents three main use cases with the help of sequence diagrams. Those
use cases are the Step-by-Step Deployment where the consumer describes the virtual
resources to be deployed by the EPM by using the internal data model or TOSCA
language, the All-in-one Package deployment where the consumer can reuse existing
templates from certain cloud infrastructure technologies (e.g. docker-compose,
Ansible) and the Worker registration and configuration where the consumer can add
new machines at runtime which can be used for virtual deployments later.

4.1.3.1.1 #1 Step-by-Step Deployment

This scenario depicts the workflow for allocating virtual resources based on the
definition using the internal information model, so called resources groups. This

D3.1 ElasTest Platform Cloud Modules v1

27

approach follows the assumption that the consumer can define the requirements in a
uniformed format so that it is agnostic to the actual cloud environment where virtual
resource shall be allocated. This allows the user to use the same definition to be used
for various cloud infrastructures. To be aligned with the adapter approach, the EPM
will generate a package containing that information with an additional metadata file
that will be passed to the corresponding EPM Adapter. The EPM Adapter extracts the
required information from the package and initiates the step-by-step deployment
starting with setting up the networking before allocating the virtual compute
resources. The adapter populates the resource group with deployment information
and returns it to the EPM which is then returned to the initial consumer.

 Figure 4. EPM: Deployment of a Resource Group

4.1.3.1.2 #2 All-in-one Package deployment

The sequence diagram below shows the workflow for the All-in-one Package
deployment. This was designed in order to give the consumer of the EPM the freedom
to use pre-existing templates without translating the requirements to the internal
information model of the EPM. The consumer has to generate a package in advance
which contains basically a metadata file (containing meta information, such as, the
name of the service and the type of PoP) and the actual template (or several files) to
be used for the deployment. Once the package is received by the EPM, the EPM will
extract required information from the metadata file and forward the package to the
corresponding adapter which takes care to trigger the deployment with the actual
template file. Once the deployment has finished and the adapter received the

D3.1 ElasTest Platform Cloud Modules v1

28

infrastructure-depended information, the EPM adapter translates those to the internal
information model of the EPM and returns it to the consumer via the EPM.

Figure 5. EPM: Deployment of a Package

4.1.3.1.3 #3 Worker registration and configuration

The sequence diagram below depicts the workflow of the worker registration and
configuration. This feature has been designed in order to give the consumer the ability
to register new machines (physical or virtual) on demand, basically, to provide more
computation power if needed. Hence, the user needs to provide a key which allows
the EPM to access those machines via SSH in order to install and configure the
required artifacts. Once the key is available the user can register a new worker
providing the IP so that the EPM can execute the installation and configuration steps.
As shown in the sequence diagram, the EPM can optionally configure the monitoring
agent to get monitored by the EMP. In the second step the EPM issues certain
installation and configuration steps via ssh depending on the defined type (e.g. Docker,
docker-compose, Ansible) of the worker. Once the required artifacts are installed, the
EPM ensures to have this new worker ready to be used which requires the registration
as a new PoP and optionally the configuration of adapters (e.g. for docker-compose).
Finally, the consumer gets returned the information of this request.

D3.1 ElasTest Platform Cloud Modules v1

29

Figure 6. EPM: Registration and Configuration of a new worker

4.1.3.2 Data Model

Figure 8 shows the data model exposed to the consumer of the EPM where those
entities can be retrieved and managed via the APIs that are described in the section
below.

Figure 7. EPM: Data Model

D3.1 ElasTest Platform Cloud Modules v1

30

4.1.3.2.1 Adapter

An adapter is the intermediate component between the EPM and the cloud
infrastructure technology. Basically, the EPM forwards deployment and management
request to the adapter whereas the adapter translates those requests to the cloud
technology-dependent commands. It follows a plug-in approach which allows the
maintainer of the EPM to plug-in new adapters at any point in time without
reconfiguring or even touching the EPM itself. Developing new adapters can also be
done without changing the source code of the EPM.
Table 1. EPM: Adapter Data Model

Name Description Schema

endpoint
required

The endpoint where the Adapter is reachable.

Example : "localhost:50052"

string

id optional Identifier for the Adapter. string

type required The type of virtualization technology, that the adapter is
designed to connect to.

Example : "docker-compose"

string

4.1.3.2.2 Event

An event contains certain life cycle information of the VDU at a specific time.

Table 2. EPM: Event Data Model

Name Description Schema

description

required

Example : "testEvent1" string

id

optional

Example : "1234-abcd" string

timestamp

required

The recorded time of the Event. string
(string)

4.1.3.2.3 Key

A private key for executing commands on a worker.

Table 3. EPM: Key Data Model

Name Description Schema

id

optional

The identifier of the Key string

key

required

This is the key itself as String. string

D3.1 ElasTest Platform Cloud Modules v1

31

name

required

The name of the key. This will be used for referencing the Key
in a Worker.

Example : "key1"

string

4.1.3.2.4 KeyValuePair

This entity is a Key-Value pair for storing metadata contained in other entities.

Table 4. EPM: KeyValuePair Data Model

Name Description Schema

id

optional

Example : "1234-abcd" string

key

required

Example : "testKey1" string

value

required

Example : "testValue1" string

4.1.3.2.5 Network

This entity defines the network connectivity and details where the VDUs are connected
to.

Table 5. EPM: Network Data Model

Name Description Schema

cidr

required

Example : "192.168.1.1/24" string

id

optional

The identifier of the Network in the EPM.

Example : "1234-abcd"

string

name

required

The name of the network, this should correspond to the name
of the network in the virtualization technology.

Example : "testNetwork1"

string

networkId

required

The id of the Network in the virtualization technology.

Example : "1234-abcd"

string

poPName

required

The PoP where the Network was created. string

4.1.3.2.6 PoP

This entity contains information about the Point-of-Presence (PoP)

Table 6. EPM: PoP Data Model

D3.1 ElasTest Platform Cloud Modules v1

32

Name Description Schema

accessInfo

required

Authentication credentials for accessing the PoP. Examples may
include those to support different authentication schemes, e.g.
OAuth, Token, etc.

<KeyValueP
air> array

id

optional

Identifier of the PoP string

interfaceEnd
point

required

Information about the interface endpoint. An example is a URL.

Example : "localhost"

string

interfaceInfo

required

Information about the interface(s) to the PoP, including PoP
provider type, API version, and protocol type.

Example :
"[{"key":"type","value":&qu
ot;docker"}]"

<KeyValueP
air> array

name

required

Human-readable identifier of this PoP information element

Example : "testPoPName"

string

status

optional

Representing the status of a PoP (INACTIVE, CONFIGURE,
ACTIVE)

enum
(configure
, active,
inactive)

4.1.3.2.7 ResourceGroup

A Resource Group defines a bundle of VDUs and virtual networks which belongs
together. It includes also the Point-of-Presences (PoP) where the virtual resources
have to be allocated.

Table 7. EPM: ResourceGroup Data Model

Name Description Schema

id

optional

The identifier of the Resource Group in the EPM. string

name

required

The name of the Resource Group.

Example : "testResourceGroupName1"

string

networks

optional

The Networks in the Resource Group. <Network>
array

vdus

required

The VDUs of which this Resource Group consists of. <VDU> array

D3.1 ElasTest Platform Cloud Modules v1

33

4.1.3.2.8 VDU

A Virtual Deployment Unit (VDU) describes the capabilities of virtualized computing
(Containers, VMs) and networking resources.

Table 8. EPM: VDU Data Model

Name Description Schema

computeId

required

The identifier of the deployed VDU in the virtualization
technology.

string

events

optional

A list of events recorded for this VDU. < Event >
array

id

optional

The identifier of the VDU in the EPM. string

imageName

required

The name of the image used for the VDU.

Example : "testImage1"

string

ip

required

The IP assigned to the VDU.

Example : "172.0.0.1"

string

metadata

optional

More detailed information about the VDU in a Key-Value
pair format.

<KeyValuePair>
array

name

required

The name of the VDU.

Example : "testVdu1"

string

netName

required

The name of the network to which the VDU is associated
with.

Example : "testNetworkName"

string

poPName

required

The name of the PoP where the VDU is deployed. string

status

optional

The status of the virtualized compute resource. enum
(initializing,
initialized,
deploying,
deployed,
running,
undeploying,
undeployed,
error)

4.1.3.2.9 Worker

A worker object for registering a machine where adapters can be deployed.

https://github.com/elastest/elastest-platform-manager/blob/master/docs/api/definitions.md#event
https://github.com/elastest/elastest-platform-manager/blob/master/docs/api/definitions.md#keyvaluepair

D3.1 ElasTest Platform Cloud Modules v1

34

Table 9. EPM: Worker Data Model

Name Description Schema

epmIp

required

This is the IP where the EPM is reachable for the Worker.
This is needed because the Worker has to be able to reach
the EPM for registering adapters.

string

id

optional

Identifier for the Adapter. string

ip

required

The IP where the Worker is reachable. The EPM will try to
ssh in to the Worker at this IP.

string

keyname

required

The name of the Key, which the EPM will use for ssh in to the
Worker. This refers to the name provided when uploading the
Key to the EPM.

Example : "key1"

string

passphrase

required

This is the Passphrase of the Key provided for connecting to
the Worker.

string

password

optional

This is the password of the user, which can be left blank if no
password is needed.

string

user

required

This is the user, which the EPM will use when trying to ssh in
to the Worker.

Example : "ubuntu"

string

4.1.4 Roadmap and Features

The following table gives an overview of the main features which shall be satisfied by
the EPM.

Table 10. EPM: RoadMap & Features

Feature Description

Allocation of
compute resources

Allocate compute resources in the target cloud environment
based on the requirements.

Termination of
compute resources

 Release compute resources in the target cloud environment

Creation/Deletion of
network resources

Create/delete network resources in the target
cloud environment

Forwarding logs Compute resources/cloud environment have to be configured to
forward logs of running instances to the appropriate location

Forwarding metrics Compute resources/cloud environment have to be configured
to forward measurement results of running instances to the

D3.1 ElasTest Platform Cloud Modules v1

35

appropriate location

Retrieval of resource
information

 External entities should be able to request information of the
allocated resources

Instance
management
operations

EPM must be able to execute operations such as executing
commands inside the instances and downloading/uploading
files so that the consumer of the EPM has full flexibility of
accessing and interact with the virtualized instances

Instance lifecycle
operations

 EPM must be able to execute lifecycle operations such as
start/stop, remove instances and retrieving information of the
instance at runtime so that the consumer of the EPM has full
flexibility of executing lifecycle operations with the virtualized
instances for a proper management at runtime

Platform Elasticity Elasticity must be provided by the EPM so that either other
ElasTest components can be scaled dynamically or the
virtualized resources requested by other ElasTest components
themselves

Management of
external machines

 EPM must be able to manage external machines which are not
deployed by the EPM itself so that the EPM can manage those
machines in order to integrate them as workers into the ElasTest
platform

4.1.4.1 EPM adapters

Hereafter it is given an overview of available adapters.

 Docker Adapter: The Docker adapter is used to launch Docker containers. To
describe the Docker instances the EPM and the Docker Adapter use an internal
model called a Resource Group. The Resource group describes Docker
containers and the networks connecting them. The Resource Group is
packaged together with a metadata file which provides specific information
relevant for the EPM and the Virtual Infrastructure which in this case is Docker.
The Docker Adapter connects to Docker through the remote API, which means
that it has a One-to-Many relationship with Docker. The Docker SDK also is
used to execute runtime operations.

 Docker-compose Adapter: The docker-compose Adapter is used to launch
docker-compose files. The docker-compose file is passed along with an
additional Metadata file in a package. Due to the fact, that Docker-Compose
does not expose an external API, the Adapter must be launched in the same
Machine, where also docker-compose is installed. This means that the Adapter
has a One-to-One relationship with the virtualization technology. The runtime
operations are executed using the Docker SDK.

 Ansible Adapter: The Ansible Adapter is used to launch OpenStack instances
using Ansible. An Ansible “play” file is passed along with an additional
Metadata file in a package. The adapter then uses the Ansible SDK to launch

D3.1 ElasTest Platform Cloud Modules v1

36

the “play”. The Ansible Adapter can connect to OpenStack instances remotely,
which means that it has an One-to-Many relationship with the virtualization
technology. The runtime operations are executed using SSH.

4.1.4.2 Software Development Kits (SDKs)

 Java SDK: The Java SDK makes it possible for integration with the EPM in Java. It
supports all the above mentioned API calls.

 Python SDK: The Python SDK makes it possible for integration with the EPM in
Python. It supports all the above mentioned API calls and is also available in the
Python Package Index (pypi).

4.1.4.3 Roadmap

The overall goal in the upcoming release can be splitted in 3 areas:

 Extending platform support for other cloud infrastructure technologies: Based
on the requirements of other ElasTest components, use cases and the
demonstrators, the EPM is going to extend the current set of available EPM
Adapters to enable deployments and runtime management for those
technologies (OpenStack/Heat, AWS/CloudFormation30, Aria, Kubernetes31)

 Stabilize and improve the platform support for other operating systems: The
EPM itself and also the support for workers shall be capable to support
Windows and Mac Workers as well.

 Placement algorithms for automated orchestration: As one of the research
items it is foreseen to provide placement algorithms based on several
parameters. This is used to deploy the virtual resources in appropriate places
which can be defined by users to allow the best allocation of resources.
Automated Orchestration is already provided but uses round-robin to select
the target infrastructure whereas this can be improved by designing algorithms
taking into consideration the current location of PoPs, available CPU or
memory, or other parameters.

4.1.4.4 Code Reports

In ElasTest, EPM has been integrated with the CI system that uses Jenkins for
automated tests and builds after every commit. For calculating the code coverage the
EPM is integrated with Codecov.io.

4.1.4.5 Code Repository

The EPM code repository can be found on GitHub32 and is licensed using Apache 2.0
[3]. Within that repository, there is documentation detailing how to run, use and
extend the EPM.

30

 Cloud Formation, https://aws.amazon.com/es/cloudformation/
31

 Kubernetes, https://kubernetes.io/
32

 EPM GitHub, https://github.com/elastest/elastest-platform-manager

https://aws.amazon.com/es/cloudformation/
https://kubernetes.io/
https://github.com/elastest/elastest-service-manager

D3.1 ElasTest Platform Cloud Modules v1

37

4.1.4.6 APIs

In the figures below it can be found the APIs exposed by the EPM. Those APIs are
basically consumed by the users of the EPM (e.g. TORM, ESM) which are designed
for the requirements coming from the other ElasTest components. They are using
the OpenAPI Specifications (OAS)33 which is a standard, programming-agnostic
interface description for REST APIs which was agreed on and is used ElasTest
platform wide to. Thanks to OAS, it allows the generation of the API description
and was also used to generate the SDKs for python and Java.

Figure 8. EPM API: Package

Figure 9. EPM API: Network

Figure 10. EPM API: Adapter

33

 OpenAPI Initiative, https://www.openapis.org/

https://www.openapis.org/

D3.1 ElasTest Platform Cloud Modules v1

38

Figure 11. EPM API: PoP

Figure 12. EPM API: ResourceGroup

Figure 13. EPM API: TOSCA

D3.1 ElasTest Platform Cloud Modules v1

39

Figure 14. EPM API: Runtime

Figure 15. EPM API: Key and Worker

D3.1 ElasTest Platform Cloud Modules v1

40

4.1.5 Research Results and Future Plans

 Customized orchestration solution for testing environments with advanced
functionalities such as runtime operations

 Provider vendor lock-in

 Integration of several cloud environments for Multi-provider support

 Placement of virtual resources

4.2 ElasTest Monitoring Platform (EMP)

4.2.1 Introduction

From the DoA [1], the scope of ElasTest Monitoring Platform (EMP) is captured in
these sentences -

“
ElasTest is a complex software itself and it needs to be monitored for different purposes
including problem diagnose, resource utilization tracking, energy consumption
tracking, cost tracking, etc. This subtask shall take the responsibility of creating the
appropriate monitoring tools, GUIs and APIs enabling:

To recover in a seamless way information related to the runtime execution of the
different ElasTest components including logs, internal status, resource utilization, etc.
These capabilities shall enable the diagnosis and isolation of problems taking place
inside ElasTest logic.

To collect and expose through an API the appropriate monitoring information related
to resource utilization of the cloud resources consumed by the testing activities (e.g.
TJobs instances, Test Support Service instances, etc.) This information shall include cost
consumption, energy consumption, memory consumption, CPU consumption, etc. This
information shall be made available through a northbound interface to the TORM so
that the appropriate engines (see Task 4.4) can consume them.

To enable the instrumentation of the cloud resources consumed by the testing activities
so that testers shall be able to inspect the status of the different TJob instances and
Service instances, recover logs from them and control their lifecycle (e.g. stopping
them).

To develop a toolbox enabling the installation and management of all such capabilities
in ElasTest.

”
The above snippet captures the minimal set of functionalities needed for ElasTest but
in a true spirit of R&D, a few additional requirements were included as part of scope of
work to advance the state of the art. Deliverable D2.3 lists the requirements and high
level architecture for EMP. In this section we will delve in depth into EMP, see detailed
architecture, interaction diagrams, and current development status and roadmap for
the remaining duration of the project.

The basis design philosophy behind EMP is quite simple. EMP supports creation of
monitoring spaces. A monitoring space can be thought to be a collection of relevant
metric streams belonging to either a complex system being monitored, or a set of

D3.1 ElasTest Platform Cloud Modules v1

41

related microservices. Within a monitoring space, multiple metric series coexist. A
series can be thought of collection of metrics stream from the single agent. An agent
can be configured to handle log from a microservice, or host metrics, or a single docker
container stats.

The design philosophy can be described succinctly by Figure 1. Series is marked in the
following figure as subspace. Internally, the codeword for EMP implementation is
Sentinel, therefore in the later sections; any reference to Sentinel in the images should
be interpreted as EMP.

Figure 16. EMP design philoshophy, subspace is synonymous to metrics stream described in the text

4.2.2 Baseline Concepts and Technologies

EMP framework has been implemented in Java and has been packaged as Docker
image which facilitates the deployment on a single machine or over a cluster of nodes
in a relatively straightforward manner. The principal functions of any monitoring
platform are -

 Enable metrics collection, and retention

 Allow information retrieval for analysis

 Condition based alerts and alarming functionality

In order to support high volume metrics and log streams, Apache Kafka34 was chosen
for the messaging subsystem for the following reasons:

 Fast delivery at scale

 Horizontally scalable even across multiple datacentres

 Easy programmability

 Supports multi-tenancy, geo replication

 Topic centric distribution with message containing keys is naturally aligned with
EMP’s notion of spaces and subspaces (series).

 Built in resilience, coordination, among other desirable qualities

 Flexibility is use as queuing, messaging system, storage or streaming platform.

 Large and active community

34

 Apache Kafka: https://kafka.apache.org/intro [accessed: 2018-05-23]

https://kafka.apache.org/intro

D3.1 ElasTest Platform Cloud Modules v1

42

The AAA is handled internally at the moment, but in the near future, use of Keystone is
anticipated as a replacement AAA system for use in EMP.

The persistence is supported by relational as well as time series optimized database.
For static, account related data, file based sqlite is used as a lightweight relational
database. For metric and log streams, InfluxDB35 is used as it implements time based
sharding as well as allows downsampling policies for older data. Figure 2 shows the
catalogue of all relevant technologies that have been used in EMP at the time of
writing of this document.

Figure 17. Technology landscap in EMP

For visualization, Grafana36 has been used as it has a proven integration with InfluxDB
and allows charting of key metrics collected in EMP a relatively straightforward task.

A few EMP agents have been developed and packaged as docker images to facilitate
the metrics collection and transmission into EMP. The agents have been developed in
Python3 to keep memory footprint lower and also demonstrate independence of
language for development of agents. In the current release, the following agents have
been developed:

 System stats collector

 Docker stats collector

35

 Influx Data, https://www.influxdata.com/
36

 Grafana, https://grafana.com/

https://www.influxdata.com/
https://grafana.com/

D3.1 ElasTest Platform Cloud Modules v1

43

 Log file parser, tokenizer and transmission agent (limited to log4j formatted log
files from Java applications).

4.2.3 Component Design and Architecture

A high level EMP architecture is included in D.2.3. [5] along with module descriptions.
Here we present a more detailed version of the same, see Figure 19.

Figure 18. FMC diagram showing detailed EMP components

As can be seen in the figure, the data is gathered by agents (log parsers, system
performance metrics collectors, etc) which are low profile, tiny processes running is
target environment to be monitored and either periodically or on change detection
gathers relevant data, pre-processes packages sending them as a stream to EMP. The
user can use the Management API to create monitoring spaces and series as well as
manage alert rules. The framework has authorization built in and enforces through
Authentication and Authorization module and the data in motion is over industry
grade TLS/SSL connection.

The alarms are stored in the Alarm Registry. The alarm definition which is a well
formed mathematical expression is evaluated using recent values of corresponding
metrics or series of cached recent past data values of a metric through the Online
expression solver. The data ingestion interface in the initial prototype is Kafka and
adding support for RabbitMQ37 is planned. The framework is capable of using several
persistence stores and the interactions are done via the Persistence drivers as shown
in Figure 2 above. The query interface enables users to perform interesting analytics
with the stored data which will enable easy debugging of large scale distributed

37

 RabbitMQ, https://www.rabbitmq.com/

https://www.rabbitmq.com/

D3.1 ElasTest Platform Cloud Modules v1

44

services through data correlation studies among different series within the same
monitoring space in EMP.

4.2.3.1 Use cases description

4.2.3.1.1 Use case A: simultaneous tracking of system parameters as well as log
messages

Imagine a situation where a few ElasTest platform core services are not reachable due
to high packet load on the n/w interfaces and not due to a bug in the software itself. A
visual representation of all facets of the platform including system metrics along with
log visualization will be very helpful in identifying this case. Since EMP handles both
metric streams and log messages in a similar manner, it enables simultaneous
visualization of both types of data streams. The ElasTest platform will have both log
agents and system characterization agents sending continuous streams of metrics to
EMP and using a visualization tool such as Grafana, the appropriate visualization charts
can be rendered through the EMP.

4.2.3.1.2 Use case B: correlated query over multiple series in a given time window

An EMP user want to execute a correlated query in a given time window over multiple
data series, s/he sends the query to EMP query interface, EMP query engine
determines how to extract various data snippets from multiple series, performs
appropriate filtering and aggregation as needed and responds back to user’s query.
Such a capability will enable users of EMP to investigate cascading effect of service
degradation over the entire service ecosystem or service-chain in a distributed systems
deployed at large scales. Other uses of correlated queries can be easily imagined.

4.2.3.1.3 Use case C: alert definition and triggering

Scenario: a service with overloaded CPU must be scaled out to spread the load, the
user of EMP creates an alert definition for ex: if mean (last 10 CPU load readings) >
80% then send alert to elasticity manager using a call-back hook! The EMP keeps an
online mean of last 10 CPU readings from the specified data series and using the online
expression solver determines if the triggering conditions are satisfied or not! Is found
to be True, the callback hook is executed.

4.2.3.1.4 Use case D: liveness detection and callback hook

Imagine, ESM needs to track which services managed by it are alive. It needs to take
corrective action in case some services are unresponsive. The ESM can use EMP to
achieve this. ESM process gets an user account and API credentials for EMP. Using API
calls, for each instance of service it provisions, it creates a liveness-check object along
with desired periodicity and the service instance endpoint in EMP. It also specifies a
call-back REST call signature for such object in EMP. The EMP periodically performs the
liveness test against service instance endpoint, and in case a test fails due to service
unreachable error, or a timeout, EMP executes the call-back restful hook with
configured message. Doing so will notify about unresponsiveness of a particular
service instance to ESM. To limit the security footprint of this feature, EMP will only
allow GET calls and a periodicity of no less than a few seconds.

D3.1 ElasTest Platform Cloud Modules v1

45

4.2.3.2 Sequence diagrams

The following sequence diagrams illustrates interactions among internal components
of EMP and external entities such as EMP users (TORM / TJob developer) while
performing following tasks -

 Account creation in EMP, space and series setup, Figure 20

 Metric ingestion and persistence in EMP, Figure 21

 Alerts management, Figure 22

 Data visualization, Figure 23

 Data query, Figure 24

Figure 19. Sequence diagram showing user registration and monitoring space management

Figure 20 shows the messages exchanged between EMP user and the EMP AAA
subsystem for registration of the account. The user account creation is only permitted
to EMP special admin account. Users of EMP at this moment can’t self-register. This
limitation may be removed in a future release. When an account is successfully
registered with EMP, a unique API-key is generated and associated with that account.
Subsequent steps shown in the Figure 4 above such as creation of monitoring space,
metrics series within a space, etc. must be carried out together with the API-key
included in all requests.

D3.1 ElasTest Platform Cloud Modules v1

46

Figure 20. Sequence diagram showing metrics streams and data workflow through Sentinel

Figure 21 shows the interactions among internal components of EMP when a metric is
sent by EMP agents. Kafka is the messaging technology selected and all agents send
their data stream to kafka for a particular topic. The format of all messages sent to
kafka cluster must be in the following style:

{topic, key, message}

Every monitoring space and metric series maps to Kafka topic with a key. This
management of topics is entirely handled by EMP and the users and agents are
oblivious to the process.

In EMP, Kafka worker threads handle all incoming metrics as soon as possible.
Depending on the underlying physical host capability, each worker thread can be
responsible for more than one topic. To keep the Kafka worker lightweight, the job of
persistence is delegated to DB worker agent. Kafka workers, simply send the received
messages to the DB worker agents which are sent to w common thread pool for
scheduling by the underlying thread management subsystem.

There is a provision to keep most recent ‘n’ points from a metrics stream in memory to
facilitate online processing and evaluation of alarms and SLA related triggers. This
functionality is not available in release 0.9.0 at the time of writing of this report and in
planned for the next release.

D3.1 ElasTest Platform Cloud Modules v1

47

Figure 21. alert management and execution workflow

Figure 22 shows the interaction among various sub modules of EMP for alert
registration and triggering mechanism. The alerts once registered are automatically
scheduled and allocated to a alert process thread. The cache manager upon receiving
newer metrics notifies the alert process which then re-evaluates the alert condition
with newer data points and if the alert condition is met, a notification is sent to the
registered alert-endpoint. A more simplistic version of alert manager is available in the
current release at the time of writing of this document.

EMP uses Grafana for metric visualization. Figure 23 shows the steps necessary by the
users to access the visualization engine. Grafana periodically queries directly the
InfluxDB endpoint to generate live graphs.

Figure 22. data visualisation sequence with Grafana and Sentinel

D3.1 ElasTest Platform Cloud Modules v1

48

Figure 23. user query workflow

Figure 24 above shows the planned query processing by EMP. User send in a
compound query using a query language to be designed for EMP. Once the query is
received at EMP, the query-handler breaks down the compound query into an
execution plan and sends the constituent parts to query worker processes. Each query
worker independently processes the basic query and sends the result back to the
handler, which then merges the responses, applies filters as necessary and returns the
response back to the user.

4.2.4 Roadmap and Features

The features exposed by EMP can be summarised under these following categories:

 Uniform data ingestion interface: EMP utilizes the same common data interface
to gather system stats as well as log streams

 First class status to logs and system metrics: the system metrics and log entries
are treated in exactly similar manner in EMP

 Alerting capabilities: EMP will support custom alert definitions and execution
call-backs, users of EMP will be able to create alert definitions based on the
monitored metrics and define mathematical operations with one or more
metrics as the trigger mechanism. The alerting subsystem in EMP will support
working with latest live data point, or allow the computation to go back n-
points in the history for execution of the trigger function.

D3.1 ElasTest Platform Cloud Modules v1

49

 Correlated query management and corresponding interface: EMP will integrate
with expressive query language that will enable users to perform correlation
between different metric streams to investigate performance flashpoints in the
ElasTest platform.

 Scheduled system liveness test support: EMP will include feature to define REST
based liveness checks of remote services, and corresponding call-backs to
notify dead services.

The EMP exposes a RESTful interface using which an intuitive GUI has also been
developed. The APIs allows the following action:

 Creation of new user account

 Creation of monitoring spaces

 Creation of multiple data series within any space

 Fetching of agent configuration parameters to aid with agent deployment

 Registration of health checks to track liveness of monitored entities (services)

 Query of health check history

The limitation of current APIs are following:

 Missing DELETE capabilities for all managed objects: users, spaces, series,
health checks, etc.

 Missing UPDATE capability for all managed objects

 Missing query interface

 Currently this is satisfied via InfluxDB native query interface

The identified limitations are planned to be overcome in the subsequent releases of
EMP. A few screenshots of the EMP GUI developed over RESTful APIs are shown next.
Figures 25 through 31 captures the main elements of the EMP GUI. Other aspects
include retrieval of user data, common configuration parameters needed for agents’
configuration, etc.

Figure 24. EMP GUI Login screen

D3.1 ElasTest Platform Cloud Modules v1

50

Figure 25 above shows a simple and intuitive login screen which not only authenticates
the user but also sets the API key as part of the session parameters which the web-UI
uses to offer subsequent views to the user. Figures 26 and 27 below shows the
overview page where the EMP user is able to get a gist of relevant information at a
glance. Figure 27 shows all registered spaces and their key parameters to the user.

Figure 25. EMP overview page, showing spaces, health checks and any activity alerts

Figure 26. EMP space management page

D3.1 ElasTest Platform Cloud Modules v1

51

Figure 28 shows the series management view of the EMP web-UI. It allows all
functionalities to the user which they can perform using the RESTful APIs over
command line.

Figure 27. EMP series management (within a given space) page

Figure 28. EMP – recent data point in a series

Figure 29 shows the page showing the user those latest 50 data values that were
received by EMP as part of a series stream. In the recent releases of EMP, the data
visualization is done via open source tool Grafana. Figure 30 provides a glimpse of that
integration.

D3.1 ElasTest Platform Cloud Modules v1

52

Figure 29. EMP embedded data visualisation page

Figure 30. EMP health-check management page

Figure 31 above shows the view where user can create and monitor the state of all the
health-check objects registered within EMP. If any active alert is ongoing, it is clearly
shown as a prominent element in the web view to the user.

4.2.4.1 Code Reports

In ElasTest, EMP has been integrated with the CI system38 that uses Jenkins39. The EMP
is tested comprehensively using around 105 unit tests, and the code coverage attained
has been consistently around 70%. Figure 32 shows the build pipeline within ElasTest
CI system.

38

 ElasTest CI service: https://ci.elastest.io/jenkins/
39

 Jenkins, https://jenkins.io/

https://ci.elastest.io/jenkins/
https://jenkins.io/

D3.1 ElasTest Platform Cloud Modules v1

53

Figure 31. ElasTest CI dashboard for EMP test & build pipeline

The Java plugin Cobertura40 is used to generate code coverage reports and then it is
visualized using an external service: codecov.io41. Figure 33 shows the coverage chart
for EMP.

Figure 32. EMP code coverage graph [accessed: 2018-05-24]

4.2.4.2 Code Repository

The EMP codebase and all documentation, agent codes, and docker build scripts are
publically available here42. Everything is released under Apache 2.0 software license
[3].

40
 Cobertura: http://cobertura.github.io/cobertura/ [accessed: 2018-05-24]

41
 Codecov.io: https://codecov.io/gh/elastest/elastest-monitoring-platform [accessed: 2018-05-24]

42
 ElasTest Monitoring Platform (EMP): https://github.com/elastest/elastest-monitoring-platform/

http://cobertura.github.io/cobertura/
https://codecov.io/gh/elastest/elastest-monitoring-platform
https://github.com/elastest/elastest-monitoring-platform/

D3.1 ElasTest Platform Cloud Modules v1

54

4.2.4.3 APIs

The API for EMP were developed using OpenAPI specification. The functionality is
already listed earlier. Here we show the Swagger rendering of the EMP APIs (Figure
34).

Figure 33. OpenAPI specification of EMP REST APIs, Swagger rendering

D3.1 ElasTest Platform Cloud Modules v1

55

Figure 34. Expanded descriptions, methods, status codes for EMP APIs

D3.1 ElasTest Platform Cloud Modules v1

56

Figure 34 shows at a glance overview of current set of REST APIs exposed by EMP
together with the supported methods, status codes and interpretation of the returned
status codes.

4.2.5 Research Results and Future Plans

One of the targeted R&D activities in EMP is correlated queries and analysis to enable
fault tracing among cooperating distributed services. Below are itemized list of
capabilities desired in EMP which forms the basis of continued R&D activity for the
remainder of the project duration.

 Core feature: Comprehensive query language and query interface design
o Allowing expression of intent to involve multiple spaces
o Allowing temporal filtering
o Allowing spatial & temporal aggregation
o Allowing one or more data sets as response elements

 Core feature: Ability to support QoS/SLA equations in alerting subsystem

 UI enhancement: At a glance overview page showing all critical data elements
in an easy to digest form.

 Detailed benchmarking of ingestion and query performance markers

 Ongoing SoTA comparative analysis of EMP with alternatives in open source

4.2.6 ElasTest Monitoring Platform Integration within ElasTest

EMP has been integrated with the ElasTest GUI and delivers a metric visualization that
tracks resource consumption of ElasTest Platform key modules. EMP also tracks host
metrics tracking CPU, Disk and Memory parameters identifying resource limitations of
the node(s) where ElasTest is deployed. Figure 36 below shows a sample screenshot
taken from the ElasTest nightly43 deployment that depicts the metric visualization
using Grafana embedded frame that uses the data collected by EMP from the two
agents deployed on the node -

 EMP system stats agent

 EMP Docker stats agent

The EMP system stats agent was configured to send metrics to EMP at 30 seconds
interval, and the EMP Docker stats agent was configured to send the collected metrics
every 60 seconds.

43

 ElasTest Nightly: http://nightly.elastest.io:37000/ [accessed: 2018-05-24]

http://nightly.elastest.io:37000/

D3.1 ElasTest Platform Cloud Modules v1

57

Figure 35. EMP visualisation pane tracking ElasTest Platform core modules

5 Service Lifecycle Management

5.1 ElasTest Service Manager (ESM)

5.1.1 Introduction

The service manager is based around the idea of delivering service instances on-
demand to end-user consumers in an efficient and easy way to present their software
to the service manager. For this, the ElasTest Service Manager (ESM) supports
deployment using Docker-compose descriptions and will soon support Kubernetes-
based descriptions. In order to use the facility of the ElasTest Service Manager one
must use its API which is based upon the 2.12 version of the Open Service Broker API44,
and from which there are some specific ElasTest extensions added.

For the specifics of how a TSS should be presented to the ESM, D5.1. [9] has this
information.

44

 Open Service Broker API, https://www.openservicebrokerapi.org/

https://www.openservicebrokerapi.org/

D3.1 ElasTest Platform Cloud Modules v1

58

5.1.2 Baseline Concepts and Technologies

Currently the ESM is implemented in Python and delivered as a Docker45 container.
This container does not persist data and so eases scaling the logic provided by the
ESM.

The persistency of data models and structures are by default (unless configured
otherwise) are persisted in-memory and will lose this information if the ESM process is
destroyed or rebooted. In order to avoid this, the ESM provides support through the
MongoDB46 or MySQL47 driver.

The Access, Authorization and Accounting (AAA) system that can be used with the ESM
is OpenStack’s Keystone48. No other AAA systems are seen to be supported as AAA is
seen to be something that can be taken "off the shelve" and so a pragmatic decision
was made to adopt Keystone, a widely deployed system.

The monitoring system is partially based on a combination of the ESM’s own
implementation and the ElasTest Monitoring Platform (EMP). In order to provide
service-level measurements, the ESM carries this out. To provide resource-level
metrics, the ESM uses the EMP, whose responsibility is to do this.

The API used to managing services offered by the ESM is the Open Service Broker
API49.

5.1.2.1 Open Service Broker API

The OSBA project defines an abstract API (using OpenAPI50) that allows developers,
independent software vendors and SaaS vendors to deliver services and applications
upon any platform that supports the on-demand creation of virtualized resources.
Examples of such platforms include CloudFoundry51, OpenShift52 and Docker. The
OSBA originates from the CloudFoundry platform, which allowed internal and external
service providers integrate their service offering within the CloudFoundry platform.
The services offered were typically those that an application/service developer needed
but did not want to maintain or implement themselves. By not carrying out these
tasks, developers received great productivity gains and reduced technical debt. The
effort around the OSBA began on December 13th 2016 and was based on the work
already used within CloudFoundry. The initial list of contributors to the effort included
Fujitsu, Google, IBM, Pivotal, Red Hat and SAP. This gave a large amount of weight to

45
 Docker, http://docker.com

46
 MongoDB, http://mongodb.com

47
 MySQL, http://mysql.com

48
 OpenStack Keystone, https://docs.openstack.org/keystone/latest/

49
 Open Service Broker API, http://openservicebrokerapi.org

50
 Open API Initiative, https://www.openapis.org

51
 Cloud Foundry, https://www.cloudfoundry.org/

52
 Open Shift, http://openshift.com

http://docker.com/
http://mongodb.com/
http://mysql.com/
https://docs.openstack.org/keystone/latest/
http://openservicebrokerapi.org/
https://www.openapis.org/
https://www.cloudfoundry.org/
http://openshift.com/

D3.1 ElasTest Platform Cloud Modules v1

59

the effort and along with support from Kubernetes53 in the Cloud Native Computing
Foundation54, it is currently and arguably the defacto standard API in delivering
services.

Figure 36. Open Service Broker API (OSBA) overview

Within the API there are two key entities that are operated upon over the REST-based
API; Service Type and Service Instance. Service Types are registered with OSBA
implementations in their catalog and from there they are queryable by consumers.
Each Service Type has one or more Plans associated with it, enabling charging per unit-
item (typically time-based, but others can be used). Once a consumer has identified
what Service Type it would like to use in its application a provisioning request
(creation) is issued against the API. The assumption with the OSBA is that once the
instantiation request is complete the Service Instance is ready for use. If the
provisioning time exceeds a service developer time period (this is not specified in the
specification and is left to the developer to set. Obviously the faster a service instance
can be created the better it is.), then it is expected that the client issue an
asynchronous request by supplying the 'accepts_incomplete’ query parameter set to
'true' to the call. Once the Service Instance has been provisioned it can be then used
by the details available from querying the service instance. Some Service Instances will
require that a final step be carried out to use the Service Instance. This step is known
as Service Binding and typically involves the on-demand generation of credentials to
access the Service Instance’s functionality. Once a Service Instance is no longer
required it can be unbound (unbind, rebinding is also possible) and then deprovisioned
(destroy). Naturally, there are further fine grained details on the OSBA which can be
found in the specification55.

53
 Kubernates, http://kubernetes.io

54
 Cloud Native Computing Foundation, https://www.cncf.io

55
 OSBA specification, https://github.com/openservicebrokerapi/servicebroker/blob/v2.13/spec.md

http://kubernetes.io/
https://www.cncf.io/
https://github.com/openservicebrokerapi/servicebroker/blob/v2.13/spec.md

D3.1 ElasTest Platform Cloud Modules v1

60

5.1.2.2 OSBA & Billing

Each service type that is registered in the catalog has one or more plans associated
with it. Each of these plans per specification contains information on what business
level aspects are provided with the associated Service Type. In order to enable the
ElasTest Cost Estimation Engine (ECE), the ECE billing model is integrated with the Plan
entity (see below in ESM Data Model). This is done so that an initial estimation of costs
for the whole set of TSSs in a TJob can be calculated. This calculation is a static one and
with further integration of a billing engine with the ESM will enable dynamic billing and
actual cost reporting per service instance per TJob.

5.1.2.3 ESM Data Model

Below is the data model used in the OSBA and the OpenAPI definition of the
specification can be found at the ESM repository56.

56

 ESM Repository, https://github.com/elastest/elastest-service-
manager/blob/master/docs/images/datamodel/sm-datamodel.png

https://github.com/elastest/elastest-service-manager/blob/master/docs/images/datamodel/sm-datamodel.png
https://github.com/elastest/elastest-service-manager/blob/master/docs/images/datamodel/sm-datamodel.png

D3.1 ElasTest Platform Cloud Modules v1

61

Figure 37. ESM Data Model

D3.1 ElasTest Platform Cloud Modules v1

62

5.1.3 Component Design and Architecture

Figure 38. ESM FMC Diagram

There are a number of components within the ESM and here we provide a brief
explanation of each. The internal components of the ESM are briefly described here

 API (OSBA, extensions) & API (SP): This is the main service consumer entry
point. The API allows the creation and management of service instances. The
second API is one that is merged with the OSBA API. This is the API that allows
service providers to register and update their service offerings within the SM.
This is the representation of extensions. [Implemented]

 Workflow: manages the interactions between the various functional
components of the service manager. [Currently Not implemented]

 Catalog: query available services, services offered by the SM. The catalog is a
collection of service types that can be instantiated on demand by the ESM.
[Implemented]

 Registry: query service instances currently managed by the SM. [Implemented]

 Measurer: measures service metrics and reports them to the EMP [Basic
Implementation]

 Deployer: requests creation of service, adaptors to “local orchestrator” are
provided by the ESM, including Docker and EPM. [Implemented]

 Config: configures a created instance.

o [Implemented]. Note that configuration of the service instance can

currently happen in two ways:

 overriding configuration parameters on provisioning

 retrieval of service instance API and configuration supplied, if

D3.1 ElasTest Platform Cloud Modules v1

63

and only if the API allows it

Updating a service instance (configuration or plan) [Currently Not
implemented]

 Remediator: if notified of plan/SLA breach, the remediator takes necessary
actions to resolve the problem. [Currently Not implemented]

 Compo: responsible for composition of services and resolution of dependencies
a service has. [Currently Not implemented]

 Planner: plans deployment, Can also select the best service provider if there's
none specified or the best location based on technical requirements (latency,
geo-location, etc.). Also ensures that if there are dependencies that they are
selected for deployment. [Currently Not implemented]

The ESM has a number of interactions with external entities. A brief description of
these is provided here:

● ElasTest Platform Manager (EPM): If service provider uses own resources then

this is optional. For the case of ElasTest it is mandatory to use the EPM.

○ Status: Integrated.

● AAA: not provided by ElasTest. Currently uses OpenStack Keystone57.

○ Status: Integrated.

● Billing: not provided by ElasTest. Currently provided by Cyclops58.

○ Status: Not integrated.

● Monitoring: monitors service from external perspective e.g. response time,

latency, RTT etc.

○ Status: Integrated.

Note: The “Local” Orchestrator can be provided by service owner. It should be the EPM
however; other orchestrators can be supported by the ESM architecture. The main
goal is the orchestration of services and dependencies. This abstraction allows the
service provider either use its own system to provide the service’s resources (for
example using the local docker engine driver) or to use those by the EPM.

5.1.3.1 Service Lifecycle

A service that is offered through the ESM uses the common life cycle as defined by the
ESM. It is a simple lifecycle and only accounts for the technical realisation of the
service. The lifecycle includes all phases from the design of the service through to the
disposal of a service instance. The lifecycle is one that has already been used in the
Hurtle orchestrator. The phases of the life cycle are as follows:

57
 OpenStack Keystone, https://docs.openstack.org/keystone/latest/

58
 Cyclops, https://icclab.github.io/cyclops/

https://docs.openstack.org/keystone/latest/
https://icclab.github.io/cyclops/

D3.1 ElasTest Platform Cloud Modules v1

64

Figure 39. ESM Lifecycle

● Design: Design of the architecture, implementation, deployment, provisioning

and operation solutions. This allows the owner of the service "design" their

service. This generally a human-oriented activity.

● Implementation: of the designed architecture, functions, interfaces,

controllers, APIs, etc. It should be noted here that all TSS APIs are specified

using the OpenAPI interface description language.

● Deployment: Deployment of the implemented elements, e.g. networks,

volumes and containers, etc. Anything such that the service can be used, but

don't provide access to the service. With respect to the OSBA, this phase is

associated with the provisioning phase.

● Provisioning: Provisioning of the service environment. Activation of the service

such that the user can actually use it. This in the specific case of ElasTest this

means configuring the service with the required parameters. These parameters

are supplied by passing environment variables into the container.

○ Once the service is appropriately configured the owner of the service

instance can then request access to the service instance through

“binding”. This part of the provisioning phase is specific to the Open

Service Broker API.

With respect to the OSBA, this phase is associated with binding as well as the
specific case of service configuration.

● Operation and Run-Time Management: in this stage the service instance is

ready and running. Activities such as scaling, reconfiguration of Sub-Services

are carried out here. This phase is currently a service-specific task.

● Disposal: Release of all SSs, the service instance itself and virtual resources is

carried out here. With respect to the OSBA, this phase is associated with both

unbinding and deprovisioning.

5.1.3.2 Use case scenarios

Please see D2.3.[5] for the use case scenarios that the ESM is designed and
implemented to satisfy. However, for reference in the following sequence diagrams
the following use cases are considered for the ESM Actors:

D3.1 ElasTest Platform Cloud Modules v1

65

1. ETM and ServiceManagerUI are all types of ServiceConsumer. A
ServiceConsumer is the client side of the business relationship and the user of
the functionality delivered by the ESM.

2. ServiceProvider is a subclass of ServiceConsumer as it has not only access the
functionality of a consumer but also adds basic functionality required to
operate a service. The provider is the entity that designs, implements and
operates a service type upon a particular platform. The provider offers its
service type (implementation) to consumers, who can create instances that are
billed.

Table 11. Set of ESM Use Cases and their Implementation Status

ServiceConsumer ServiceProvider

1 list available service types list available service types

2 create a service instance of a specific
service type

register service type and endpoint
information

3 get/poll service instance status register service type manifest, implemented
via ID #2.

4 bind service instance update service type business information:
plan and description (this is the same
technical implementation as ID #5)

5 configure service instance update service type technical information:
endpoint/API (this is the same technical
implementation as ID #4)

6 get service instance details,
implemented via ID #3

report service instance metrics

7 get service instance metrics

8 update service instance

9 unbind service instance

10 delete service instance

In the table above, the key use cases are listed and those that are already
implemented are coloured in green. Those that are coloured in orange are either in
progress or planned to be implemented in upcoming releases of the ESM and as such
these items are not included in the set of ESM sequence diagrams.

5.1.3.3 Sequence Diagrams

In D.2.3.[5], the sequence diagrams related to the ESM only showed the interactions
with other external components and services. As such it provides a black box view.
There are further details that are illustrated in sequence diagrams that show the
internal details of the ESM or in other words the "white box" view. The sequence
diagrams are grouped by base actor (ServiceConsumer and ServiceProvider) and are
included in the appendix of this document (see section 10.1).

D3.1 ElasTest Platform Cloud Modules v1

66

5.1.4 Roadmap and Features

From the ElasTest DoA [1] the following features were expected to be delivered by the
ESM:

● Service Manager components and architectural models, interfaces

● These are described in this document.

● Seamless installation and onboarding of services

● This has been achieved by firstly deciding on what the requirements for

service owners were (this is done through WP5 and are reported in

D5.1). The ESM has support for onboarding service through the API or

through the user interface should a more user friendly means be

required.

● Common life cycle for all services

● A common life cycle has been defined by the ESM and followed by all

services in WP5. Currently, this lifecycle is a simple one and does not

cover the case of online service upgrades. done: explain the Mobile

Cloud Networking (MCN) project59 lifecycle and the required extensions

to it (future work)

● Monitoring, observation and debugging capabilities

● Currently, the ESM has Integration with EMP. Service-level metrics are

measured per service instance and then reported to the EMP. The EMP

then provides the time-series storage required for the submitted

metrics and through the EMP’s interface those are retrieved on request

made available to the ESM (e.g. showing service instance metrics in the

ESM UI)

Here we list the set of features currently available in the current version of the (0.9 as

of writing) ESM.

5.1.4.1 User Interface

The key aim of the user interface has been to expose the ESM’s API in a visual fashion
and also provide metrics per service instance. Those metrics are retrieved from the
EMP.

● All API functionality is exposed through the user interface.

● On-boarding of services enabled through UI

● Visualisation of service and resource metrics

The UI itself is an independent code base and is deployed in a separate container. This
allows those that operate an ESM to select to use the user interface or not.

59

 Mobile Cloud Networking, http://mobile-cloud-networking.eu/, EU FP7 grant agreement #318109

http://mobile-cloud-networking.eu/

D3.1 ElasTest Platform Cloud Modules v1

67

Figure 40. ESM: A listing of services available in the Service Catalog

Figure 41. ESM: Add Service

D3.1 ElasTest Platform Cloud Modules v1

68

Figure 42. ESM: Onboarding a new Service Type

Figure 43. ESM: Viewing a Serice Intance Details

5.1.4.2 Road Map

Below are a set of features that should be implemented in the ESM. Which feature has
more priority is subject to the ElasTest release planning meetings.

● Currently the provisioning of services is somewhat synchronous. Complete

asynchronous handling of these requests will be provided in upcoming

releases.

● The monitoring of services is currently basic (it simply gathers metrics based on

each service instance’s health endpoint). These metrics will be extended to

provide further enhanced service monitoring.

● Updating a service instance (configuration or plan) is yet to be implemented

and will be done to provide a type of “static” scalability. In this case, the service

D3.1 ElasTest Platform Cloud Modules v1

69

consumer/owner can change the plan (e.g. resources assigned to a service) and

so increase the processing capacity of the service instance. This change needs

to be transparent to the service owner and not result in any data loss.

● One request by service owners is to have a means to debug service instances.

This will be investigated to provide a solution that is useful to WP5 service

owners.

● At the moment there are only two backends implemented. In order to provide

further tenant isolation and control from the ESM perspective other resource

backends (e.g. OpenShift/Kubernetes) should be provided

● Currently there are a number of components in the logical architecture that

have no implementation (including the Planner, Composition, Remediator and

Workflow). Depending on requirements and needs of the overall platform

these will be implemented either as core or investigated in the research areas.

● Billing integration to compliment the cost estimation engine (ECE).

● Update to OSBA API version 2.13, or if available v2.14.

5.1.4.3 Code Reports

The ESM is implemented using python and this code is tested using the Python unittest
module. There are currently 51 tests that are run against all configurations of the ESM.
These tests consist of both unit and integration tests. Currently the code coverage is at
approximately 87%, which is calculated using Codecov.io60 every time a new build of
the ESM is done. As shown, the code coverage for the ESM for the last 6 months has
remained stable. Note that currently code complexity is not calculated.

Figure 44. ESM Code Coverage over Time

The status and history of all the ESM builds can be viewed at this page61, which is the
public view of the ElasTest continuous integration and delivery system (based on
Jenkins).

5.1.4.4 Code Repository

● The ESM code repository can be found on GitHub62 and is licensed using

60
 Code Coverage, https://codecov.io

61
 ESM status build,

https://ci.elastest.io/jenkins/view/Components%20build%20dashboard/job/elastest-service-
manager/job/esm/

https://codecov.io/
https://ci.elastest.io/jenkins/view/Components%20build%20dashboard/job/elastest-service-manager/job/esm/
https://ci.elastest.io/jenkins/view/Components%20build%20dashboard/job/elastest-service-manager/job/esm/

D3.1 ElasTest Platform Cloud Modules v1

70

Apache 2.0.

● Within that repository, there is documentation63 detailing how to run, use and

extend the ESM.

● The API of the ESM64 can be viewed online here65.

5.1.4.5 API

The API of the currently versioned ESM is based on the v2.12 OSBA specification. The
functionality that is currently available is:

● OSBA: list the contents of the service catalog.

● OSBA: provision (create) a service instance.

● OSBA: bind (configure) a service instance.

● OSBA: unbind (unconfigure) a service instance.

● OSBA: deprovision (delete) a service instance.

In order to integrate the OSBA API with ElasTest and fit its needs the following
extensions were provided (uses the REST path namespace of /v2/et):

● ElasTest Extension: get details on a service instance.

● ElasTest Extension: register a service in the service catalog.

● ElasTest Extension: register a service manifest associated with a service

description.

Below is a summary of the functionality exposed by the ESM’s API. Extensions to the
OSBA are kept separate from standard API and are placed under the /v2/et
namespace:

Figure 45. ESM: The Catalog API

62
 ESM GitHub repository, https://github.com/elastest/elastest-service-manager

63
 ESM documentation, https://github.com/elastest/elastest-service-manager/tree/master/docs

64
 ESM API YAML, https://github.com/elastest/elastest-service-manager/blob/master/api.yaml

65
 ESM API, https://elastest.io/docs/api/esm/

https://github.com/elastest/elastest-service-manager
https://github.com/elastest/elastest-service-manager/tree/master/docs
https://github.com/elastest/elastest-service-manager/blob/master/api.yaml
https://elastest.io/docs/api/esm/

D3.1 ElasTest Platform Cloud Modules v1

71

Figure 46. ESM: API Related to Service Instances

5.1.4.6 Internal

● Support for in-memory, MongoDB and MySQL persistency through the Store

abstraction

● Support for local docker and EPM resource providers through the Resource

Backend abstraction.

● Support for service level metrics and reported to the EMP, through the basic

Measurer.

● Support for providing ESM logging direct to the EMP using the standard python

logging interface66.

5.1.5 Research Results and Future Plans

Currently the research work of the ESM has been submitted to ICDCS1867, USENIX
HotEdge1868 and also to QUATIC1869. The work in the former two is around the idea of
providing near real-time provisioning of services using an approach that combines
technologies of Unikernels and can be applied to Edge computing. The latter provides
an overview of how the ESM supports the TSSs of WP5.

Currently, the ESM is dependent upon docker-compose description documents and
can support others, however a common model that can accommodate different
technologies may be researched in order to provide a single document that describes a

66
 Python logging interface, https://docs.python.org/3/library/logging.html

67
 ICDCS18, http://icdcs2018.ocg.at

68
 Hot Edge, https://www.usenix.org/conference/hotedge18/

69
 QUATIC, https://sites.google.com/view/quatic2018/

https://docs.python.org/3/library/logging.html
http://icdcs2018.ocg.at/
https://www.usenix.org/conference/hotedge18/
https://sites.google.com/view/quatic2018/

D3.1 ElasTest Platform Cloud Modules v1

72

service. Currently, the only standard available that can provide this is the OASIS
TOSCA70 specification, so attention this this shall be given.

Having a service description format that allows specification of location is becoming
more important with the advent of Edge and Fog Computing, however it is arguable
that the platform should or could (without the explicit specification of the
programmer) manage the placement of service components. Another area of interest
and worthy of research is how one can integrate other service delivery technologies,
such as serverless and Function-as-a-Service technologies. This also has a relationship
to service composition, which can also be investigated.

Finally, given the Plan-based means to bill a service instance, work upon how the
integration of the EMP and SLAs (essentially the Plan of a service) can be achieved such
to maintain the level of service.

6 SuT Management

6.1 ElasTest Instrumentation Manager (EIM) & Instrumentation Agents

6.1.1 Introduction

Instrumentation is a collective term used for measuring instruments, which is the
activity of obtaining and comparing established standard objects and events (used as
units), the process of measurement gives a number relating the item under study and
the referenced unit of measurement.

The term has been used since long time ago in different contexts depending on the
sectors where it applies, from the pre-industrial period to nowadays where we can find
large integrated computer-based systems instrumented. In the context of computer
programming, instrumentation refers to extending the interface exposed by a software
system for achieving enhanced controllability (i.e. the ability to modify behaviour and
runtime status) and observability (i.e. the ability to infer information about the
runtime internal state of the system). Programmers implement instrumentation in the
form of code instructions that monitor/control specific components in a system.

Tasks 3.3 & 3.4 are in charge of designing and implementing Instrumentation Agents,
as described in Section 1.3.2 on PartB of the DoA [1]. These Agents instrument the
operating system of the SuT host instances. Thanks to it, the agent is capable of
exposing two types of capabilities: (1) controllability, through which the agent can
force custom behaviours on the host’s network, CPU utilization, memory consumption,
process lifecycle management or system shutdown, etc.; and (2) observability, through
which the Agent collects all information relevant for testing or monitoring purposes
(e.g. energy consumption, resources utilization, etc.) For this, these tasks shall:

• Develop the Instrumentation Agent, that shall work at least, on the Linux kernel
(other operating systems might also be considered).

70
 OASIS TOSCA specification, https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca

D3.1 ElasTest Platform Cloud Modules v1

73

• Implement the mechanism for the registration of the Agent into the Instrumentation
Manager. This enables the Manager to control the Agent and the Agent to provide
status information into the Manager.

• Develop the appropriate technologies enabling the installation and control of the
Agent on different cloud infrastructures including VM (e.g. KVM) or Containers (e.g.
Docker). These technologies should guarantee availability of the tools on all public or
private clouds, distributions and kernel versions that the partners of the project or the
community of users demand.

6.1.2 Baseline Concepts and Technologies

Instrumentation within ElasTest refers to extending the interface exposed by a
software system for achieving enhanced controllability (i.e. the ability to modify
behaviour and runtime status) and observability (i.e. the ability to infer information
about the runtime internal state of the system).

Previous works have been carried out by ATOS team on the field of “instrumentation
observability”. In the context of the FP7 EU funded project CloudWave71, where a
fundamental topic is the ‘execution analytics’ which deals with the gathering,
processing, and analysis of the vast amounts of monitoring data available in the Cloud,
the ATOS team worked with a toolbox of technologies developed in the project with
the objective of instrumenting cloud applications using Aspects. (i.e.: using AspectJ72 a
seamless aspect-oriented extension to the Java programming language).

Table 12. EIM: Baseline technology.

Input technology Input TRL Description

Cloud Interceptor
(ATOS-CI)

4 Provided by ATOS. It is as toolbox of technologies
developed in CloudWave project with the objective
of instrumenting cloud applications using Aspects

However, after the first user feedback loop at the design phase, ElasTest pilots have
been arguing that they prefer not to modify their applications source code adding code
annotations in order to be able to observe applications behaviour at runtime, for this
reason the manager and agents actuates at OS level consuming well established
operating system interfaces to guarantee interoperability across distributions and
versions.

ElasTest Instrumentation Manager software module has been implemented in Java
and has been packed as Docker image which facilitates the deployment over different
resources topologies. The aforementioned module is part of the ElasTest Platform
core-components, so it is deployed together with the platform through the platform
docker-compose file.

The development environment used for this component looks as follows:

71

 CloudWave – Agile Service Engineering for the Future Internet, http://www.cloudwave-fp7.eu/
72

 AspectJ project, https://www.eclipse.org/aspectj/

http://cloudwave-fp7.eu/
https://eclipse.org/aspectj/
http://www.cloudwave-fp7.eu/
https://www.eclipse.org/aspectj/

D3.1 ElasTest Platform Cloud Modules v1

74

 JAVA JDK >= 7

 Maven >=3

 Eclipse IDE or similar JAVA development environment.

If the EIM is used outside the ElasTest platform additional systems are deployed to
expose the features it offers:

 MySQL-like DB73 or MongoDB74: The Database System that uses the EIM to
store the persistent data, necessary to manage the Agents. Within ElasTest, the
EIM is using the EDM component to persist data.

 Elasticsearch75: As indicated on its website "is a distributed, RESTful search and
analytics engine capable of solving a growing number of use cases. As the heart
of the Elastic Stack, it centrally stores your data ".

 Logstash76: As indicated on its website "It is a server-side data processing
pipeline that ingests data from a multitude of sources simultaneously,
transforms it, and then sends it to your favorite stash". EIM uses it to gather
and parse logs and metrics produced in the SuT where Beats are deployed. The
logs and metrics are sent to Elasticsearch.

 Kibana 77 : As indicated on its website "Kibana lets you visualize your
Elasticsearch data and navigate the Elastic Stack". EIM uses it to visualize the
data collected from Beats from SuT.

 SuT: In order to provide something to test with, an Ubuntu14.04 container is
provided to interact with EIM Server Application.

The EIM software module is licensed under Apache License, Version 2.0 [3].

6.1.3 Component Design and Architecture

The Instrumentation Agent consists of a software agent that instruments the
operating system of the computing nodes (i.e. virtual machines, containers, etc.)
where the SuT is deployed. This agent makes it possible to customize all the resources
under the control of the node’s operating system kernel (e.g. network stack behaviour,
CPU utilization, node shutdown, etc.) In addition, the agent collects information on
node behaviour including metrics for performance, resource consumption, energy, etc.
This is compatible with all types of cloud technologies as it only requires installing and
launching the agents on the nodes where the SuT is deployed.

The Instrumentation Manager consists of a service that can be launched in the same
cloud where a SuT is deployed or together with the platform. The Instrumentation
Manager acts as a registrar of the different Instrumentation Agents in the sense that
all agents in the SuT register into the manager as they start up. After that, the Manager
exposes to testers the ability of controlling agent’s behaviour through a REST API. The

73

 MySQL-like DB, https://www.mysql.com/
74

 MongoDB, https://www.mongodb.com/
75

 ElasticSearch, https://www.elastic.co/products/elasticsearch
76

 Logstash, https://www.elastic.co/products/logstash
77

 Kibana, https://www.elastic.co/products/kibana

https://www.mysql.com/
https://www.mongodb.com/
https://www.elastic.co/products/elasticsearch
https://www.elastic.co/products/logstash
https://www.elastic.co/products/kibana

D3.1 ElasTest Platform Cloud Modules v1

75

ElasTest Instrumentation Manager (EIM) component controls and orchestrates the

Instrumentation Agents that are deployed in ElasTest78 platform. These agents will
instrument the operating system of the SuT (Software under test) host instances.

Figure 47. EIM FMC Diagram

Here we provide a brief explanation of each internal module of the EIM:

 API: This is the main SuT manager entry point (northbound interfaces exposed
to TORM module). The component exposes a REST API that allows the
registration, configuration and deployment of the agents on top of the
resources to monitor or control.

 Conf. Management System: The configuration management system is able
after the registration of a new target host to download, install and configure
the agents selected by the users/testers.

 Agent Catalogue: This catalogue contains the list of actions supported by the
EIM, the current version of the component includes mainly observability
actions, and the controllability ones will be part of the second report.

78

 ElasTest Plattform, http://elastest.io/

http://elastest.io/

D3.1 ElasTest Platform Cloud Modules v1

76

 Management: Implements the instrumentation capabilities offered by the
software module.

6.1.3.1 Data Model

6.1.3.1.1 PublicKey

Table 13. EIM: PublicKey Data Model

Name Description Schema

publickey This entity defines the public Key of EIM

Example : "ssh-rsa AAAAB…"

string

6.1.3.1.2 Agent

Table 14. EIM: Agent Data Model

Name Description Schema

Agent ID This entity defines the ID of the agent string

host Target host String

6.1.3.1.3 Host

Table 15. EIM: Host Data Model

Name Description Schema

address Host endpoint

Example : "127.0.0.1"

string

User Username

Example : "root"

String

private_key This is the key itself as String. String

logstash_ip Logstash endpoint

Example : "127.0.0.1"

String

logstash_port Logstash port

Example : "5044"

String

6.1.3.1.4 AgentConfiguration

Table 16. EIM: AgentConfiguration Data Model

Name Description Schema

exec This entity defines the ID of the agent string

Component Target host string

network_agent Stream and path string

D3.1 ElasTest Platform Cloud Modules v1

77

logging_agent Stream string

performance_agent Stream string

The figure bellow depicts the technology map used in the reference implementation of
the Instrumentation Manager (EIM) working in isolation of the ElasTest platform:

Figure 48. Instrumentation Manager & Agents technology map.

6.1.4 Roadmap and Features

6.1.4.1 Component Usage from the ElasTest dashboard:

Instrument SuT from ElasTest dashboard: (Register agent step)

D3.1 ElasTest Platform Cloud Modules v1

78

Figure 49. Instrumenting SuT from ElasTest dashboard

Install and configure agents on remote SuT:

Figure 50. Install and configure agents on remote SuT

Select relevant KPIs from the metrics catalogue:

D3.1 ElasTest Platform Cloud Modules v1

79

Figure 51. Select KPIs to monitor

Metrics and logs visualized from the platform dashboard:

Figure 52. Metrics visualisation within the ElasTest dashbaord

Figure 53. Logs visualisation within the ElasTest dashbaord

D3.1 ElasTest Platform Cloud Modules v1

80

For further details check ElasTest documentation located in our public repository.

6.1.4.2 Road Map

Release 1: Initial Proof of Concepts includes;

- Set of monitoring agents less intrusive as possible in order to produce low
overhead during the instrumentation.

- Lightweight agents as they are going to be deployed within the SuT.
- Evaluate different configuration management systems.

Release2: Initial version of the component working isolated.

- Initial version of EIM web service available
- Docker files allowing to easily deploy external software systems needed by our

software module.

Release3: Adding new features

- Agent registration procedure implemented
- Support for relational and non-relational databases implemented.
- Deploy automatically instrumentation agents in the target cloud environments
- Adding new actions within the catalogue allowing to monitor

o Performance and availability metrics
o Logs and files
o Network indicators

Release 4: First integrated version

- Fixings bugs reported in previous version
- Northbound interfaces integrated with TORM
- Integration with the EDM component as a persistent storage of data.
- Adapting component interfaces to be able to configure the output against TORM

or against the EMS support service if it exists.
- Lifecycle of agents fully covered from its deployment/configuration to its

termination.

Release 5: Adding new observability features + adding controllability feature.

- Use set of capabilities offered by the EPM module
- Extend controllability capabilities
- Test robustness and scalability across the different type of cloud infrastructure

required by the project.
- Instrument other types of systems (i.e: AWS, Kubernetes)
- Extend the configurability of the component.

6.1.4.3 Code Reports

In ElasTest, EIM has been integrated with the CI system that uses Jenkins for
automated tests and builds after every commit. For calculating the code coverage the
EIM is integrated with Codecov.io.

Further details can be seen as part of the WP6 reports.

D3.1 ElasTest Platform Cloud Modules v1

81

Figure 54. EIM Jenkins buil report

6.1.4.4 Code Repository

 The EIM code repository can be found on GitHub79 and is licensed using Apache
2.0 [3].

 Within that repository, there is documentation80 detailing how to run, use and
extend the EIM.

 The API of the EIM can be viewed online here81.

6.1.4.5 API

Figure 55. EIM: Publickey API

Figure 56. EIM: Agent API

79
 ElasTest Intrumentation Manager, https://github.com/elastest/elastest-instrumentation-manager

80
 EIM Documentation, https://github.com/elastest/elastest-instrumentation-

manager/tree/master/docs
81

 EIM API, https://elastest.io/docs/api/eim/

https://github.com/elastest/elastest-instrumentation-manager
https://github.com/elastest/elastest-instrumentation-manager/tree/master/docs
https://github.com/elastest/elastest-instrumentation-manager/tree/master/docs
https://elastest.io/docs/api/eim/

D3.1 ElasTest Platform Cloud Modules v1

82

Figure 57. EIM: AgentConfiguration API

6.1.5 Research Results and Future Plans

In order to archive the projects goals, ElasTest was designed to work always-on
Instrumentation, Measurement, and Control (IMC) basis in a fully distributed way; we
need to be able to dynamically provision resources in a unified manner within a short
time period. To this aim, gathering metrics become a key aspect to consider during the
execution of the tests against the software under evaluation.

Nowadays, there are many types of providers that can accommodate the provisioning
of the computational resources and its configuration. From private providers to public
ones, each of them exposing monitoring information through their own libraries or
APIs, in that sense it becomes very complex to find a single way to gather information
from an ecosystem of different Cloud Service Providers available out there. ElasTest
project proposes to capture runtime information through monitoring agents
instantiated one top of the computational nodes where the application is deployed.

The first consideration to take into account is that the aforementioned agents should
be designed as less intrusive as possible considering that we do not want to affect the
behaviour of the applications. To this end, the agents need to be as lightweight as
possible, as they need to be deployed within the SuT, in addition the overhead
produced by the agents needs to be minimal. We are avoiding vendor Cloud provider
lock-in situation not relaying on a certain provider or API but at the same time we need
to ensure that the agents are designed to consume well established operating system
interfaces to guarantee interoperability across different OS distributions. In the scope
of the project at least Linux systems are targeted.

The current version of the component supports the configuration and deployment of
observability agents that are able to capture availability, performance and networks
metrics from the application, as well as gather logs from different filesystem paths.

The future plans for the component considers extending its capabilities not only to
allow the collection of metrics, but giving as well the possibility to inject custom
behaviours to the application at runtime. The controllability capabilities expected in
the new releases of the component will be able to emulate real world conditions while
the application is running. The set of actions that are considered covers behaviours
such as: overload the resource (CPU, mem, etc.), network packet loses, connectivity
issues, fault tolerance after the failure of certain resource, among other actions that
can be considered based on the vertical demonstrators needs.

D3.1 ElasTest Platform Cloud Modules v1

83

7 Data Persistence Management

7.1 ElasTest Data Manager (EDM)

7.1.1 Introduction

The ElasTest Data Manager was built to separate the persistence layer of ElasTest from
the rest of the platform. It is provided as a docker-compose deployment that is able to
be scaled by changing compose number of images, so that scalability could be
provided and tested in order to facilitate the future Kubernetes migration more easily.

The concept was to provide all mutable entities of ElasTest in a single component, in
order to ease management, testing and expansion of them. This is generally a good
practice in containerized environments, as the practice to handle separately (or even
totally avoid to containerize) the data stores is quite common in large production
environments.

7.1.2 Baseline Concepts and Technologies

Currently EDM provides several different data services as a set of Docker containers,
all orchestrated by docker-compose and monitored by an API written in Java. Each
service is provided as one or more containers, forming a minimal required cluster
size. In addition to the persistence services, EDM also contains a set of supporting
services, in order to provide data caching and data visualization.

EDM provides to ElasTest components the following persistence services:

 MySQL82: One of the most used open source RDBMS service. It is used by ETM
to store structured information like TJobs, Suts, executions, etc. It is also used
by other services like EIM, EPM and ESM.

 Elasticsearch83: Provides a distributed data-store for semi-structured data. It is
the solution of choice used by ETM to store logs and metrics generated during
the execution of TJobs.

 Hadoop84: Provides a data-lake store, in order to provide the most possibly
flexible solution in data management. It provides the capability to store raw
data in its original format and process it as-is, as well as extend with other
technologies (e.g. Spark, Hive) and create a data platform fit for every purpose.
It is used in ElasTest by ElasTest Recommendation Engine (ERE) and for ElasTest
BigData Service (EBS).

 Alluxio85: Is a project that provides data abstraction and caching from multiple
file and blob storage backends. This eases interactions with actual data, as the
developer doesn’t need to change anything to switch between data sources,
and also provides a caching mechanism for faster read access.

82

 https://www.mysql.com/
83

 https://www.elastic.co/products/elasticsearch
84

 http://hadoop.apache.org/
85

 http://www.alluxio.org/

https://www.mysql.com/
https://www.elastic.co/products/elasticsearch
http://hadoop.apache.org/
http://www.alluxio.org/

D3.1 ElasTest Platform Cloud Modules v1

84

In addition, EDM also provides some services tailored to the management and
administration of these persistence services:

 Cerebro86: Provides a management UI for Elasticsearch.

 Kibana87: Provides a data-visualization layer for Elasticsearch.

 CloudCommander
88

 Provides a web-based file browser, that is able to surf

HDFS files. Its purpose is to provide a user-friendly way of interacting with

ElasTest data stores, e.g. upload a large data file or download a test output.

7.1.3 Component Design and Architecture

As described before, EDM is basically a set of persistence and related management
services. It also provides a custom developed service, called Management API, to
perform some administrative tasks over the persistence services. Figure 58 shows how
EDM sub-components are associated and how are used by other ElasTest components.

Figure 58. EDM FMC Diagram

86

 Cerebro, https://github.com/lmenezes/cerebro
87

 Kibana, https://www.elastic.co/products/kibana
88

 CloudCommander, http://cloudcmd.io/

https://github.com/lmenezes/cerebro
https://www.elastic.co/products/kibana
http://cloudcmd.io/

D3.1 ElasTest Platform Cloud Modules v1

85

7.1.4 Roadmap and Features

Currently, EDM provides an extensive set of features and a single point of
management for the whole set of services. The idea behind this is that the central
ElasTest management system will have fine-grained control to its data, by only using
an abstract API. Generally, all services provided by EDM fall under these three
categories:

 Data persistence: These services actually manage data storage.
 Data visualization: These services provide an insight on the actual data stored,

and allow for basic querying and visualization.
 Data management: These services allow for data and cluster management.

Extending the service groups with new services or extending service capabilities is an
ongoing process that evolves in parallel with ElasTest. Although the project’s roadmap
is generally clear, pivoting also affects EDM decisions.

7.1.4.1 API

EDM Management API have been developed by Relational project member. It provides
a RESTful API to perform data management operations on all persistence services. The
following operations are supported:

 Backup all data from EDM persistence services
 Restore all data for the platform based on a specific backup ID
 Retrieve a list with all the SuT backups on EDM
 Backup all data for a specific SuT
 Restore all data for a specific SuT
 Delete all data for a specific SuT

Figure 59 shows the Swagger documentation endpoint for all those operations.

Figure 59. EDM API Documentation

Limitations of this API include:

D3.1 ElasTest Platform Cloud Modules v1

86

 Multiple historical backups.
 Backup list, with timestamps and comments
 Service scaling management (currently available only via docker-compose).

These limitations are subject for resolution in future EDM releases in order to provide
a more polished, end-user friendly product. Service scaling management specifically, is
one very interesting feature that is still missing specifications on the underlying
infrastructure.

7.1.4.2 Code Reports

In the scope of ElasTest, EDM is integrated in Jenkins automated build system. The
pipeline contains a number of stages that build the several different services, as well as
unit tests for the Management API service (Figure 60).

Figure 60. EDM Jenkins pipeline

EDM Management API service is tested via a set of 44 unit tests. Test reports are
created with Cobertura (since the service is written in Java), and they are uploaded to
codecov.io for visualization. Since EDM development is frozen for the last six months,
the longest histogram provided by codecov.io is now a flat line. Coverage is currently
at 90% as it can be seen in Figure 61.

Figure 61. EDM Coverage Report

D3.1 ElasTest Platform Cloud Modules v1

87

7.1.4.3 Code Repository

The EDM code can be found on GitHub89 and is licensed under Apache Licence 2.0.
Within the repository there is documentation90 on how to use EDM. The API of EDM
can be viewed online here91.

8 Conclusions

The intermediate version of the ElasTest Cloud Components extends the benefits
offered by the cloud to testers that have to face the challenges of validate large scale
software systems. The set of components presented individually within this report has
been integrated with the ElasTest Platform; each of them reaches its fourth release
(R4) where the first integrated version of the all platform is delivered

The document provides an overview of the components developed in this period; the
intermediate version of the Cloud modules covers the specification, design and their
implementation until M18. The resultant modules described here are aligned with the
initial requirements and specifications gathered in “D.2.3 Requirements, use-cases and
architecture v1” [5].

The next steps towards the final release will be focused on the completion of the
features scheduled on each of the components RoadMap, the priority of each of the
features is subject to the ElasTest release planning meetings, and specially within the
next period those priorities are going to be highly influenced by two factors: a) the
research objectives that the components need to achieve and b) the feedback/support
requested by the Vertical demonstrators that are going to validate the platform.

89

 EDM GitHub, https://github.com/elastest/elastest-data-manager
90

 EDM Documentation, https://github.com/elastest/elastest-data-manager/blob/master/docs/
91

 EDM API, https://elastest.io/docs/api/edm/

https://github.com/elastest/elastest-data-manager
https://github.com/elastest/elastest-data-manager/blob/master/docs/
https://elastest.io/docs/api/edm/

D3.1 ElasTest Platform Cloud Modules v1

88

9 References

[1] ElasTest project Description of Action (DoA) – part B. Amendment 1. Reference
Ares (2017)343382. 23 January 2017.

[2] Bertolino, A., 2007, May. Software testing research: Achievements, challenges,
dreams. In 2007 Future of Software Engineering (pp. 85-103). IEEE Computer
Society.

[3] Apache 2.0 license terms. https://www.apache.org/licenses/LICENSE-2.0. Accessed
on 07 March 2017.

[4] Grant Agreement number: 731535 - ELASTEST - H2020-ICT-2016-2017/H2020-ICT-
2016-1. EUROPEAN COMMISSION. Communications Networks, Content and
Technology. 11 November 2016.

[5] D.2.3. ElasTest requirements, use-cases and architecture v1. Grant Agreement
number: 731535 - ELASTEST - H2020-ICT-2016-2017/H2020-ICT-2016-1.
EUROPEAN COMMISSION.

[6] D.3.1. ElasTest Platform cloud modules v1. Grant Agreement number: 731535 -
ELASTEST - H2020-ICT-2016-2017/H2020-ICT-2016-1. EUROPEAN COMMISSION.

[7] D.4.1. Test Orchestration basic toolbox v1. Grant Agreement number: 731535 -
ELASTEST - H2020-ICT-2016-2017/H2020-ICT-2016-1. EUROPEAN COMMISSION.

[8] D.4.2. Test recommendation engines v1. Grant Agreement number: 731535 -
ELASTEST - H2020-ICT-2016-2017/H2020-ICT-2016-1. EUROPEAN COMMISSION.

[9] D.5.1. ElasTest Test Support Services v1. Grant Agreement number: 731535 -
ELASTEST - H2020-ICT-2016-2017/H2020-ICT-2016-1. EUROPEAN COMMISSION.

[10] D.6.1. ElasTest Continuous Integration and Validation System v1. Grant
Agreement number: 731535 - ELASTEST - H2020-ICT-2016-2017/H2020-ICT-2016-
1. EUROPEAN COMMISSION.

[11] D.6.2. ElasTest platform toolbox and integrations v1. Grant Agreement number:
731535 - ELASTEST - H2020-ICT-2016-2017/H2020-ICT-2016-1. EUROPEAN
COMMISSION.

[12] D.3.2. ElasTest Platform cloud modules v2. Grant Agreement number: 731535 -
ELASTEST - H2020-ICT-2016-2017/H2020-ICT-2016-1. EUROPEAN COMMISSION.

https://www.apache.org/licenses/LICENSE-2.0

D3.1 ElasTest Platform Cloud Modules v1

89

10 Appendix

10.1 ElasTest Service Manager Sequence Diagrams

10.1.1 ServiceConsumer Sequence Diagrams

10.1.1.1 #1 List available service types

Figure 62. Consumer: List of available service types

10.1.1.2 #2 Create a service instance of a specific service type

Figure 63. Consumer: Create a service instance

D3.1 ElasTest Platform Cloud Modules v1

90

10.1.1.3 #3 Get/poll service instance status

Figure 64. Consumer: Get/poll serice status

10.1.1.4 #4 Bind service instance

Figure 65. Consumer: Bind service

10.1.1.5 #5 Configure service instance

Figure 66. Consumer: Configure service instance

D3.1 ElasTest Platform Cloud Modules v1

91

10.1.1.6 #6 Get service instance details

This is implemented via use case and shown in sequence diagram ID #3

10.1.1.7 # 7 Get service instance metrics

Figure 67. Consumer: Get service metrics

10.1.1.8 # 8 Update service instance

This is currently not implemented; therefore the sequence diagram is omitted.

10.1.1.9 # 9 Unbind service instance

Figure 68. Consumer: Unbind service

D3.1 ElasTest Platform Cloud Modules v1

92

10.1.1.10 # 10 Delete service instance

Figure 69. Consumer: Delete service

10.1.2 ServiceProvider Sequence Diagrams

10.1.2.1 #1 List available service types

Figure 70. Provider: List service

D3.1 ElasTest Platform Cloud Modules v1

93

10.1.2.2 #2 Register service type and endpoint information

Figure 71. Provider: Register service

10.1.2.3 #3 Register service type manifest

This is implemented via sequence diagram ID #2.

10.1.2.4 #4 Update service type business information: plan and description

Note that this is the same technical implementation as ID #5

D3.1 ElasTest Platform Cloud Modules v1

94

Figure 72. Provider: Update plan and description

10.1.2.5 #5 Update service type technical information: endpoint/API

Note this is the same technical implementation as ID #4

Figure 73. Provider: Update endpoint

D3.1 ElasTest Platform Cloud Modules v1

95

10.1.2.6 #6 Report service instance metrics

Figure 74. Provider: Report service metrics

