

 D4.1
Version 1.0

Author URJC

Dissemination PU

Date 27-06-2018

Status FINAL

D4.1 Test Orchestration basic toolbox v1

Project acronym ELASTEST

Project title ElasTest: an elastic platform for testing complex distributed
large software systems

Project duration 01-01-2017 to 31-12-2019

Project type H2020-ICT-2016-1. Software Technologies

Project reference 731535

Project website http://elastest.eu/

Work package WP4

WP leader URJC

Deliverable nature Other

Lead editor URJC

Planned delivery date 30-06-2018

Actual delivery date 30-06-2018

Keywords Open source software, cloud computing, software
engineering, operating systems, computer languages,
software design & development

Funded by the European Union

http://elastest.eu/

 D4.1 Test Orchestration basic toolbox v1

2

License
This is a public deliverable that is provided to the community under a Creative Commons
Attribution-ShareAlike 4.0 International License:

http://creativecommons.org/licenses/by-sa/4.0/

You are free to:

Share — copy and redistribute the material in any medium or format.

Adapt — remix, transform, and build upon the material for any purpose, even
commercially.

The licensor cannot revoke these freedoms as long as you follow the license
terms.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and
indicate if changes were made. You may do so in any reasonable manner, but not
in any way that suggests the licensor endorses you or your use.

ShareAlike — If you remix, transform, or build upon the material, you must
distribute your contributions under the same license as the original.

No additional restrictions — You may not apply legal terms or technological
measures that legally restrict others from doing anything the license permits.

Notices:

You do not have to comply with the license for elements of the material in the
public domain or where your use is permitted by an applicable exception or
limitation.

No warranties are given. The license may not give you all of the permissions
necessary for your intended use. For example, other rights such as publicity,
privacy, or moral rights may limit how you use the material.

For a full description of the license legal terms, please refer to:

http://creativecommons.org/licenses/by-sa/4.0/legalcode

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/legalcode

 D4.1 Test Orchestration basic toolbox v1

3

Contributors

Name Affiliation
Piyush Harsh ZHAW

Eduardo Jiménez URJC

Francisco Gortázar URJC

Micael Gallego URJC

Francisco Díaz URJC

Version history

Version Date Author(s) Description of changes
0.1 07/05/2018 URJC Structure of document and first contents

0.2 07/05/2018 URJC Orchestration engine section

0.3 18/05/2018 ZHAW Cost engine section

0.4 18/05/2018 ZHAW Table formatting fix

0.5 30/05/2018 URJC Restructuration of orchestration engine

0.6 31/05/2018 ZHAW Restructured cost engine section

0.7 31/05/2018 URJC Test Orchestration and Recommendation
Manager section

0.8 31/05/2018 URJC ETM - Logs and Metrics section

0.9 31/05/2018 URJC ETM - GUI diagrams

0.10 04/06/2018 URJC Integrated version

0.11 06/06/2018 URJC ETM description in Section 1

0.12 19/06/2018 URJC Corrections after internal review

0.13 25/06/2018 URJC ETM section improvements

1.0 27/06/2018 URJC Final version

 D4.1 Test Orchestration basic toolbox v1

4

Table of contents
1. Executive summary ... 8

2. Introduction .. 8

3. ElasTest tests manager .. 10
3.1. Introduction ... 10
3.2. Features .. 11
3.3. Baseline concepts and technologies .. 12
3.4. Component architecture .. 13

3.4.1. Component diagram .. 13
3.4.2. Metrics and logs .. 18
3.4.3. Data model .. 19
3.4.4. Use cases ... 19

3.5. Code links ... 28
3.5.1. Validation .. 28
3.5.2. Discussion .. 29

3.6. Research results and plans ... 29

4. ElasTest orchestration engine ... 30
4.1. Introduction ... 30
4.2. Features .. 31
4.3. Baseline concepts and technologies .. 31

4.3.1. Test composition.. 32
4.3.2. Test parallelization .. 32
4.3.3. Orchestration languages ... 33

4.4. Component architecture .. 34
4.5. Code links ... 38

4.5.1. Validation .. 40
4.5.2. Discussion .. 42

4.6. Research results and plans ... 42

5. ElasTest cost engine .. 43
5.1. Introduction ... 43
5.2. Features .. 43
5.3. Baseline concepts ... 44
5.4. Component architecture .. 44

5.4.1. Architecture and workflows .. 45
5.4.2. Cost model elements ... 49

5.5. Implementation and code links .. 51
5.5.1. Validation .. 52
5.5.2. Discussion .. 54

5.6. Research results and upcoming plans .. 54

6. Conclusions and future work ... 54

7. References .. 56

 D4.1 Test Orchestration basic toolbox v1

5

List of figures
Figure 1. ETM sub-components .. 14

Figure 2. ETM Core modules used to execute TJobs ... 15

Figure 3. ETM GUI components .. 16

Figure 4. LogAnalyzer modules ... 16

Figure 5. ETM Core modules for TestLink integration .. 17

Figure 6. Metrics and logs in ElasTest ... 18

Figure 7. ETM Core Data Model .. 19

Figure 8. Define a TJob and execute it .. 20

Figure 9. Define a TJob with TSS and execute it .. 21

Figure 10. Create a TJob .. 22

Figure 11. TJob execution.. 23

Figure 12. Search logs with LogAnalyzer ... 24

Figure 13. Filter logs in LogAnalyzer .. 26

Figure 14. Mark logs in LogAnalyzer ... 27

Figure 15. Test Plan Execution .. 28

Figure 16. Verdict-driven test orchestration ... 35

Figure 17. Data-driven test orchestration ... 36

Figure 18. EOE schema .. 37

Figure 19. Using ElasTest orchestration Jenkins library .. 41

Figure 20. Execution of the orchestration in Full Teaching application 41

Figure 21. ECE FMC Architecture .. 45

Figure 22. Schematic showing execution events and resource usage metrics flow enabling real
cost estimation .. 47

Figure 23. Flowchart showing steps in true cost computation ... 48

Figure 24. ECE landing page and selection of ece-test TJob as part of validation 52

Figure 25: ECE log sample ... 52

Figure 26. Cost analysis result page .. 53

Figure 27. ElasTest Jenkins CI server stages for ECE end-to-end integration test pipeline 53

List of tables
Table 1. ElasTest tests manager features .. 12

Table 2. Orchestrator requirements ... 31

 D4.1 Test Orchestration basic toolbox v1

6

Table 2. Orchestrator API .. 38

Table 3. Orchestrator exit condition alternatives ... 39

Table 4. Orchestrator parallel jobs verdict conditions .. 39

Table 5: Cost Engine Requirements .. 44

Table 6: Illustrative examples of cost models ... 50

Table 7 ECE REST interface methods supporting key GUI functions ... 51

Table 8 ECE container necessary environment parameters ... 51

Glossary of acronyms

Acronym Definition
API Application Programming Interface

AWS Amazon Web Services

CI Continuous Integration

CRUD Create, Read, Update and Delete

CUT Cloud Unit Testing

CWL Common Workflow Language

DoA Description of Action

DSL Domain-Specific Language

EBS ElasTest Big data Service

ECE ElasTest Cost Engine

EDM ElasTest Data Manager

EOE ElasTest Orchestration Engine

ERE ElasTest Recommendation Engine

ESM ElasTest Service Manager

ESS ElasTest Security Service

ETM ElasTest Tests Manager

EUS ElasTest User Impersonation Service

FMC Fundamental Modeling Concepts

GUI Graphical User Interface

IaaS Infrastructure as a Service

ISO International Organization for Standardization

JSON JavaScript Object Notation

OASIS Organization for the Advancement of Structured Information Standards

REST REpresentational State Transfer

 D4.1 Test Orchestration basic toolbox v1

7

SiL System in the Large

SPA Single Page Application architecture

SUT System Under Test

SWOT Strengths, Weaknesses, Opportunities, Threats

TE Test Engine

TiL Test in the Large

TJob Testing job

TOSCA Topology and Orchestration Specification for Cloud Applications

TSS Test Support Service

UML Unified Modeling Language

WP Work Package

XML eXtensible Markup Language

YAML YAML Ain't Markup Language

 D4.1 Test Orchestration basic toolbox v1

8

1. Executive summary
ElasTest is an open source platform aimed to ease the testing process of large
distributed and heterogeneous software systems. This deliverable is focused on the
technical details of several of the core components of ElasTest, namely:

- ElasTest Tests Manager (ETM), which is the brain of ElasTest and the main entry
point for developers.

- ElasTest Orchestration Engine (EOE), which is responsible of selecting, ordering,
and executing a group of tests in ElasTest (called TJobs).

- ElasTest Cost Engine (ECE), which is responsible of managing the cost of TJob
executions.

Regarding ETM, we have defined a REST API and a web user interface around the
concepts of testing jobs (TJobs) and System Under Test (SUT). Concretely, the initial
version of the ETM allows end users to define their system under test, define their
testing jobs and run them. The ETM takes care of starting the SUT, running the tests
defined in the TJob and stopping the SUT afterwards. It keeps a log of all TJobs executing
during the history, along with all their related information: logs and metrics. In the next
stage of the project, improved visualization tools focused on troubleshooting those tests
in error will be designed and developed.

Regarding EOE, we hypothesize that the concept of orchestration, understood as a novel
way to select and execute a group of TJobs within ElasTest, can be a relevant way to
improve the testing process within ElasTest. To that aim, two different actions are
considered: i) Topology generation, that is, to define a graph of TJobs (edges) and
checkpoints (vertices). ii) Test augmentation, that is, to reproduce custom operational
conditions of the SUT reusing the orchestration capabilities. At the time of this writing
the topology part has already been implemented, leveraging the Jenkins pipeline DSL
notation to create two different orchestration approaches: i) verdict-driven
orchestration, i.e. connecting TJobs using its verdict (i.e., passed or failed) as Boolean
condition; ii) data-driven, i.e. connecting TJobs using the test data (input) and test
outcomes (output) handled internally by tests. In the future we plan to release a
reference implementation of the data-driven approach for tests and also contribute in
the test augmentation part, missing so far.

Regarding ECE, we have defined a flexible cost model and prototyped the initial version
of cost engine that performs static cost estimation based on defined cost plans of
supporting services. In the next part of the project, real cost calculation based on
ElasTest metrics is planned.

2. Introduction
Testing large distributed and heterogeneous software systems on cloud-based
platforms is increasingly complex. This kind of software systems aggregates different
distributed components, which are typically built and run based on Infrastructure as a

 D4.1 Test Orchestration basic toolbox v1

9

Service (IaaS) combined with operation tools and services such as Continuous
Integration (CI), container engines, or service orchestrators. The complete assessment
of these systems is challenging since developers face with many different problems,
including the difficulty to test the system as a whole due diversity of individual
components, or the coordination of these components due to the distributed nature of
the system [1]. Recent surveys confirm the existence of a significant gap between the
current and the desired status of test automation for distributed heterogenous system,
prioritizing the relevance of test automation features for these systems [2].

To contribute in the solution of this problem, the ElasTest platform provides an
integrated toolbox for end-to-end test automation along the development life cycle,
including test case management, System Under Test (SUT) deployment,
instrumentation, and monitoring for large distributed and heterogeneous software,
including web and mobile among others.

ElasTest core functionality is provided by the ElasTest Tests Manager (ETM), which is the
brain of ElasTest and the main entry point for developers. The core functionality
provided by ETM is augmented by means of so called Test Engines (TE). A Test Engine is
a component that provides complementary features in the platform. ElasTest offers
several TEs at the time of this writing, namely:

• ElasTest Recommendation Engine (ERE). This engine provides recommendations
about tests to the user. This engine is described in private deliverable D4.2
entitled “Test Orchestration basic toolbox v1”.

• ElasTest Orchestration Engine (EOE). This engine is responsible of providing
capabilities for selecting, ordering, and executing a group of TJobs in ElasTest.
TJobs is the name given in the ElasTest jargon to the test entities to be executed
in ElasTest. TJobs are technologically neutral. In other words, ElasTest supports
tests coded in any language and using any testing framework.

• ElasTest Cost Engine (ECE). This engine is responsible of managing the cost of
TJob executions.

The complete description of the ElasTest architecture is described in deliverable D2.3,
entitled “ElasTest requirements use-cases and architecture v1”. This deliverable is
focused in the technical description of several of the above-mentioned components. On
the one hand, first we present the features, baseline concepts and
design/implementation details of ETM in section 3. On the other hand, EOE and ECE are
presented in section 4 and 5 respectively. To conclude the deliverable, some conclusions
and future work are discussed in section 6.

 D4.1 Test Orchestration basic toolbox v1

10

3. ElasTest tests manager

3.1. Introduction

As described in deliverable D2.3 entitled “ElasTest requirements, use-cases and
architecture v1”, ElasTest Tests Manager (ETM) is the main controller of ElasTest. It is
the entry point used by users through its web interface and REST API. The main feature
of this component consist in coordinate the rest of the platform components to work
together to give users the ability to manage the execution of end to end tests to verify
complex distributed applications (System in the Large, SiL).

ETM allows the users to define what tests are going to be executed against what SUT
with what support services. All this information is modeled as a test Job (TJob) that can
be executed. During the execution of TJobs, logs and metrics generated by tests and SUT
components are registered. Also, all relevant information generated by Test Support
Services (TSSs) are also registered. For example, if a TJob uses ElasTest User
Impersonation Service (EUS) to use browsers, during TJob execution, the console of the
browser is registered with the rest of the information. All the information registered
during TJob executions can be visualized in real time in the ElasTest graphical user
interface. It also can be analyzed after the execution with LogAnalyzer, a powerful tool
to analyze and compare logs. In the future, more advanced analysis tools are planned.

ElasTest is an extensible platform allowing third parties to augment the functionality
provided by it. Some of the features provided by ElasTest are already defined as plugins
or external modules, showing the powerful of the platform in this aspect. ElasTest has
two types of external modules: Test Support Services (TSS) and Test Engines (TE). TSSs
are modules used directly from the test code to provide them high level features to
exercising the SUT or assert the expected results. For example, EUS is a TSS providing
browsers as a service to test web pages. ElasTest Security Service (ESS) provides security
testing services to analyze web applications looking for vulnerabilities. Regarding to TE,
they are modules used interactively by ElasTest user. For example, ElasTest Cost Engine
(ECE) provides users cost information about TJob executions. ElasTest is the host of this
two types of third party modules. At the moment of writing this deliverable, only
modules implemented by the project members are available in the platform, but it is
planned to allow users to implement their own modules and install them in an ElasTest
instance.

Finally, some of the integrations of ElasTest with external tools are implemented in the
ETM. Currently, ElasTest is integrated with the most used open source tools in the areas
of continuous integration (Jenkins 1) and test management (TestLink 2). These
integrations requires changes in the data models used to manage TJob executions. For
that reason, they are included in the ETM itself instead of as third party modules.

1 https://jenkins.io/
2 http://testlink.org/

https://jenkins.io/
http://testlink.org/

 D4.1 Test Orchestration basic toolbox v1

11

This section is devoted to describe how ETM is implemented at milestone M18 of the
project lifecycle (i.e. June 2018). The rest of this section is structured as follows. Section
3.2 presents the main features of ETM. Next section 3.3 presents a detailed description
of the technologies used in the implementation of the component. Afterwards, section
3.4 describes the internal architecture of the component and how it is implemented.
Finally, section 3.5 describe the main aspects related to source code.

3.2. Features

The list of features implemented in ElasTest Tests Manager (ETM) component is
summarized in the following table.

Feature Description
Manage projects As ElasTest user, I want CRUD operations on projects to create,

edit, remove and update test projects to group TJobs and SUTs

Create SUTs As ElasTest user, I want to create SUTs so I can specify how to start
a SUT with the following options: Deployed by ElasTest (Docker,
Docker-compose, commands) or Deployed Elsewhere.

Manage SUTs As ElasTest user, I want CRUD operations on SUTs to create, edit,
remove and update SUTs

Create TJobs As ElasTest user, I want to create TJobs so I can specify what SUT
should be tested and how to execute tests against it

Manage TJobs As ElasTest user, I want CRUD operations on TJobs to create, edit,
remove and update TJobs

Execute TJobs As ElasTest user, I want execute a TJob so logs, metrics and tests
results can be recorder for further inspection

Dashboard As ElasTest user, I want to see projects and last TJob executions in
a single screen so I can have an overview of the status of the
platform

Review TJob
executions

As ElasTest user, I want to review finished TJob executions I can
see what happened, especially in executions with failed tests

Test Support
Services

As ElasTest user, I want to specify what TSSs must be ready to use
when a TJob is executed so Tests in TJob can use selected TSS
when testing the SUT

Log analyzer As ElasTest user, I want to analyze, filter and mark logs gathered
during TJob execution so problem troubleshooting is easier than
looking to plain log

Test case
execution

As ElasTest user, I want to review easily all information gathered
during one specific test (logs, events and files) so I can focus on
information related to a test (possible failed)

 D4.1 Test Orchestration basic toolbox v1

12

TestLink info
management

As ElasTest user, I want to see TestLink projects, test cases, suites,
builds and test plans in ElasTest interface so I can see that
information integrated with other TJobs and projects

TestLink Test plan
execution

As ElasTest user, I want to execute TestLink Test plans using
browsers provided by ElasTest and recording all information from
SUT and browsers so I can associate all that information to a bug
report in case of test failure

Test Engines As ElasTest user, I want to start, use and stop a Test Engine so I
can start the engine only when needed

Show platform
information

As ElasTest admin, I want to see the version and compilation date
of ElasTest components so I can see if platform is updated or not

Show logs and
metrics in real-
time

As ElasTest user, I want to see logs and metrics from SUT and
Tests execution so I can know what happen with SUT and Tests in
case I want to solve any problem

Table 1. ElasTest tests manager features

3.3. Baseline concepts and technologies

ETM is composed internally by several sub-components. The main sub-component is
ETM Core, a service providing a REST API and a Web Socket interface. This backend
service is used by the ETM Graphical User Interface (GUI) implemented as a Single Page
Application architecture3 (SPA). ETM Core is the responsible to coordinate the rest of
the ElasTest components and other internal sub-components.

ETM Core is implemented in Java language with Spring Boot framework4. ETM GUI is
implemented in TypeScript language with Angular framework5. Other sub-components
used in ETM are:

• Logstash6: Used to retrieve and process logs and metrics during TJob execution.
This information is the stored in ElasticSearch 7 provided by ElasTest Data
Manager component (EDM). Logstash and ElasticSearch are part of elastic stack8,
the leading open source stack used to gather, process, register and analyze logs,
metrics and any kind of KPI of Internet applications.

• RabbitMQ9: Used to send real time information from ETM-core to the frontend
my means of WebSockets. RabbitMQ is a leading message queue software well
integrated with Spring technologies used in ETM-core.

3 https://en.wikipedia.org/wiki/Single-page_application
4 https://spring.io/projects/spring-boot
5 https://angular.io/
6 https://www.elastic.co/products/logstash
7 https://www.elastic.co/products/elasticsearch
8 https://www.elastic.co/
9 https://www.rabbitmq.com/

https://en.wikipedia.org/wiki/Single-page_application
https://spring.io/projects/spring-boot
https://angular.io/
https://www.elastic.co/products/logstash
https://www.elastic.co/products/elasticsearch
https://www.elastic.co/
https://www.rabbitmq.com/

 D4.1 Test Orchestration basic toolbox v1

13

In the rest of the section, the interactions between ETM Core and the rest of the
subcomponents of ETM is being described.

3.4. Component architecture

In the following subsections, a general overview of the internal structure of ETM is
outlined with several class and component diagrams. The interaction of the different
modules is described with several UML sequence diagrams. Finally, a detailed data
model is presented.

3.4.1. Component diagram

ETM is composed by the following sub-components:

• ETM Core: Service backend that coordinate all other internal sub-components
and interacts with the rest of ElasTest components.

• ETM GUI: is the graphical interface with which the user interacts. It is called
Angular GUI to clarify the technology used to build it.

• RabbitMQ: is a messaging broker used to send logs and metrics in real time to
the user interface.

• Logstash: is a server-side data processing pipeline that ingests received data,
transforms it, and then sends it to RabbitMQ and ElasticSearch. ElasticSearch is
a sub-component of ElasTest Data Manager (EDM) component used to register
all information gathered during test execution.

• Dockbeat and Filebeat: this services are used for log retrieval and monitoring of
TJobs executed as docker containers. They are well integrated with the elastic
stack.

• TestLink: ETM includes an instance of this project to manage manual tests.

These sub-components are illustrated in Figure 1.

 D4.1 Test Orchestration basic toolbox v1

14

Figure 1. ETM sub-components

3.4.1.1. Modules used for TJob execution

When a TJob is executed using the graphical interface, the ETM GUI interacts with the
TJobApiController to manage TJobs. This controller makes use of TJobService to process
the requests received. Later on, TJobExecOrchestratorService takes the control of
execution using the following services:

• EsmService: interacts with ElasTest Service Manager (ESM) component to
manage the Test Support Services (TSSs) associated to the TJob. It is performed
using EsmServiceClient thought ESM API.

• SutService: used in case of TJob has associated SUT.
• DockerService: making use of Docker, this service will initialize and start the

necessary containers for TJob execution. The containers started are Dockbeat (to
get execution metrics), the container for to execute the tests and, if TJob has
specified ‘SUT Deployed by ElasTest’, SUT container. It is also responsible for
obtaining the result files and copying them to the user's filesystem through
FilesServices.

• DockerComposeService: used when TJob has associated ‘SUT Deployed by
ElasTest from Docker Compose’ to start/stop docker-compose SUT services.

The interaction of these modules during the execution of the TJob is reflected in Figure
2.

 D4.1 Test Orchestration basic toolbox v1

15

Figure 2. ETM Core modules used to execute TJobs

In the GUI side, the main modules are the following:

• DasboardComponent: the main component. It contains all the logic of the
Executing TJob page.

• EsmService: this service is in charge to manage information related to TSSs
coming indirectly from ESM.

• TJobService: TJobs are managed by this service to populate the GUI with them.
• TJobExecService: It updates the interface in real time during the execution of

TJobs. For that, it implements a pooling strategy.
• ElastestRabbitmqService: creates the necessary connections with RabbitMQ to

obtain logs and metrics in real time when the TJob is executing.
• EtmMonitoringViewComponent: is responsible for managing everything related

to metrics and logs, making use of the information obtained from RabbitMQ and,
occasionally, from Elasticsearch.

Figure 3 shows the relationship between these components:

 D4.1 Test Orchestration basic toolbox v1

16

Figure 3. ETM GUI components

3.4.1.2. Modules used in LogAnalyzer

LogAnalyzer is a part of ETM that allows the user analyze logs retrieved during tests
execution. It allows the user mark and filter log entries with certain patterns or contents.
Figure 4 shows the main GUI modules of LogAnalyzer. Let’s see details for each of them:

• LogAnalyzerComponent: is the high-level component for LogAnalyzer. It uses
LogAnalyzerService, that contains all the logic of the tool.

• GetIndexModal: This module is responsible for obtaining the available
executions (through TJobService, ProjectService, TJobExecService and
ExternalService) so that the user can select the ones he wants and then process
and pass them to LogAnalyzerComponent to perform the search for logs.

• ElastestESService: this service is used to make queries to get the logs from
Elasticsearch.

Figure 4. LogAnalyzer modules

 D4.1 Test Orchestration basic toolbox v1

17

3.4.1.3. Modules used in TestLink integration

ElasTest allows users to manage manual tests with its integration with TestLink. A user
can execute the test cases of a test plan defined in TestLink and gather information
during the execution. All that information (logs and metrics) is available for later
inspection for problem troubleshooting.

To implement this functionality, ETM GUI interacts with TestLinkApiController in ETM
Core to get TestLink information. The controller makes use of the TestLink API through
TestLinkService. TestLinkService depends on DockerService to get TestLink container
information such as the IP.

ElasTest offers the user the ability to run a test plan. A TestLink test plan is associated
with an ExternalTJob. When the user runs a test plan, ETM GUI interacts with both
ExternalApiController, for managing data associated with ElasTest, and
TestLinkApiController, for managing data associated with TestLink.

ExternalApiController uses ExternalService to process the request received.
ExternalService needs EsmService to start/end a EUS that provides a browser to the user
for the tests.

The interaction of the modules when TestLink is used can be seen in Figure 5.

Figure 5. ETM Core modules for TestLink integration

 D4.1 Test Orchestration basic toolbox v1

18

3.4.2. Metrics and logs

ElasTest can shows metrics and logs that, as we have seen before, are received and
processed by Logstash. These are then forwarded to Elasticsearch for persistent storage
and to RabbitMQ for real time visualizations during the execution.

Logstash has five input ports configured to receive data:
• 5000: TCP port to receive logs using syslog format from TJob containers.
• 5001: Beats port to receive both logs and metrics from EMS.
• 5003: Http port to receive both logs and metrics.
• 5037: Beats port to receive only metrics from ETM Dockbeat.
• 5044: Beats port to receive both logs and metrics.

Depending on the type of trace received (log or metric) and its input port, Logstash will
process it differently. The result of the processing has a set of common main fields that
are necessary for ElasTest to interpret the traces:

• @timestamp: full date of the trace.
o e.g.: ‘2018-05-31T12:56:37.668Z’

• exec: The execution index where Elasticsearch will store the trace.
o e.g.: ‘37’, ‘s1_e37’…

• component: represents the component or service from which the trace is
collected.

o e.g.: ‘sut’, ‘test’, ‘sut_fullteaching’…
• stream_type: the type of the trace.

o e.g.: ‘log’, ‘composed_metrics’ or ‘atomic_metric’
• stream: it's a way to classify the trace.

o e.g.: ‘default_log’, ‘console’, ‘et_dockbeat’

Figure 6 shows an example of visualization of metrics and logs obtained from the
execution of a TJob in ElasTest.

Figure 6. Metrics and logs in ElasTest

 D4.1 Test Orchestration basic toolbox v1

19

3.4.3. Data model

The ETM Core works with a unified data model, this means that the presentation model,
the logical model and the persistent model are the same. Figure 7 shows this data
model. In this class diagram it can be seen all the entities that make up the ETM model
and their relationships.

Figure 7. ETM Core Data Model

3.4.4. Use cases

In this subsection, several sequence diagrams are shown to describe how
subcomponents of ETM collaborates to perform the most important ElasTest use cases.

3.4.4.1. TJobs

The main use case for ETM is define a TJob and execute it, as can be seen in Figure 8.

 D4.1 Test Orchestration basic toolbox v1

20

Figure 8. Define a TJob and execute it

Figure 9 shows the process of using a Test Support Services (TSS) in the TJob.

 D4.1 Test Orchestration basic toolbox v1

21

Figure 9. Define a TJob with TSS and execute it

The sequence diagram shown in Figure 10 represents the creation of a TJob in more
detail, focusing on the sub-components of ETM Core used to do that.

 D4.1 Test Orchestration basic toolbox v1

22

Figure 10. Create a TJob

As it can be seen in the diagram, user must first create a project. Afterwards, he can
create a SUT and assign it to the project. Lastly, he can create a TJob into the project.

Once the TJob is created, user can execute it as seen in the diagram of Figure 11.

 D4.1 Test Orchestration basic toolbox v1

23

Figure 11. TJob execution

When user runs a TJob, a new TJob Execution is created and stored into MySQL
database. Next, a monitoring index is generated and TJob Execution Object is updated
in the database. Then, the execution is launched asynchronously, and the Execution
object is returned to the ETM GUI.

The async process perform the following actions:

1. First it creates the generated monitoring index into Elasticsearch, where metrics
and logs will be stored.

2. If the TJob has Test Support Services (TSSs) selected, it calls to EsmService to
provision them.

3. It starts Dockbeat container to send metrics of tests and SUT (if applies).
4. If there is a ‘Deployed by ElasTest SUT’ associated to TJob, the process starts it.
5. It starts the test container and wait until it ends.
6. If there are Test Results, copies and saves them into MySQL and associates them

to TJobExecution.
7. Updates TJob Execution into MySQL.
8. Ends started containers.
9. Saves finish status.

On the other hand, when ETM GUI receives the TJob execution information:

1. Shows the TJob Execution page

 D4.1 Test Orchestration basic toolbox v1

24

2. Subscribes to RabbitMQ to get metrics and logs in real time
3. Pools ETM Core periodically for the status of the execution

When the test is finished, the test results are shown. In addition, files generated by the
execution (for example, browser recordings generated by EUS) are shown in the GUI.

3.4.4.2. LogAnalyzer

Figure 12 shows how ETM sub-components interacts to allow users to analyze
execution(s) logs.

Figure 12. Search logs with LogAnalyzer

As can be seen, user can select first between two options: Internal (normal TJob
Executions) or TestLink (Test Plan Executions). Once chosen, he can select a Project and
a TJob for it. Lastly, one or more Executions can be selected to search through logs.

 D4.1 Test Orchestration basic toolbox v1

25

Logs will be shown, and user will have a panel on the right side that will allow him to
create filters or mark log entries for matching words.

LogAnalyzer has several filters:

• From date/To date: Narrow the search from “from date” to “to date”.
• Tail: If this option is checked, “To date” will be ignored and LogAnalyzer will load

logs periodically.
• Components/Streams Tree: show only logs from selected Component/Stream

nodes.
• Levels: show only logs from selected level.
• Message: Filters by matching phrases in the message.
• Nº Entries: Number of logs to load (Max 10.000).

In addition to that filters, the user has three options:

• Reload logs with selected filters.
• Load logs with selected filters from last loaded trace.
• Load logs with selected filters from selected trace.

Figure 13 illustrates this process.

 D4.1 Test Orchestration basic toolbox v1

26

Figure 13. Filter logs in LogAnalyzer

Into the “Mark” tab, the user can match a word or phrase to mark (with a color) rows
that match them and navigate the specific ones. The Mark feature process is
represented in Figure 14.

 D4.1 Test Orchestration basic toolbox v1

27

Figure 14. Mark logs in LogAnalyzer

3.4.4.3. TestLink

As previously introduced, ElasTest offers an interface to visualize the data created in
TestLink. It also allows users to execute a test plan and register data generated during
the execution such as logs of the application or browser videos.

Figure 15 shows the process of executing a test plan. In this diagram it is assumed that
the user has already created all the necessary data in TestLink and has synchronized
them in ElasTest.

 D4.1 Test Orchestration basic toolbox v1

28

Figure 15. Test Plan Execution

3.5. Code links

ETM is composed by several sub-components: ETM Core, ETM GUI, Logstash, RabbitMQ,
Filebeat and Dockbeat and TestLink. From them, ETM Core and ETM GUI have been
developed entirely in the context of ElasTest project. The other components are
available with open source licenses. All the components are executed in different docker
containers with the exception of ETM GUI that is executed entirely in the web browser.

The development of ETM is being carried in the open using the GitHub repository:

https://github.com/elastest/elastest-torm

3.5.1. Validation

ETM have been extensively validated in several ways:

https://github.com/elastest/elastest-torm

 D4.1 Test Orchestration basic toolbox v1

29

• The experiments conducted in the context of project’s WP7 evidence that ETM
accomplish its main objective of TJobs execution coordinating the rest of
ElasTest components.

• An extensive number of unit, integration and end to end tests have been
implemented and are executed in the continuous integration system. These tests
evidence the features implemented in ETM are behaving as expected and
regressions are detected quickly.

• ElasTest platform (coordinated by ETM) is being used to implement and execute
end to end tests of Kurento 10 , an open source WebRTC platform used to
implement videoconference web applications.

3.5.2. Discussion

ETM is now mature enough to be used in real projects. This new phase is very interesting
for ElasTest project because allows to gather feedback from real users. In the following
months, new features will be designed with the collaboration of real users using
ElasTest. In the first experiences with ElasTest, one important issue have been detected:
It needs very important computational resources to be executed due to its microservices
architecture. We are right now designing a new “reduced footprint version” of ElasTest.
This version, will allow users to try ElasTest in the development machine and, if fit their
needs, the full fledge version can be installed in the appropriate dedicated servers.

3.6. Research results and plans

ETM is the main entry point of all ElasTest features. In the first project phase (M18, June
2018), ETM development have been focused in providing the glue code to coordinate
the rest of ElasTest components in a cohesive way. One of the main challenges was to
design the technical procedures to host third party components (Test Engines, TE, and
Test Support Services, TSS) into ElasTest. That integration was designed with different
aspects like GUI integration, communication, artifact downloading, lifecycle
management, etc.

Other important feature provided by ETM is the gathering, storing and analyzing of logs
and metrics generated during TJob execution. To implement that, some components of
the Elastic stack have been used (ElasticSearch, Logstash and Beats agents). The
innovation here comes, again, from the integration of these generic tools with the
ElasTest components and with the docker technology used to execute tests and internal
SUTs.

This technical foundation allows ElasTest to include easily new third party components
with ease and all types of information can be associated to test executions. Based on
that, in the second phase of the project (from M18 to M36) new research areas will be
explored. The main area will be the automatic analysis of the information gathered
during the execution. For example, in case of regression, comparing logs and metrics

10 http://www.kurento.org/

http://www.kurento.org/

 D4.1 Test Orchestration basic toolbox v1

30

obtained from failed tests with the information of the same tests when succeeded.
Another research line of this area will be the comparison of the information gathered
executing the same tests against different configurations of the same SUT, detecting the
best configuration attending to different aspects like CPU consumption, bandwidth
usage, latency, requests per second, etc.

4. ElasTest orchestration engine

4.1. Introduction

The concept of test orchestration is one of the three main principles of the project and
it is specified in the ElasTest Description of Action (DoA) document [1]:

ElasTest is a cloud platform designed for helping developers to test and validate
SiL (see definitions above), while maintaining compatibility with current CI
practices and tools. For this, ElasTest bases on three principles: (1)
instrumentation (i.e. customization of the SUT infrastructure so that it reproduces
real-world operational behavior); (2) test orchestration (i.e. to combine
intelligently testing units for creating a more complete test suite following the
“divide and conquer” principle); and (3) test recommendation (i.e. to use
machine learning and cognitive computing for recommending testing actions and
providing testers with friendly interactive facilities for decision taking). Hence,
ElasTest main objectives relate to improving the testing of SiL.

This orchestration mechanism is one of the main novelties of the ElasTest project and
its precise conception, formalization and consolidation is one of our main research
objectives. Two main mechanisms are proposed in the ElasTest DoA to implement test
orchestration:

1. Topology generation. This concept allows the actual implementation of test
orchestration. To this aim, a test orchestration notation should be defined. The
idea is that testers define the different TJobs (edges) and checkpoints (vertices).

2. Test augmentation. This concept consists on introducing new TJobs to the
original one to reproduce custom operational conditions of the SUT. This way, in
addition to test functional features of the SUT, other non-functional attributes
(such as performance, scalability or reliability) can be assessed.

This section is devoted to report the advances on the design, implementation, and
validation of the concept of test orchestration within the ElasTest platform at milestone
M18 of the project lifecycle (i.e. June 2018). The rest of this section is structured as
follows. Section 4.3 derives a comprehensive snapshot of existing work in related areas
to the concept of test orchestration presented in this deliverable. Next section 4.4
presents a detailed description of the design proposal to the concept of test
orchestration in ElasTest. Afterwards, section 4.5 describes the current status of the
implementation in the ElasTest Orchestration Engine (EOE) component. Then, section

 D4.1 Test Orchestration basic toolbox v1

31

4.5.1 summarizes a case study carried out as experimental validation of the current
status of the implementation. Finally, and due to the fact that this work in on progress
at the time of this writing, section 4.5.2 provides a SWOT (Strengths, Weaknesses,
Opportunities, Threats) analysis aimed to drive the progress of this task in the final part
of the project lifecycle.

4.2. Features

The list of requirements for the ElasTest Orchestration Engine (EOE) component is
summarized in the following table.

Requirement Description
Topology generation Define some kind of test orchestration notation for

users to define TiL (Test in the Large) by aggregating
different TJobs

Jenkins DSL notation Leverage Jenkins shared library technology to create
orchestration topology so that users can define a TiL by
aggregating different TJobs

EOE DSL parser EOE is able to parse Jenkins notation

EOE communication manager EOE is able to support data-driven orchestration
approach

EOE proxy EOE intercept requests from ETM to TSSs to share
sessions among different tests

Reference implementation Create some reference implementation of the data-
driven approach, for example using the JUnit 5
extension model

Test augmentation New TJobs can be added to the orchestration in order
to reproduce custom operational conditions of the SUT
or non-functional attributes (such as performance,
scalability or reliability)

Include extra checkpoints Integrate techniques (new or existing) to include
automated assertions in existing orchestrations to
improve test coverage of orchestrated TJobs by adding
extra checkpoints (especially in data-drive approach)

Table 2. Orchestrator requirements

4.3. Baseline concepts and technologies

The concept of “test orchestration” as it is understood in the context of the ElasTest
project is completely novel in the current literature. Nevertheless, there are similar
approaches that deserves to be reviewed before the actual design and implementation
of our ideas in ElasTest. This section provides a summary in three closely related areas,

 D4.1 Test Orchestration basic toolbox v1

32

namely: i) test composition, i.e., existing approaches to combine tests; ii) test
parallelization, i.e., run test cases in parallel; and iii) orchestration languages, i.e., exiting
notations to describe processes, pipelines or workflows.

4.3.1. Test composition

The concept of test composition with the aim of increasing testing effectiveness while
reducing the overall costs and effort has already been addressed in the literature. For
instance, [4] and [5] are based on letting developers create elementary test cases
involving simple predicates (e.g., “insert authentication pin”, “user is authenticated”,
“user is blocked”). Then, the testing system composes the execution of these test cases
for deducing the validity of logical formulae, which are also provided by the tester (e.g.,
“if after inserting authentication pin, authentication fails three times, user should be
blocked”). This type of approach enables testers to reduce test code to the test cases
and the formulae. However, there are not well-established methodologies on how to
generate such cases and a strong theoretical background (e.g., temporal logic) is
requested from developers to do it. In addition, the computational complexity may be
prohibitive for large systems where the number of cases may be huge. Due to this,
compositional testing has traditionally only been used for testing small software
systems.

Combinatorial testing [6] aims at reducing the testing complexity and costs through an
approach involving: i) modeling the SUT as a set of input factors; ii) generating a sample
of the possible combinations of factors and values; and iii) creating and executing test
inputs corresponding to that sample. Although combinatorial testing is being applied in
relevant application domains [7] it still has relevant limitations preventing its seamless
use in the testing of large software systems. Notably, it does not provide any notion of
composition or sequencing of tests, and the problem of evaluating combinatorial
explosions of factors in terms of testing cost or time is only recently investigated, e.g.,
by Demiroz and Yilmaz [8]. However, cloud resources are leveraged to perform
combinatorial tests execution in parallel and identify faulty interactions through
concurrent test algebra execution and analysis [9].

4.3.2. Test parallelization

Modern software codebases contain lots of individual test cases. The execution of these
test suites takes relevant amounts of time, and as a result, development and release
procedures tend to be time-consuming. In order to solve this issue, test parallelization
has been proposed as a solution. Recently, Candido et al. [10] conducted an empirical
survey on the impact of test suite parallelization in open source projects. The authors
reported that only 19.1% of the projects analyzed use parallelization, being the major
deterrent to its adoption the resistance concerning concurrency issues.

Existing approaches on test parallelization assume, either implicitly or explicitly,
independence among tests being executed. This assumption is not always true in
practice, since test executions in parallel can produce non-deterministic outcomes.

 D4.1 Test Orchestration basic toolbox v1

33

Zhang et al. [11] investigate the existence of dependent tests in 5 popular open source
projects, finding a total of 96 dependent tests, 95 of which would result in a false
negative when executed out of order.

Additional current research efforts on test parallelization are focused on test
dependency. Gambi et al. [12] present Cloud Unit Testing (CUT), a tool for automatically
executing unit tests in distributed execution environments. This work is continued in
PRADET, another tool for detecting problematic dependencies in a reasonable amount
of time for projects with thousands of tests [13].

4.3.3. Orchestration languages

Regarding orchestration languages (not strictly related to testing), we can find different
approaches. First, we could use TOSCA11 (Topology and Orchestration Specification for
Cloud Applications). TOSCA is an OASIS (Organization for the Advancement of Structured
Information Standards) language to describe a topology of cloud-based web services,
their components, relationships, and the processes that manage them. Its first version
is based on XML. Moreover, TOSCA implements a profile based on YAML. This profile
has been adopted by several solutions, such as in:

- Cloudify 12 is an open source software cloud orchestration product. It
implements DSL configuration files called blueprints which define the
application's configurations, services and their dependencies. The Cloudify
blueprint files describe the execution plans for the lifecycle of the application for
installing, starting, terminating, orchestrating and monitoring the application
stack. Cloudify also supports configuration management tools like Chef, Puppet,
or Ansible for the application deployment phase, as a method of deploying and
configuring application services.

- Alien4Cloud13 (Application LIfecycle ENabler for Cloud) is an open source TOSCA
based designer and Cloud Application Lifecycle Management Platform. At the
moment of this writing, the topology definition in Alien4Cloud can be done using
simple profile in YAML v1.0 and also with the Alien4Cloud 1.3 DSL.

- Ubicity14 is a Model-Driven Service Management technology aimed to simplify
service management on cloud stack. Ubicity is also based on TOSCA YAML profile
for describing the topology of cloud-based services.

Regarding workflow definition, a promising alternative is the Common Workflow
Language15 (CWL), which is a specification for describing analysis workflows and tools in
a way that makes them portable and scalable across a variety of software and hardware
environments. CWL documents are written in JSON or YAML. CWL documents are made

11 https://www.oasis-open.org/committees/tosca/
12 http://cloudify.co/
13 https://alien4cloud.github.io/
14 https://ubicity.com/
15 http://www.commonwl.org/

https://www.oasis-open.org/committees/tosca/
http://cloudify.co/
https://alien4cloud.github.io/
https://ubicity.com/
http://www.commonwl.org/

 D4.1 Test Orchestration basic toolbox v1

34

up of different parts to define the workflow: metadata, environment, input and output
parameters, and steps. This structure could fit with our rich notion of test orchestration.
Nevertheless, at the moment of this writing, CWL does not allow advanced workflow
steps, such as loops, conditional, or parallel tasks. Similar features are planned in the
CWL backlog for next future releases.

Another relevant language to describe cloud infrastructures is AWS CloudFormation16.
It is based on JSON and provides a common language to describe and provision all the
infrastructure resources in AWS cloud environments. Moreover, the OpenStack
Foundation has defined Heat17, a project which implements an orchestration engine to
launch multiple composite cloud applications based on templates. The latter are
conceived as text files that are readable and writable by humans, and can be checked
into version control, diffed, etc.

Finally, one approaches related to our concept of test orchestration is implemented in
the Jenkins pipelines. A Jenkins Pipeline18 is made up of several steps, and each step tells
Jenkins what to do, serving as the basic building block for both declarative and scripted
pipeline syntax. A Jenkins Pipeline is written using a Domain Specific Language (DSL)
syntax based on Groovy [14]. Typically, the definition of a Jenkins Pipeline is written into
a text file (called Jenkinsfile) implementing the test workflow, including checking out the
project's source control, executing tests, reporting, deploying, etc.

4.4. Component architecture

In ElasTest, test orchestration is understood as the interconnection of different TJobs
expressed as a graph. The precise form of the graph (i.e., first one TJob, then this other
one) is specified somehow by the tester. We propose two different types of test
orchestration, which we refer to as verdict-driven and data-driven.

Figure 16 depicts the verdict-driven approach. This notion of orchestration does not
assume any constraints or model availability neither on the TJobs nor in the execution
topology nor in the SUT. Therefore, tests are seen like black boxes (Figure 16a).
Internally, TJob exercise the SUT with some custom logic and assertions, and as a result
provide a verdict (test passed or test failed).

TJobs are managed inside ElasTest (Figure 16b). We propose a custom notation (see next
section for implementation details) to select some of these TJobs, ordering the
execution as a graph. Moreover, we introduce conditional paths based on the TJob
verdict (i.e., passed or failed) about previous verdict in the graph (Figure 16c). Finally, as
an advanced feature of this mode, we can also parallelize the execution of a number of
tests, as depicted in Figure 16d. Again, we can use the verdicts of the parallel TJobs to
feed a conditional, using logic operators (OR, AND, etc.) to create richer conditions.

16 https://aws.amazon.com/cloudformation/
17 https://wiki.openstack.org/wiki/Heat
18 https://jenkins.io/doc/book/pipeline/

https://aws.amazon.com/cloudformation/
https://wiki.openstack.org/wiki/Heat
https://jenkins.io/doc/book/pipeline/

 D4.1 Test Orchestration basic toolbox v1

35

Figure 16. Verdict-driven test orchestration

Then, Figure 17 depicts the second approach, called data-driven. This approach is more
advanced in the sense that TJobs can be interconnected using its test data (input) and
the outcome (output). Therefore, a TJob is modeled as a set of input data which is
incoming to the TJob, and as a result of the execution of the specific test's logic, some
output data is generated (in addition to the usual test verdict, i.e., pass or fail). This
concept is shown in Figure 17a, where the test is colored as green to differentiate to the
black-box TJobs, used in the previous approach and represented as black colored circles.
Both types of TJob can coexist inside the same ElasTest instance (Figure 17b).

With this schema in mind, the test orchestration is richer in several ways. First, the
output data of each TJob can be used to feed the next TJob in the resulting graph. This
is described in Figure 17c. Notice that the output data of each stage is used to feed the
input of successive TJobs. Moreover, the output data can be used to control the
workflow in conditional statements. In other words, not only the TJob verdict can be
used to create logic conditions in the workflow, but richer operator conditions can be
employed by comparing the test output with custom oracles. Moreover, constraints can

 D4.1 Test Orchestration basic toolbox v1

36

be specified to the input or output data within the test, adding extra assertions to the
TJob. Finally, tests can be parallelized in this approach as well as depicted in Figure 17d.

Figure 17. Data-driven test orchestration

Both approaches or orchestration (verdict-driven and data-driven) are supported by a
component called ElasTest Orchestration Engine (EOE), following the ElasTest naming
conventions. This component is an individual microservice and lives together with the
rest of the ElasTest components. As usual, EOE is deployed as a Docker container within
ElasTest. The structure and relationship with other components within ElasTest is
illustrated in Figure 18 and it is explained in the next paragraphs.

 D4.1 Test Orchestration basic toolbox v1

37

Figure 18. EOE schema

EOE is in charge of handling test orchestrations, both verdict and data-driven within
ElasTest. To that aim, EOE uses as input a DSL orchestration language. As a result, EOE
is aware of the number of tests to be executed and its relationships in terms of
conditional paths and test data (in the case of data-driven). After parsing the DSL
notation, EOE performs in a different way for verdict and data-driven orchestration.

Regarding verdict-driven orchestration, EOE basically starts TJobs in sequence in
synchronous fashion. That means that it starts the first test, wait until it finishes, and
then the next one. EOE is also capable of executing tests in parallel if required.

Regarding data-driven orchestration, EOE works in a more complex fashion. In this case,
TJobs can be composable, and for that reason, test executed inside the TJobs need to
be created beforehand following some guidelines, namely:

- Just before the actual test starts, the test sends a message to EOE asking for
permission to execute the test logic. In other words, the test is paused until EOE
gives the grant to be started. At this point, EOE also injects the input data in the
test.

- Just before the test instance is disposed, the test sends a message to EOE
informing the output data together with the test result.

The idea is that EOE starts all TJobs at the beginning of the execution. This way every
test is able to resolve its dependencies, pausing the execution just before the actual test.
After that, EOE sends the proper signal to start the test execution in the proper order
(established in the DSL workflow). Before this signal, the input data is injected in the
test. If the test is intermediate, this input data will be provided by the output data of the
previous test. Both output data and verdict should be sent at the end of the TJobs. This
data can be used in the EOE (according to the workflow) to decide next TJob. Of course,
the SUT is always the same among the different TJobs executions. The idea is that the
state of the SUT is evolving from some initial condition through the different steps
according to the DSL orchestration.

Moreover, EOE behaves as a proxy for ElasTest's services, called Test Support Services
(TSS) in the ElasTest jargon. The idea is that EOE intercepts these calls to share sessions

 D4.1 Test Orchestration basic toolbox v1

38

between all the tests. For example, and supposing that the tests in the orchestration are
using a browser provided by the ElasTest User Impersonation Service (EUS), the browser
is shared between all the tests. In terms of the W3C WebDriver protocol [15], this simply
implies to create a browser session at the beginning (identified uniquely by an identifier,
sessionId), and this identifier is shared among all requests in different tests. Only in the
last tests (those that end at the leaves of the graph) this session will be closed.

4.5. Code links

In order to implement the concept of orchestration as designed in previous section, first
of all we need to select a strategy to define a graph of interconnected TJobs. As
introduced previously, there are different alternatives for creating workflows and
orchestration languages. Due to its flexibility, we leverage the DSL notation of Jenkins
pipelines, both for verdict and data-driven approaches. Concretely, we have
implemented a Jenkins shared library which exposes a simple API to orchestrate jobs.
Job is the name given to single execution units in a CI server such as Jenkins, typically
composed by one or several tests. The orchestration Jenkins library has been
implemented in Groovy language. It is open source an available on GitHub19. It provides
a high-level class called orchestrator which exposes the methods as described in the
following table.

Method Description
runJob(String jobId) Method to run a Jenkins job given its identifier

(jobId). The execution of the will be declared as a
stage in a Jenkins pipeline. This method returns a
boolean value: true if the execution of the job
finishes correctly and false if fails.

runJobDependingOn(boolean
verdict, String job1Id,
String job2Id)

This method allows to run one job given a boolean
value (typically a verdict from another job). This
boolean value is passes in the first argument
(called verdict in the method signature). If this
value job with identifier job1Id is executed.
Otherwise it is executed job2Id.

runJobsInParallel(String...
jobs)

This method allows to run a set of jobs in
parallel. The jobs identifier are passes using a
variable number of arguments (varargs).

Table 3. Orchestrator API

Moreover, the orchestrator class can be configured using the following different
options. First, different exit condition for the orchestration can be selected. To that aim,
a Groovy enumeration with the following options is provided, as described in Table 3.

19 https://github.com/elastest/elastest-orchestration-engine/

https://github.com/elastest/elastest-orchestration-engine/

 D4.1 Test Orchestration basic toolbox v1

39

Method Description
EXIT_AT_END The orchestration finishes at the end (option by

default). This means that even though an
intermediate job fails, the orchestration continues
until the end of the graph.

EXIT_ON_FAIL The orchestration finishes when any of the TJobs fail.

EXIT_ON_PARALLEL_FAILURE The orchestration finishes when any a set of parallel
TJobs fail.

Table 4. Orchestrator exit condition alternatives

Finally, the condition used to give a verdict about parallel jobs can be also configured.
There are two options:

Method Description
AND Using this option, the verdict of a set of jobs executed in parallel is true

only if all the jobs finish correctly. This is the default option.

OR Using this option, the verdict of a set of jobs executed in parallel is true
when at least one of the jobs finishes correctly.

Table 5. Orchestrator parallel jobs verdict conditions

An example of orchestration notation using the orchestrator Jenkins library is shown in
the following listing. In this example we can see how the library is configured at the
beginning. After that, the graph of jobs is declared. A job identified as myjob1 is
executed first place. According to the next sentence, if the verdict of the execution of
this job is success, then myjob2 is executed. Otherwise myjob3 is executed. After that, a
set of jobs is executed in parallel: myjob4 and myjob5. The result of this execution if
computed when both jobs finished, and in this example, it will be based using the OR
boolean operation (as configured at the beginning of the orchestration). To conclude, a
manual condition is defined using the result of the previous parallel job execution.
@Library('OrchestrationLib') _

// Config
orchestrator.setContext(this)
orchestrator.setParallelResultStrategy(ParallelResultStrategy.OR)
orchestrator.setExitCondition(OrchestrationExitCondition.EXIT_ON_FAIL)

// Graph
def result1 = orchestrator.runJob('myjob1')
orchestrator.runJobDependingOn(result1, 'myjob2', 'myjob3')
def result3 = orchestrator.runJobsInParallel('myjob4', 'myjob5')

if (result3) {
 orchestrator.runJob('myjob6')
 orchestrator.runJob('myjob7')
}

 D4.1 Test Orchestration basic toolbox v1

40

else {
 orchestrator.runJob('myjob8')
}

Snippet 1. Test orchestration example

4.5.1. Validation

In order to carry out an initial experimental validation of the presented approach, we
have carried out a case study using a real application as target. Concretely, we use an
application called Full Teaching application, which is educational web platform based on
OpenVidu20, an open source videoconferencing framework based on WebRTC.

Full Teaching is assessed using a complete test suite implemented in JUnit 4 with
different types of tests, including unit, integration, and end-to-end. At the time of this
writing, the total number of tests in Full Teaching is 87. This large test suite is good news
for the Full Teaching team in terms of coverage and level of confidence to avoid
regressions in the codebase. On the other side, it has a relevant side-effect which
impacts directly to the agility of the development process. Due to the fact all tests are
executed in the Jenkins server supporting the CI process, developers need to wait until
one patch is merged in the codebase.

To avoid this problem, our orchestration library has been used. One of the benefits of
using the ElasTest orchestrator library as a Jenkins DSL pipeline is that it can also be used
outside ElasTest, directly in a Jenkins instance. In this example, and as shown in Figure
19, a Jenkins pipeline implementing an orchestration has been created. In this
orchestration, a group of tests has been selected. A smoke test is going to be the first
one. A smoke test case is the first to be run by testers before accepting a build for further
testing. Failure of a smoke test case will mean that the software build is refused. The
name of smoke testing derives electrical system testing, whereby the first test was to
switch on and see if it smoked. This type of tests is done for accepting a build for further
testing. A failure of this test will mean that the software build is refused, due to the fact
that the orchestration has been configured using the EXIT_ON_FAIL option. After that,
a group of relevant functional tests has been selected. These tests, executed as Jenkins
jobs, is executed in parallel using the method runJobsInParallel of the orchestrator
library. To rest of the initial tests of the Full Teaching test suite is executed using another
job configured using a nightly job.

20 http://openvidu.io/

http://openvidu.io/

 D4.1 Test Orchestration basic toolbox v1

41

Figure 19. Using ElasTest orchestration Jenkins library

As a result, the orchestrated job shows a relevant reduction of time to be executed
compared to the complete test suite. The proper selection of the smoke test together
with critical functional test cases allows to the Full Teaching team to have a good level
of confidence to merge patches in the development branch in a short amount of time.
As can be seen in Figure 20, all the orchestrated test takes less than 2 minutes to be
completed. In addition, if the smoke test fails at the beginning, no further tests are
executed and the job is declared as failed.

Figure 20. Execution of the orchestration in Full Teaching application

 D4.1 Test Orchestration basic toolbox v1

42

4.5.2. Discussion

In order to analyze the contributions of this work, this section presents a SWOT
(Strengths, Weaknesses, Opportunities, Threats) analysis of the current proposal on test
orchestration.

- Strengths:
o Our concept of orchestration is aligned with current trends in software

testing research, at least in the parallelization domain.
o To implement verdict-driven orchestration, existing test codebases can

be reused for selecting and parallelizing tests (TJobs in ElasTest).
- Weaknesses:

o To implement data-driven orchestration, tests needs to be implemented
specifically. In other words, we cannot reuse existing codebases since
tests need to be composable in terms of data input and output.

o In order to inject input data and extract output data in the data-driven
approach, only one test is supposed to be contained in a TJob. Otherwise
some extra effort need to be done to organize tests inside the same TJob.

- Opportunities:
o Our view of test orchestration is novel in the state of the art, and we aim

to create a complete theory around this concept.
- Threats:

o The concept of orchestration still need to prove its value for practitioners.
At the moment of this writing there is only a preliminary validation of the
approach based on a single case study, but further effort in this domain
is required.

4.6. Research results and plans

At the time of this writing, a publication about the EOE has been accepted in the
following international conference:

● A Proposal to Orchestrate Test Cases. Boni García, Francesca Lonetti, Micael
Gallego, Breno Miranda, Eduardo Jiménez, Guglielmo De Angelis, Carlos Santos,
and Eda Marchetti. 11th International Conference on the Quality of Information
and Communications Technology. Coimbra, Portugal, September 4-7, 2018.

In the future, it is expected to include more contributions to this list as EOE development
advances and incorporate new features.

 D4.1 Test Orchestration basic toolbox v1

43

5. ElasTest cost engine

5.1. Introduction

Executing tests are not free. Public cloud resources cost money. Private cloud
installations need energy, procurement and maintenance to operate. When not
optimally designed, tests could cause waste of resources and incur unnecessary financial
costs. It is in the interest of a test designer of a SiL to know the cost projections well in
advance so that s/he can perform test optimization and prevent the bill shock which
usually follows when financial aspects are ignored in the beginning.

From the DoA, the significance of the cost engine can be ascertained from these
sentences:

“If ElasTest does not consider these aspects, then although the generated tests may
deliver from a technical perspective, it risks of not being financially sustainable. This is
significantly important for ElasTest as some test orchestration mechanisms may produce
combinatorial explosions whose cost should be well known by developers before taking
the decision of using them. “

Some of the key functionalities (among others) as outlined in the DoA which are covered
in this deliverable are:

• model for specifying costs
• mechanisms enabling estimation of costs
• mechanisms enabling calculation of true cost of test executions

There are few additional functionalities outlined in the DoA which is not covered in this
deliverable but will be included in future iterations of this report.

5.2. Features

The list of requirements for the ElasTest Cost Engine (ECE) component is summarized in
the following table.

Requirement Description
Receive TJob information from
ETM

ECE should be able to get the list of TJobs from the
ETM

Receive TJob information from
ESM

ECE should be able to get the service type cost
definitions from ESM

Static Estimation of a TJob cost ECE should be able to estimate the cost of execution of
a TJob statically using the cost model definitions
received from the ESM

Retrieve monitoring
information

ECE should be able to query and get the actual
monitored data capturing the events and resource
consumption for a TJob execution

Actual calculation of the cost of
execution of a TJob

ECE should be able to calculate the real cost of an
execution of a TJob based on the cost models and the
monitored data values.

 D4.1 Test Orchestration basic toolbox v1

44

Extend cost model to support
all ElasTest support service

ECE task-force should define the cost models for
relevant ElasTest services using meaningful metrics.

Table 6: Cost Engine Requirements

5.3. Baseline concepts

Cyclops21 is a general-purpose accounting and billing framework which was developed
in previous European projects namely Mobile Cloud Networking22 and TNOVA23. The
DoA outlines use of this framework towards facilitating the real cost calculations in
ElasTest. The existing framework is microservice based itself and was primarily designed
for true usage-based accounting and model-based billing supported by multiple rule
engines. The requirements gathering stage in ElasTest has revealed that using a full
featured framework such as Cyclops is an overkill now and a much more lightweight
approach has been adopted for cost estimation and computation. The possibility to use
Cyclops at a later stage if the situation mandates remains an option on the table.

For cost estimation, one requires two piece of information, the cost model and the
usage model. Once these two models are available, it is possible to perform static
estimation analysis for execution of tests. In the next subsection, the general cost model
and usage models will be presented and explained in depth.

To keep things reasonably realistic, two pricing models have been considered:

• pay-as-you-go: in this model, the service provider specifies the per unit cost of
use of their service by users, this could be based either on the duration of the
use of an instance, or even based on the service specific metric being
instrumented within the service instance and somehow getting exposed for
external accounting module to use.

• subscription: in subscription mode, the billing is expected to be done at
subscription boundaries and generally is agnostic of usage volumes up to a
specified limit in the subscription.

Even though, theoretically, it is possible to use numerous pricing models such as: time-
based, volume-based, QoS based, flat-rate, Paris-metro model, priority-based, smart-market
model, edge, responsive, proportional-fairness, cumulus, session-oriented, one-off and time-of-
day based, the two considered above continue to be widely popular choices in ICT domain.

5.4. Component architecture

The design of ECE is keeping in mind the interfaces offered by ETM and ESM. The cost
model is tightly coupled with operational capability and TJob orchestration workflow
supported in ElasTest.

21 Cyclops framework: https://github.com/icclab/cyclops/
22 Mobile cloud networking, FP7 project: http://mobile-cloud-networking.eu/site/
23 TNOVA FP7 Project: http://www.t-nova.eu/

https://github.com/icclab/cyclops/
http://mobile-cloud-networking.eu/site/
http://www.t-nova.eu/

 D4.1 Test Orchestration basic toolbox v1

45

5.4.1. Architecture and workflows

In ElasTest, ECE is implemented as an on-demand accessible service. The TJob
developers can access the engine when they wish to see the cost analysis of using one
or more support services. Two options are presented to the users: Analyze & True Cost.

• Analyze: when chosen, this presents a static cost estimation for executing a TJob
in ElasTest platform by fetching TJob definition from ETM APIs and support
service cost definition and plan offerings from ESM. It presents an estimation
based on the projected length of TJob execution without complex usage models
in this iteration. A comprehensive usage model will be developed as part of final
release that will allow ECE to perform more complex estimates for multiple TJob
execution scenarios.

• True Cost: this option when chosen allows the TJob developer to assess the
actual costs of past executions based on the measured system and process
parameters by ElasTest monitoring subsystem - ETM inbuilt capabilities as well
as in conjunction with EMP.

Figure 21 below highlights the key components of ECE, more details about the
architecture can also be found in ElasTest D2.3 deliverable.

Figure 21. ECE FMC Architecture

 D4.1 Test Orchestration basic toolbox v1

46

The main components of the architecture in the diagram above are:

• Visualization and GUI engine: this component allows user interaction with the
engine, it fetches the list of registered TJobs with ElasTest ETM and allows users
to initiate estimate or calculation of actual cost analysis for the selected TJob

• Estimation engine: this module computes the estimated cost for running a TJob
together with requested support services using the cost model defined by
various services.

• Cost computation Engine: this module gets all execution run list of a particular
TJob and using actual execution parameters, resource consumption metrics
observed during execution, and defined cost models, it computes the true cost
of running the test.

• Messaging Client: execution events (start/stop) and monitored metrics are sent
to messaging bus, this module fetches the messages off the queues and persists
them to relational DB or time-series data store based on the nature of the data.

The static estimation is based on the cost model (5.4.2) together with the usage model
(implicit model is assumed until 0.9.0 release) that hints at projected trend at the time
of TJob definition.

Figure 22 below shows the schematic that enables true cost calculation for TJob
executions. Figure 23 describes the flowchart with steps involved in computation of true
cost by the ECE. Whenever a TJob is executed, the start and end events are sent by the
TJob orchestrator to ECE marking the begin and stop of an execution run. While the tests
are under execution, the relevant metrics against the meters as defined in the cost
model (5.4.2) are measured and sent via messaging infrastructure into ECE as well.

 D4.1 Test Orchestration basic toolbox v1

47

Figure 22. Schematic showing execution events and resource usage metrics flow enabling real cost estimation

 D4.1 Test Orchestration basic toolbox v1

48

Figure 23. Flowchart showing steps in true cost computation

 D4.1 Test Orchestration basic toolbox v1

49

5.4.2. Cost model elements

The cost model has the following structure as shown is Snippet 2:

{
 "description": "some description",
 "currency": "eur",
 "model": "pay-as-you-go",
 "model_param": {

 "setup_cost": 0
...

 },
 "meter_list": [

 {
 "meter_name": "ram",
 "meter_type": "counter",
 "unit_cost": 2.5,
 "unit": "gb-hour"

 },
 ...

]
}

Snippet 2: ECE cost model

The model elements are described next.

• description: a string free form value describing the model purpose as human
readable text

• currency: ISO currency value
• model: whether pay-as-you-go or subscription type is defined
• model_param: set of parameters relevant for the model type

o setup_cost: one-time cost associated with starting the service for use by
TJob execution run, this value can be provided irrespective of model type

o duration: valid when model type is subscription, it denotes the duration
of the subscription

o auto_renew: flag telling if the subscription is to be auto-renewed or not
o pro_rata: flag telling if the pro-rata calculation is allowed where the

subscription is not starting on the natural invoice boundary
o natural_invoice: flag telling if the invoice in subscription mode is to be

generated at natural invoice boundary
• meter_list: list of meters associated with a particular service along with the cost

specification for the meter
o In case where the model is subscription, this list can be empty, if not

empty, the cost computation based on meter list will also be considered
and thus will set the model as one of mixed mode.

o meter_name: the name that identifies a metric belonging to a particular
meter.

o meter_type: nature of the data collected by the metering process for a
particular meter

 D4.1 Test Orchestration basic toolbox v1

50

 delta: actual usage of the resource since the last report was
generated by the metering service.

 gauge: current value of the meter when the value was read
 cumulative: increasing meter, total volume observed since the

start of measurement, actual usage is usually the difference
between the latest two reported values.

o unit_cost: non-negative floating value representing the cost of
consumption of the resource per unit

o unit: unit of the reported metric from the metering subsystem

A few example cost models are shown next (Table 6) for illustration purposes:

Subscription: Mixed mode Pay-as-you-go
{
 "description": "cost model for
torm",
 "currency": "eur",
 "model": "subscription",
 "model_param": {
 "duration": "M",
 "auto_renew": "Y",
 "pro_rata": "Y",
 "natural_invoice": "Y",
 "setup_cost": 3.5
 },
 "meter_list": [
 {
 "meter_name": "tjob",
 "meter_type": "delta",
 "unit_cost": 1.25,
 "unit": "tesTJobs"
 },
 {
 "meter_name": "log_size",
 "meter_type": "cumulative",
 "unit_cost": 5,
 "unit": "gb-hour"
 }
]
}

{
 "description": "cost model
for epm",
 "currency": "eur",
 "model": "pay-as-you-go",
 "model_param": {
 "setup_cost": 0
 },
 "meter_list": [
 {
 "meter_name": "ram",
 "meter_type": "gauge",
 "unit_cost": 2.5,
 "unit": "gb-hour"
 },
 {
 "meter_name":
"cpu_cycles",
 "meter_type": "delta",
 "unit_cost": 0.025,
 "unit": "giga-ops"
 },
 {
 "meter_name": "disk",
 "meter_type": "delta",
 "unit_cost": 1,
 "unit": "gb-hour"
 },
 {
 "meter_name": "nw_out",
 "meter_type":
"cumulative",
 "unit_cost": 0.00125,
 "unit": "gb"
 }
]
}

Table 7: Illustrative examples of cost models

Using the specified cost model, it is possible to define a concrete cost model for any
support service in ElasTest. A supporting metering algorithm is needed that provides

 D4.1 Test Orchestration basic toolbox v1

51

usage data from raw monitored values based on the cost model definition. Currently the
metering functionality is planned to be part of the cost computation engine itself. In the
future architecture revision, it may be separated into a standalone module within ECE.

5.5. Implementation and code links

ESM provides an implementation of the OSBA reference model whereby every service
is registered with it and provides one or more service plans. Every plan consists of
service offer details along with the cost parameter specification using the model
described in section 4.2.2. Without this data, ECE cannot perform estimation nor
compute true cost of execution of a TJob.

Furthermore, ECE is also dependent on ETM to provide the list and description of all
registered TJobs, as well as providing monitored metrics for calculation of true cost post
execution.

The key technology parameters that characterizes ECE are:

• Programming language: Java 8
• Framework: Spring framework
• Templating framework: Thymeleaf

The implementation exposes RESTful interface through a class Controller.java that
allows the ElasTest GUI ask ECE for cost estimation for a given TJob ID. The table below
(Table 7) presents the list of methods exposing interfaces to the users of ECE

Method Description
showIndex This method fetches the list of registered TJobs and presents in

a page displayed to the user with the ElasTest GUI.

showStaticAnalysis Once a user has clicked on a TJob asking for static analysis, this
method is called where the TJob data is sent as a post body.

Table 8 ECE REST interface methods supporting key GUI functions

A programmatic API is not included in the current implementation (release 0.9.0) but
could be implemented if a need arises in the final release.

The ECE is packaged as a Docker container which needs key parameters to be provided
as part of environment. Table 8 lists the necessary parameters.

Method Description
ET_ETM_API endpoint for ETM API service, this is needed to fetch the list of all TJobs,

and also details definition of a specific TJob.

ET_ESM_API endpoint for ESM API service, this is needed to get the plan definition of a
particular TJob that contains the cost definition based on which the static
cost analysis is done.

Table 9 ECE container necessary environment parameters

 D4.1 Test Orchestration basic toolbox v1

52

5.5.1. Validation

The current implementation is already integrated with the ElasTest dashboard and is
available to users of ElasTest for cost estimation. For validation, a TJob titled ece-test
has been created in ElasTest as part of ECE-Test project and the following support
services have been selected as part of the TJob definition:

• EBS
• ESS
• EUS

Each of these services have specified a test cost model while registering with the ESM.

Once the cost engine is started, the user navigates to the list of TJobs and choose TJob
named ece-test for static analysis (Figure 24).

Figure 24. ECE landing page and selection of ece-test TJob as part of validation

Once the Analyze button is clicked, ECE fetches related cost models of selected support
services from ESM and computes the cost projection. A snippet of the engine logs shows
a part of this process below (Figure 25).

Figure 25: ECE log sample

 D4.1 Test Orchestration basic toolbox v1

53

The cost projection result is shown to the user post computation by the engine as shown
in Figure 26.

Figure 26. Cost analysis result page

The process is validated by the fact that 3 support services were selected in the TJob
definition and the resultant shows 3 projection for each selected support service. In the
figure above, cost definitions incidentally in all 3 services were similar and therefore the
projections looked similar over the period.

The validation of ECE-ETM integration is performed using Selenium tests which tests the
starting of the engine and checking if the list of TJob page appears or not. The test is
done as a periodic job in ElasTest Jenkins CI server. Figure 27 below shows the latest run
snippet captured from ElasTest CI server dashboard for ece-e2e-test.

Figure 27. ElasTest Jenkins CI server stages for ECE end-to-end integration test pipeline

 D4.1 Test Orchestration basic toolbox v1

54

5.5.2. Discussion

ECE remains under active development at the time of writing of this document. This
document presents the state of work until software release 0.9.0. The cost estimation
provides a key differentiator to ElasTest and adds significant value for the test
developers. The cost model design while keeping ElasTest needs in mind is intended to
be generic in nature which would allow ECE models to remain relevant in future projects
even after ElasTest.

5.6. Research results and upcoming plans

To maximize the utility of ECE, a few modules need to be further developed: metering
process, and design of a usage model to be populated by TJob at the time of its
registration. Currently, cost estimation is based solely on time basis against use of
support services ignoring the associated infrastructure costs. An explicit usage pattern
intention declaration in addition to including an infrastructure cost model declaration
will help tighten the cost estimation significantly. These remain as backlog tasks at the
time of write up of this deliverable, and updated architecture as well as details on
backlog items will be included in the future planned deliverable in the series.

The cost model definition along with the workflow for estimation of execution cost and
true cost post execution will be analyzed statistically for accuracy of the prediction
engine and the findings will be published in a reputable conference in the 2nd half of this
project’s duration.

6. Conclusions and future work
This deliverable provides a summary of the technical aspects about different
components of the ElasTest toolbox: i) ElasTest Tests Manager (ETM), ii) ElasTest
Orchestration Engine (EOE), and iii) ElasTest Cost Engine (ECE).

Regarding ETM, its main objectives are: i) Allow the execution of end to end tests against
complex distributed applications coordinating the rest of the ElasTest components and
ii) Gather, register and analyze the information generated during test execution. These
two objectives have been accomplished. ETM have been implemented using several
open source technologies (Docker, Elastic stack) and frameworks (Spring Boot, Angular).
This component provides extensibility mechanisms to allow third party modules to be
included in ElasTest. This mechanisms have been used to include all TSS and TE.
Extensive validation have been performed to evidence that features provided by ETM
are useful for testers in real projects and automated tests are executed to verify the
expected behavior and detect regressions. The future work of ETM will be focused on
the automatic analysis of the information gathered during test execution in several uses
cases like regressions and comparisons of several SUT configurations.

Regarding EOE, we conceive test orchestration as a novel way to select, order, and
execute a group of TJobs. We distinguish two types of orchestration techniques. The

 D4.1 Test Orchestration basic toolbox v1

55

first one is called verdict-driven orchestration, and it allows to create TJobs workflows
by modeling TJobs as black-boxes, meaning that we only known its final verdict (i.e.,
passed or failed) after the execution. Each TJob verdict value can be used to create
conditional paths within the orchestration workflow. The second approach presented in
this deliverable is called data-driven. It is more complex due to the fact that tests within
TJobs are supposed be composable, meaning that the test data (input) and test
outcomes (output) are imported and exported by tests. The inconvenient of this
approach is that new tests following these guidelines need to be created. On the other
side, we can create richer test suites using the “divide and conquer” principle applied to
testing, as hypothesized in the ElasTest DoA.

These orchestration approaches are being implemented in the ElasTest platform.
Internally, ElasTest has been implemented following a microservices architecture based
on Docker containers. The ElasTest component in charge of implementing the
orchestration approaches is called ElasTest Orchestration Engine (EOE). This component
is able to parse an orchestration workflow based on the DSL Jenkins Pipeline,
sequencing, and executing in parallel tests according to the DSL (provided by testers).
In order to ease the development of composable test as required in the data-driven
approach, the ElasTest project is going to provide a reference implementation as a JUnit
5 extension [16]. This extension is not released at the time of this writing, although we
can anticipate here how the final JUnit 5 will look like. The following listing shows an
example, in which input and output data are specified using Java annotations. Notice
that the input data can declare some default value in order to be executed as single
instances (i.e., outside the orchestration workflow). These data are later overridden by
EOE in the actual orchestration execution.
@ExtendsWith(ElasTestExtension.class)
class TJob1Test {

 @InputData
 String in1 = "default-value1";

 @InputData
 int in2 = 20;

 @InputData
 boolean in3 = false;

 @OutputData
 String out1

 @OutputData
 int out2

 @Test
 void myTest() {
 // my test logic
 }

 D4.1 Test Orchestration basic toolbox v1

56

}

Snippet 3. Data-driven JUnit 5 test case design

This work is the first step in our vision to create a novel testing theory for sequencing,
ordering, and parallelization applied to software testing. This is an ambitious goal, and
so, there is still a long path ahead. So far, we have focused in the first part of the
problem, i.e. the definition of a topology generation to orchestrate tests. Next steps
include actions to enhance the current model using test augmentation, i.e. introducing
new TJobs to reproduce custom operational conditions of the SUT. Moreover, we plan
to investigate additional techniques (new or existing) to include automated assertions
(i.e., the oracle problem [17]) applied to the output data in the data-driven orchestration
approach.

Regarding ECE, cost estimation engine brings much needed financial transparency in any
testing infrastructure. The process of accounting, rating, and charging and billing is a
complicated process. Although in ElasTest we do not do billing, but the complexity and
challenges of accounting remains. As the first step, we have defined a reasonably flexible
cost model and have prototyped the initial version of cost engine that performs static
cost estimation based on defined cost plans of supporting services. In the immediate
future, we begin implementing real cost calculation capability based on observed
metrics and utilizing planned metering module. We will also enhance TJob registration
process with usage model inclusion which will add more teeth to the cost estimation for
the TJob.

7. References
[1] Mili, A. and Tchier, F., 2015. Software testing: Concepts and operations. John Wiley

& Sons.
[2] Lima, B. and Faria, J.P., 2016, July. A Survey on Testing Distributed and

Heterogeneous Systems: The State of the Practice. In International Conference on
Software Technologies (pp. 88-107). Springer, Cham.

[3] ElasTest project Description of Action (DoA) – part B. Amendment 1. Reference
Ares(2017)343382. 23 January 2017.

[4] Falcone, Y., Fernandez, J.C., Mounier, L. and Richier, J.L., 2007. A compositional
testing framework driven by partial specifications. In Testing of Software and
Communicating Systems (pp. 107-122). Springer, Berlin, Heidelberg.

[5] Daca, P., Henzinger, T.A., Krenn, W. and Nickovic, D., 2014, March. Compositional
specifications for ioco testing. In Software Testing, Verification and Validation
(ICST), 2014 IEEE Seventh International Conference on (pp. 373-382). IEEE.

[6] Kuhn, R., Lei, Y. and Kacker, R., 2008. Practical combinatorial testing: Beyond
pairwise. It Professional, 10(3).

[7] Orso, A. and Rothermel, G., 2014, May. Software testing: a research travelogue
(2000–2014). In Proceedings of the on Future of Software Engineering (pp. 117-132).
ACM.

 D4.1 Test Orchestration basic toolbox v1

57

[8] Demiroz, G. and Yilmaz, C., 2016. Using simulated annealing for computing cost-
aware covering arrays. Applied Soft Computing, 49, pp.1129-1144.

[9] Tsai, W.T. and Qi, G., 2017. Combinatorial Testing in Cloud Computing.
In Combinatorial Testing in Cloud Computing (pp. 15-23). Springer, Singapore.

[10] Candido, J., Melo, L. and d’Amorim, M., 2017, October. Test suite parallelization in
open-source projects: a study on its usage and impact. In Proceedings of the 32nd
IEEE/ACM International Conference on Automated Software Engineering (pp. 838-
848). IEEE Press.

[11] Zhang, S., Jalali, D., Wuttke, J., Muşlu, K., Lam, W., Ernst, M.D. and Notkin, D., 2014,
July. Empirically revisiting the test independence assumption. In Proceedings of the
2014 International Symposium on Software Testing and Analysis (pp. 385-396).
ACM.

[12] Gambi, A., Kappler, S., Lampel, J. and Zeller, A., 2017, July. Cut: Automatic unit
testing in the cloud. In Proceedings of the 26th ACM SIGSOFT International
Symposium on Software Testing and Analysis (pp. 364-367). ACM.

[13] Gambi, A., Bell, J. and Zeller, A., 2018. Practical Test Dependency Detection.
[14] Ghosh, D., 2010. DSLs in action. Manning Publications Co.
[15] Stewart, S. and Burns, D., 2012. WebDriver. Working draft, W3C.
[16] B. García, Mastering Software Testing with JUnit 5. Packt Publishing, 2017.
[17] Barr, E.T., Harman, M., McMinn, P., Shahbaz, M. and Yoo, S., 2015. The oracle

problem in software testing: A survey. IEEE transactions on software
engineering, 41(5), pp.507-525.

	1. Executive summary
	2. Introduction
	3. ElasTest tests manager
	3.1. Introduction
	3.2. Features
	3.3. Baseline concepts and technologies
	3.4. Component architecture
	3.4.1. Component diagram
	3.4.1.1. Modules used for TJob execution
	3.4.1.2. Modules used in LogAnalyzer
	3.4.1.3. Modules used in TestLink integration

	3.4.2. Metrics and logs
	3.4.3. Data model
	3.4.4. Use cases
	3.4.4.1. TJobs
	3.4.4.2. LogAnalyzer
	3.4.4.3. TestLink

	3.5. Code links
	3.5.1. Validation
	3.5.2. Discussion

	3.6. Research results and plans

	4. ElasTest orchestration engine
	4.1. Introduction
	4.2. Features
	4.3. Baseline concepts and technologies
	4.3.1. Test composition
	4.3.2. Test parallelization
	4.3.3. Orchestration languages

	4.4. Component architecture
	4.5. Code links
	4.5.1. Validation
	4.5.2. Discussion

	4.6. Research results and plans

	5. ElasTest cost engine
	5.1. Introduction
	5.2. Features
	5.3. Baseline concepts
	5.4. Component architecture
	5.4.1. Architecture and workflows
	5.4.2. Cost model elements

	5.5. Implementation and code links
	5.5.1. Validation
	5.5.2. Discussion

	5.6. Research results and upcoming plans

	6. Conclusions and future work
	7. References

