

 D5.1
Version 1.0

Author ZHAW

Dissemination PU

Date 29-06-2018

Status FINAL

D5.1 ElasTest Test Support Services v1

Project acronym ELASTEST
Project title ElasTest: an elastic platform for testing complex distributed

large software systems

Project duration 01-01-2017 to 31-12-2019

Project type H2020-ICT-2016-1. Software Technologies

Project reference 731535

Project website http://elastest.eu/

Work package WP5

WP leader Andy Edmonds

Deliverable nature Public

Lead editor Andy Edmonds

Planned delivery date 30-06-2018

Actual delivery date 29-06-2018

Keywords Open source software, cloud computing, software
engineering, operating systems, computer languages,
software design & development, service delivery

Funded by the European Union

http://elastest.eu/

 D5.1 ElasTest Test Support Services v1

2

License
This is a public deliverable that is provided to the community under a Creative Commons
Attribution-ShareAlike 4.0 International License:

http://creativecommons.org/licenses/by-sa/4.0/

You are free to:

Share — copy and redistribute the material in any medium or format.

Adapt — remix, transform, and build upon the material for any purpose, even
commercially.

The licensor cannot revoke these freedoms as long as you follow the license
terms.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and
indicate if changes were made. You may do so in any reasonable manner, but not
in any way that suggests the licensor endorses you or your use.

ShareAlike — If you remix, transform, or build upon the material, you must
distribute your contributions under the same license as the original.

No additional restrictions — You may not apply legal terms or technological
measures that legally restrict others from doing anything the license permits.

Notices:

You do not have to comply with the license for elements of the material in the
public domain or where your use is permitted by an applicable exception or
limitation.

No warranties are given. The license may not give you all of the permissions
necessary for your intended use. For example, other rights such as publicity,
privacy, or moral rights may limit how you use the material.

For a full description of the license legal terms, please refer to:

http://creativecommons.org/licenses/by-sa/4.0/legalcode

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/legalcode

 D5.1 ElasTest Test Support Services v1

3

Contributors
Name Affiliation
Juan Navarro URJC

Mica Gallego URJC

Varun Gowtham TUB

Sathi Rowshan TUB

Cesar Sanchez IMDEA

Felipe Gorostiaga IMDEA

Pablo Chico de Guzman IMDEA

Nikolaos Stavros Gavalas REL

Avinash Sudhodanan IMDEA

Juan Caballero IMDEA

Andy Edmonds ZHAW

Version history
Version Date Author(s) Description of changes
0.1 29.03.2018 Andy Edmonds Initial draft and outline.

0.2 30.05.2018 All
Contributors

Initial section contributions.

0.3 30.05.2018 Andy Edmonds Editing and formatting.

0.4 31.05.2018 Juan Navarro,
Nikolaos
Stavros
Gavalas, Andy
Edmonds

EUS, EBS conclusions, conclusions,
section on TSS creation.

0.5 31.05.2018 Andy Edmonds Section on TSS costing, minor additions
to intro, updated API tables to include
/health

0.6 31.05.2018 Varun
Gowtham,
Avinash
Sudhodanan

Updates to EDS and ESS content

0.7 25.06.2018 Andy Edmonds Updates resulting from peer review
process.

1.0 29.06.2018 Andy Edmonds Finalisation of deliverable.

 D5.1 ElasTest Test Support Services v1

4

Table of Contents
1 Executive Summary .. 10

2 Introduction .. 11

3 Test Support Service Management ... 12
3.1.1 Definitions .. 12
3.1.2 TSS Life Cycle .. 13
3.1.3 TSS Interaction with ElasTest ... 14
3.1.4 TSS Description ... 16
3.1.5 TSS Instance Monitoring for T-Jobs .. 20
3.1.6 TSS Health Check .. 21
3.1.7 TSS & Creating New Computational Resources ... 22
3.1.8 TSS Costing ... 23
3.1.9 TSS Testing ... 24
3.1.10 TSS Documentation .. 26
3.1.11 TSS Creation ... 27

4 ElasTest Test Support Services .. 29
4.1 ElasTest User Impersonation Service ... 29

4.1.1 Introduction ... 29
4.1.2 Features ... 29
4.1.3 Baseline Concepts and Technologies ... 30
4.1.4 Component Architecture .. 31
4.1.5 Code Reports .. 37
4.1.6 Code Links .. 37
4.1.7 Contributions .. 37

4.2 ElasTest Device Emulator Service... 39
4.2.1 Introduction ... 39
4.2.2 Features ... 39
4.2.3 Baseline Concepts and Technologies ... 41
4.2.4 Component Architecture .. 43
4.2.5 Code Reports .. 51
4.2.6 Code Links .. 51
4.2.7 Contributions .. 51

4.3 ElasTest Monitoring Service ... 53
4.3.1 Introduction ... 53
4.3.2 Features ... 53
4.3.3 Baseline Concepts and Technologies ... 54
4.3.4 Component Architecture .. 54
4.3.5 Code Reports .. 63
4.3.6 Code Links .. 64
4.3.7 Contributions .. 64

4.4 ElasTest Big Data Service .. 66
4.4.1 Introduction ... 66
4.4.2 Features ... 66
4.4.3 Baseline Concepts and Technologies ... 66
4.4.4 Component Architecture .. 67
4.4.5 Code Reports .. 72
4.4.6 Code Links .. 72
4.4.7 Contributions .. 72

 D5.1 ElasTest Test Support Services v1

5

4.5 ElasTest Security Service .. 74
4.5.1 Introduction ... 74
4.5.2 Features ... 74
4.5.3 Baseline Concepts and Technologies ... 74
4.5.4 Component Architecture .. 75
4.5.5 Code Reports .. 79
4.5.6 Code Links .. 79
4.5.7 Contributions .. 79

5 Conclusions ... 81

6 Appendix .. 83
6.1 References .. 83

 D5.1 ElasTest Test Support Services v1

6

Index of Figures
Figure 1 TSS Life Cycle. .. 13

Figure 2 TSS Descriptor File's Document Model ... 17

Figure 3 EUS Cost Model Example .. 24

Figure 4 Service docker-compose Network Definition. .. 28

Figure 5 EUS FMC Diagram .. 31

Figure 6 EUS Class diagram ... 31

Figure 7 EUS Use Cases ... 32

Figure 8 EUS W3C WebDriver ... 35

Figure 9 EUS WebRTC Statistics .. 36

Figure 10 EUS Remote Control .. 36

Figure 11 EUS Coverage Chart ... 37

Figure 12 EDS FMC Diagram .. 43

Figure 13 EDS Use Cases ... 46

Figure 14 Sequence Diagram of the Life Cycle of a Simple EDS IoT Application 49

Figure 15 EMS FMC Diagram ... 55

Figure 16 EMS Use Cases ... 58

Figure 17 Execution of a Test Sequence Diagram ... 60

Figure 18 Debugging of the ElasTest Platform Sequence Diagram ... 61

Figure 19 Management of Stampers Sequence Diagram ... 62

Figure 20 Management of Monitoring Machines Sequence Diagram .. 62

Figure 21 Path of an Incoming Event Sequence Diagram ... 63

Figure 22 EMS Reset Sequence Diagram .. 63

Figure 23 EMS Code Coverage .. 64

Figure 24 EBS FMC Diagram .. 67

Figure 25 EBS Use Case Diagram ... 69

Figure 26 EBS Sequence diagram; Use from a T-Job ... 70

Figure 27 EBS Sequence diagram; Use from a T-Job without ESM ... 71

Figure 28 EBS Code Coverage .. 72

Figure 29 ESS FMC Diagram .. 75

Figure 30 ESS-based Security Test Use Case ... 76

Figure 31 Sequence Diagram of an ESS-based Security Test .. 77

 D5.1 ElasTest Test Support Services v1

7

Index of Tables
Table 1 EUS API Calls ... 34

Table 2 EDS API Calls. .. 48

Table 3 EMS API Calls .. 59

Table 4 EBS API Calls ... 69

Table 5 ESS API Calls .. 79

 D5.1 ElasTest Test Support Services v1

8

Glossary of Acronyms
Acronym Definition
CI (Continuous Integration) This refers to the software development practice with

that name.

FOSS (Free Open Source
Software)

 This refers to software released under open source
licenses.

IaaS (Infrastructure as a
Service), PaaS (Platform as
a Service) and SaaS
(Software as a Service)

 This refers to different models of exposing cloud
capabilities and services to third parties.

Instrumentation This refers to extending the interface exposed by a
software system for achieving enhanced controllability (i.e.
the ability to modify behaviour and runtime status) and
observability (i.e. the ability to infer information about the
runtime internal state of the system).

 QoS (Quality of Service)
and QoE
(Quality of Experience)

 QoS and QoE refer to non-functional attributes of systems.
QoS is related to objective quality metrics such as latency
or packet loss. QoE is related to the subjective quality
perception of users. In ElasTest, QoS and QoE are
particularly important for the characterization of
multimedia systems and applications through custom
metrics.

SiL (Systems in the Large) A SiL is a large distributed system exposing applications
and services involving complex architectures on highly
interconnected and heterogeneous environments. SiLs are
typically created interconnecting, scaling and orchestrating
different SiS. For example, a complex microservice-
architected system deployed in a cloud environment and
providing a service with elastic scalability is considered a
SiL.

SiS (Systems in the Small) SiS are systems basing on monolithic (i.e. non-distributed)
architectures. For us, a SiS can be seen as a component that
provides a specific functional capability to a larger system.

SuT (Software under Test) This refers to the software that a test is validating. In this
project, SuT typically refers to a SiL that is under validation.

TO (Test Orchestration) The term orchestration typically refers to test
orchestration understood as a technique for executing
tests in coordination. This should not be confused with
cloud orchestration, which is a completely different
concept related to the orchestration of systems in a cloud
environment.

 D5.1 ElasTest Test Support Services v1

9

TORM (Test Orchestration
and Recommendation
Manager)

 Is an ElasTest functional component that abstracts and
exposes to testers the capabilities of the ElasTest
orchestration and recommendation engines.

T-Job (Testing Job) We define a T-Job as a monolithic (i.e. single process)
program devoted to validating some specific attribute of a
system. Current Continuous Integration tools are designed
for automating the execution of T-Jobs. T-Jobs may have
different flavours such as unit tests, which validate a
specific function of a SiS, or integration and system tests,
which may validate properties on a SiL as a whole.

TiL (Test in the Large) A TiL refers to a set of tests that execute in coordination
and that are suitable for validating complex functional
and/or non-functional properties of a SiL on realistic
operational conditions. We understand that a TiL can be
created by orchestrating the execution of several T-Job.

Test Support Service (TSS) A service acquired on-demand and use in support of a T-
Job.

ElasTest User
impersonation Service
(EUS)

 One of ElasTest’s Test Support Services. See section 4.1.

ElasTest sensor, actuator
and Device emulator
Service (EDS)

 One of ElasTest’s Test Support Services. See section 4.2.

ElasTest Monitoring Service
(EMS)

 One of ElasTest’s Test Support Services. See section 4.3.

ElasTest Big data analysis
Service (EBS)

 One of ElasTest’s Test Support Services. See section 4.4.

ElasTest Security check
Service (ESS)

 One of ElasTest’s Test Support Services. See section 4.5.

ElasTest Test and
Orchestration Manager
(ETM)

 Main ElasTest coordinating entity of T-Jobs

Service Oriented
Architecture (SOA)

 An architectural style used to design distributed service-
based applications.

Web Real-Time
Communication (WebRTC)

 Enables audio and video streams to work in web pages
using a direct peer-to-peer paradigm.

Man-in-the-Middle (MitM)
attack

 A type of security exploit where an interloper is
transparently inserted between what should be a one-to-
one communication.

Fundamental Modeling
Concepts (FMC)

 A modelling framework for the description of software-
systems.

 D5.1 ElasTest Test Support Services v1

10

1 Executive Summary
There is no doubt that the delivery of services to end-users is and has been a huge
productivity gain for developers. It is this which is a key aspect when one talks about
digitisation of business today. The same should also be provided to testers of software
and services. In this deliverable we report the results of designing and implementing
Test Support Services that are used within the ElasTest platform. These provide
additional functionality to T-Jobs without the owner of the T-Job to be concerned with
having to create and manage the implementation of these services. Through the use of
orchestration in WP4, these services can also be presented to the T-Job owner in a
uniform and contiguous fashion.

In this deliverable, we firstly introduce the work package and its aims, detail the
common elements that all services are required to have in order to be used as ElasTest
Test Support Services and then for each of the five services in Work Package 5 (WP5) we
detail the design and implementation. Those Test Support Services are:

● ElasTest User impersonation Service (EUS): This service enables the
impersonation of end-users in their tests through GUI (Graphical User Interface)
instrumentation and through mechanisms for QoS (Quality of Service) and QoE
(Quality of Experience) evaluation.

● ElasTest sensor, actuator and Device emulator Service (EDS): This service is
useful for enabling tests to emulate customized device behaviour at the time of
testing IoT (Internet of Things) applications.

● ElasTest Monitoring Service (EMS): This service leverages runtime verification
ideas (in turn inspired by formal verification) to represent the system behaviour
as sequences of events that can be monitored in universal ways.

● ElasTest Big data analysis Service (EBS): Enables the collection, analysis and
visualization of large volumes of logs.

● ElasTest Security check Service (ESS): For security vulnerability checking
targeting specifically the problems of the main large scale deployed system.

Ultimately, the core to this deliverable is the software, which is delivered from this
technical work package, including common guidelines on how to create a Test Support
Service and the architectures and implementations of each of the five Test Support
Services.

This deliverable makes references to the following deliverables: D3.1 (mainly for items
related to the ElasTest Platform Manager, Service Manager and Monitoring Platform),
D4.1 (for items related to the ElasTest Cost Engine) and D6.2 (for items related to the
ElasTest Toolbox).

 D5.1 ElasTest Test Support Services v1

11

2 Introduction
In this deliverable we describe the work of WP5 up to month 18 of the project ElasTest.

WP5’s main objective is to provide and deliver Test Support Services (TSS) that help in
the creation of T-Jobs. The functionality of the TSSs is provided as on-demand services.
This means that only when the functionality is required, the service/services are
instantiated. These services are defined according to the general architecture principles
and style specified in D2.3, namely as cloud-native, microservice-based services [TSS1].
Access to the functionality of these services is through well-defined API and UI
interfaces. How the API is defined, again follows the D2.3 mandated adoption of
OpenAPI1.

These services are to be ultimately used and consumed by the ElasTest Test and
Orchestration Manager (ETM), however they can be used independently of this through
the ElasTest Service Manager.

This deliverable is aimed at those wishing to understand how Test Support Services are
designed and implemented through:

1. Understanding the common guidelines required to be adhered by each service.

2. Understanding how services can be design and implemented and integrated into
the ElasTest service. In this case, the “how” is given by example of the five
different services within WP5.

This deliverable is structured in the following way. In section 3, we present the common
guidelines that each service should follow from design, through implementation to
deployment and delivery. In section 4, we provide the detailed information on the
features, architecture and other outputs of each Test Support Service. Finally, in section
5 we conclude the deliverable detailing key follow on development activities for each
Test Support Service.

1 https://www.openapis.org

 D5.1 ElasTest Test Support Services v1

12

3 Test Support Service Management
Test Support Services are services used by tests via T-Jobs. They augment the capability
of a test by providing some specific features. For example, the ElasTest User
Impersonation Service (EUS) provides to tests the ability to control web browsers and
emulate a real user using it. Hence, all services should provide some way of
programmatic usage of the service, so that it can be configured/used by the test code.

Some services can provide also a graphical interface to be used directly by the tester.
For example, EUS provides the web browser inside ElasTest main interface to be
managed by the tester if he wants. As another example, the ElasTest Device emulator
service could also provide a web interface to control manually the value of a sensor or
the state of an interrupter.

The technologies used in WP5 are directly influenced by the technology decisions made
in WP3. As such all services are presented for deployment as Docker2 container images
that are composed by Docker’s docker-compose3 technology. The implementation of
each service is however at the discretion and preference of the partner that is
responsible for the service implementation. It is expected that all services will have a set
of tests that can validate the service and how these are implemented is again at the
discretion of the implementing partner. As ElasTest supports the approach of
Continuous Test, Integration and Deployment (CI/CD), Jenkins4 is used as the common
platform for achieving this and as such, all service must present a Jenkinsfile that details
its CI/CD process. Other more ElasTest-specific common aspects are discussed in this
section.

3.1.1 Definitions

To aid our discussions related to TSSs, it is helpful to define some basic terms.

● Service: The Organization for the Advancement of Structured Information
Standards (OASIS) defines service as "a mechanism to enable access to one or
more capabilities, where the access is provided using a prescribed interface and
is exercised consistent with constraints and policies as specified by the service
description" [TSS4]. A service can be uniquely identified by its interface. Its
identity is known as its type (i.e. Service Type).

● Service Instance (SI): Is defined as a single instance of a service of a certain
service type requested on-demand by a user.

● Sub-Service (SS): Is an integral, internal element of a Service Instance. Such sub-
division is typical of microservice- and SOA-based architectures [TSS3].

● Resource: Any physical or virtual component of limited availability within a
computer or information management system. Computer resources include
means for input, processing, output, communication, and storage. A resource is

2 https://www.docker.com
3 https://docs.docker.com/compose/
4 https://jenkins.io

 D5.1 ElasTest Test Support Services v1

13

owned by one or more entities. Services and Sub-Services run upon resources,
specifically to ElasTest, mainly virtual.

By extension all of these definitions are applicable to Test Support Services. It is the task
of the ElasTest Service Manager (ESM) to manage these entities through a service life
cycle process. The ESM is the component responsible for the delivery and management
of TSSs (see D3.1 for more details). In general, there are different categories of service
types. These can largely be split into the following two types, we define:

● Atomic: is category of service that is an indivisible service that executes a
particular singular business or technical function. An Atomic Service is not
subject to further decomposition and its business or technological function does
not justify breakdown to smaller components.

● Composed: aggregates/combines services together with orchestration logic.
Both Atomic and Composed Services can be used to create further composed
services.

Particular to ElasTest there is a category known as Test Support Services (TSS). TSSs are
to be ultimately used and consumed by the ElasTest Test and Orchestration Manager in
order to provide additional functionality to a T-Job, without the T-Job developer having
to implement that functionality. They can be thought of the import of a 3rd party library
but delivered as a service. Each TSS is managed by the ESM following a common life
cycle model.

3.1.2 TSS Life Cycle

A Test Support Service can be started manually by an ElasTest user or can be started
automatically when a T-Job is configured to use a TSS and that T-Job is executed. Each
service instance has a life cycle that is defined and managed by the ESM, as defined in
D3.1. This life cycle is a simple life cycle and only accounts for the technical realisation
of the service. The life cycle includes all phases from the design of the service to the
disposal of a service instance. The life cycle is heavily based on the Hurtle orchestrator’s
[TSS2] life cycle. The phases of the life cycle are as follows:

Figure 1 TSS Life Cycle.

● Design: Design of the architecture, implementation, deployment, provisioning

and operation solutions. This generally a human-oriented activity.

 D5.1 ElasTest Test Support Services v1

14

● Implementation: Of the designed architecture, functions, interfaces, controllers,
APIs, etc. It should be noted here that all TSS APIs are specified using the
OpenAPI interface description language.

● Deployment: Deployment of the implemented elements, e.g. networks, volumes
and containers, etc. Any resource so the service can be used. Access to the
service is not available at this phase.

● Provisioning: Provisioning of the service environment. Activation of the service
such that the user can actually use it. This in the specific case of ElasTest, this
means configuring the service with the required parameters. These parameters
are supplied by passing environment variables into the container.

○ Once the service is appropriately configured, the owner of the service
instance can request access to the service instance through “binding”.
This part of the provisioning phase is specific to the ESM’s API.

● Operation and Run-Time Management: In this stage, the service instance is
ready and running. Activities such as scaling, reconfiguration of Sub-Services are
carried out here. This phase is a service-specific task.

● Disposal: Release of all SSs, the service instance itself and virtual resources is
carried out here.

3.1.3 TSS Interaction with ElasTest

There are a number of interactions that the TSSs have with other parts of ElasTest. The
following subsections describe them in detail.

3.1.3.1 TSS Registration

When ElasTest is started, ETM will register the services in ESM. Services are not started
(provisioned) at this time, given that they are created on-demand by the ETM on the
behalf of the T-Job owner. The ETM has access to the elastestservice.json files
located in the root of the repository. The ElasTest Toolbox downloads these files when
a new platform container is created and published. For more information about ElasTest
Toolbox, please see D6.2.

3.1.3.2 TSSs Used by Tester

When the TSS is started manually by the tester, the following steps are performed:
● The user can request to start a service using the ElasTest GUI whenever they

wish.
● Then, ETM will provision the service using ESM API. ESM will use the docker-

compose.yml content (if using docker-compose) specified as part the service's
manifest to start the service.

● When the service is started, ESM provides the IP of every subservice included in
the service to the ETM. With these IPs and the endpoints section defined in the
elastestservice.json, ETM will embed the service web GUIs, if available,
in the main ETM GUI using iframes. In that way, the ElasTest user can interact
with the service. Also, the services can provide other network endpoints to be
used by ElasTest users. For example:

 D5.1 ElasTest Test Support Services v1

15

○ EUS: Provides a WebDriver5 compatible endpoint to be used to manage
tests during test development.

○ EDS: Provides an endpoint where sensors, actuators and devices can be
managed.

○ EMS: Provides a Logstash6 endpoint to be used to receive beats entries
to be processed by event machines.

○ EBS: Provides a Spark7 endpoint to accept job deployment.
○ ESS: Provides an endpoint to managed security test runs.

● The ETM can request to delete (deprovision) a service so as not to waste
computational resources or incur large charges than are needed.

3.1.3.3 TSSs Used by Tests Inside a T-Job

When the TSS is associated to a T-Job to be used by the tests inside the T-Job, the
following steps are performed:

● A T-Job is created in ElasTest by means of ETM (using GUI or using REST API)
● The T-Job specifies what TSSs are going to be used by the test.
● When the user requests the ETM to start the T-Job, the ETM looks at the TSSs

that are necessary to execute that T-Job. Then ETM will ask ESM to provision
service instances for that T-Job.

● When the services are provisioned, the network endpoints of the subservices will
be provided to T-Job using environment variables. These environment variables
are created with the pattern:
ET_<SERVICE_SHORTNAME>_<SUBSERVICE>_<NAME>_API
for HTTP(S) services.

○ <SUBSERVICE> won't be included in the main subservice.
○ <NAME> won’t be included for the first API object of the array.

● All APIs are supposed to be HTTP(S) or WS 8 (s). For example, based on the
elastestservice.json presented before, the environment variable will be:
ET_EUS_API=http://<IP>:8040/eus/v1.

● For non-HTTP(S) services, host and port will be provided in different
environment variables with the pattern:
ET_<SERVICE_SHORTNAME>_<SUBSERVICE>_<NAME>_HOST
and:
ET_<SERVICE_SHORTNAME>_<SUBSERVICE>_<NAME>_PORT.

● When a T-Job is finished, then services are deprovisioned by the ETM.

Note that if there are two T-Jobs using the same service, then there will be two service
instances executing at the same time. The environment variables9 that will be available
in T-Jobs containers for the Test Support Services included in ElasTest are:

5 https://www.w3.org/TR/webdriver/
6 https://www.elastic.co/products/logstash
7 https://spark.apache.org
8 Web Socket
9 These environment variable values are subject to change because they are generated automatically from
endpoint section in the elastestservice.json file.

 D5.1 ElasTest Test Support Services v1

16

● EUS
○ ET_EUS_API
○ ET_EUS_EUSWS_API

● EBS
○ ET_EBS_HOST
○ ET_EBS_PORT

● EMS
○ ET_EMS_API
○ ET_EMS_LSBEATS_HOST
○ ET_EMS_LSBEATS_PORT
○ ET_EMS_ELASTICSEARCH_API

● EDS
○ ET_EDS_API_API

● ESS
○ ET_ESS_API_API

3.1.4 TSS Description

In order for services to be managed by the ESM, they need to be registered with the
ESM. The ESM is an ElasTest core component and is started when ElasTest Platform
starts. It is responsible for the life cycle management of instantiated services and the
service types registered in its catalogue. Once it is started. the ETM component registers
all known ElasTest TSSs in ESM. In order to accomplish this registration, the ETM
provides the service description of a TSS. This is the definition contained in a file named
elastestservice.json. In ElasTest, this description file is hosted within the service
implementation repository, however, it can be located anywhere the ETM has access to.

3.1.4.1 TSS Descriptor File (elastestservice.json)

The elastestservice.json is a JSON document and has the following structure:

 D5.1 ElasTest Test Support Services v1

17

Figure 2 TSS Descriptor File's Document Model

Below is an example of such a service description file.

{
 "register": {
 "description": "ElasTest service that provides...",
 "id": "29216b91-497c-43b7-a5c4-6613f13fa0e9",
 "name": "user-emulator-service",
 "bindable": false,
 "plan_updateable": false,
 "plans": [
 {
 "bindable": false,
 "description": "Basic plan for EUS",
 "free": true,
 "id": "b4cfc681-0e28-41f0-b88c-dde69169a256",
 "metadata": {
 "bullets": "basic plan",
 "costs": {
 "components": {
 },
 "description": "On Demand 5 per deployment, 50 per core.",
 "fix_cost": {
 "deployment": 5
 },
 "name": "On Demand 5 + Charges",
 "type": "ONDEMAND",

 D5.1 ElasTest Test Support Services v1

18

 "var_rate": {
 "cpus": 50,
 "disk": 1,
 "memory": 10
 }
 }
 },
 "name": "EUS plan"
 }
],
 "requires": [],
 "tags": [
 "browser",
 "selenium",
 "webdriver",
 "gui automation"
]
 },
 "manifest": {
 "id": "2bd62bc2-f768-42d0-8194-562924b494ff",
 "manifest_content": "version: '2.1'\nservices:\n...",
 "manifest_type": "docker-compose",
 "plan_id": "b4cfc681-0e28-41f0-b88c-dde69169a256",
 "service_id": "29216b91-497c-43b7-a5c4-6613f13fa0e9",
 "endpoints": {
 "eus": {
 "description": "W3C WebDriver standard sessions operations",
 "main": true,
 "api": {
 "protocol": "http",
 "port": 8040,
 "path": "/eus/v1/",
 "definition": {
 "type": "openapi",
 "path": "/eus/v1/api.yaml"
 },
 "health_path": "/eus/v1/application/health"
 },
 "gui": {
 "protocol": "http",
 "path": "/gui",
 "port": 8041
 }
 }
 }
 }
}

The “register” property of the file is used as the body of the register operation
(“Register a Service”) of the ESM. See D3.1 for details of this operation or here for an
example of service registration10.

10 https://github.com/elastest/elastest-service-manager/blob/master/docs/integration-
doc.md#register-a-service

 D5.1 ElasTest Test Support Services v1

19

The “manifest” property will be used as the body of the manifest operation (“Register
a Manifest for a Service's Plan”) of ESM. See D3.1 for details of this operation or here11
for an example of manifest registration.

The “endpoints” property indicates the endpoints provided by the service. Every
object in “endpoints” field should match the service name in the docker-compose. The
“api” field is used to define the programmatic endpoints of the service (in every
subservice). The “gui” field is used to define the web GUI of the service and/or to enable
embedding in the ElasTest GUI.

"api": [{
 "protocol": "http",
 "port": 8040,
 "path": "/eus/v1/"
 },
 {
 "name": "ws",
 "protocol": "ws",
 "port": 8041,
 "path": "/eus/"
 }
]

3.1.4.2 TSS Context and Configuration Information

When a TSS is provisioned, it is important that the service instance itself knows what the
context and configuration is in which it is executed. For that reason, all TSS subservices
defined in the manifest (within in the elastestservice.json) will receive the
following environment variables from the ETM, to know how to access to other ElasTest
components.

● ET_EIM_API
● ET_EDM_API
● ET_EDM_ALLUXIO_API
● ET_EDM_MYSQL_HOST
● ET_EDM_MYSQL_PORT
● ET_EDM_ELASTICSEARCH_API
● ET_EPM_API
● ET_ETM_API
● ET_ETM_LSTCP_HOST
● ET_ETM_LSTCP_PORT
● ET_ETM_LSBEATS_HOST
● ET_ETM_LSBEATS_PORT
● ET_ETM_LSHTTP_API
● ET_ETM_RABBIT_HOST
● ET_ETM_RABBIT_PORT

11 https://github.com/elastest/elastest-service-manager/blob/master/docs/integration-
doc.md#register-a-manifest-for-a-services-plan

 D5.1 ElasTest Test Support Services v1

20

● ET_ESM_API
● ET_EMP_API
● ET_EMP_INFLUXDB_API
● ET_EMP_INFLUXDB_HOST
● ET_EMP_INFLUXDB_GRAPHITE_PORT

Other useful environment variable is ET_FILES_PATH. That variable can be used by the
TSSs to store files that have to be maintained (associated to the T-Job or ElasTest itself).
ETM is responsible to manage files created during T-Job execution and show them in the
GUI.

There is also other information that can be useful inside the TSS containers but cannot
be injected with environment variables because it is known after the service is
provisioned. To avoid that limitation, a REST endpoint is provided to the Test Support
Service instance. The URL of that endpoint is codified in the environment variable
ET_CONTEXT_API. When that URL is requested with GET method, the following
response is returned:

{
 "ET_PUBLIC_API": "http://....",
 "ET_PUBLIC_EUSWS_API": "http://....",
 "ET_EMP_INFLUXDB_API": "http://....",
 "ET_EMP_INFLUXDB_HOST": "http://....",
 "ET_EMP_INFLUXDB_GRAPHITE_PORT": "http://....",
 ...
}

The important fields are those starting with “ET_PUBLIC_”. These fields have the public
URLs that can be used from outside ElasTest (from the browser, for example) to reach
the endpoints provided by the service. The rest of the fields are all the environment
variables defined previously.

3.1.5 TSS Instance Monitoring for T-Jobs

One of the main features of ElasTest is the ability to monitor T-Jobs and the SuT. That is,
the ability to show in ElasTest GUI all log entries and other metrics like CPU utilisation,
memory utilisation, etc. of all software artifacts involved in the test execution. For that
reason, it is important to also be able to monitor the TSS instances.

Service instances are provisioned as one or more containers using the manifest file. We
call "subservices" to every one of these containers. By default, the log of every
subservice is sent to the Logstash12 installed as part of ElasTest Platform. From there, it
is recorded in an ElasticSearch13 database and sent to a RabbitMQ14 message queue
system (to be shown in the GUI). All events (log entries and metrics) are associated with

12 https://www.elastic.co/products/logstash
13 https:// www.elastic.co
14 https://www.rabbitmq.com

 D5.1 ElasTest Test Support Services v1

21

the T-Job and with the SuT in such way that all that monitoring information can be
analysed at the same time. For example, if a T-Job is using a browser provided by EUS
service, then the log generated in that browser is merged with the log generated in the
SuT (a web server) and in the test itself.

In addition to the container logs and metrics, an ElasTest service can send monitoring
information to Logstash using some of the input plugins it provides: HTTP, Syslog15
format by TCP, Beats16, etc. Logstash IP and ports will be available in all containers of
the service in the environment variables:

● ET_LSHTTP_API
● ET_LSBEATS_HOST
● ET_LSBEATS_PORT
● ET_LSTCP_HOST
● ET_LSTCP_PORT

Two more variables are also available for a TSS instance:

● ET_TJOB_ID
● ET_TJOBEXEC_ID

Alternatively, the current ESM development is on-going to allow specific metrics (of the
service developer’s want) be sent to the ElasTest Monitoring Platform (EMP).

3.1.6 TSS Health Check

Every TSS implements a fast check to know that the service is operational. This is specific
to the implementation, however the basic structure of the returned document should
be compliant with Spring Boot health checks17. For that, every TSS should provide a REST
endpoint to be called by the ESM. The REST endpoint should have the following
characteristics:

● Default path: “/health” at the root of the service. If the health path is different
than /health, then use the property “health_path” in the “api” section of
the elastestservice.json document.

● Logic: Implements a simple logic calculation, however the more complete this
check can be, the more accurate the status can be (e.g. if a service comprises of
a front-end and database, executing some logic within the front-end and
querying the liveness of the database connection is useful). The output must be
a JSON dictionary/hashmap with the fields: “status” having a value of “up” or
“down”, “out_of_service”. These are the values used in Spring Boot. Also,
custom values can be added, if required and this other information is optional. If
other information is to be added, then it should be placed against an attribute
named “context”.

15 https://en.wikipedia.org/wiki/Syslog
16 https://www.elastic.co/products/beats
17 https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-monitoring.html

 D5.1 ElasTest Test Support Services v1

22

{
 "status": "up", //can also be: down, out_of_service
 "context": {} //any additional info
}

It also can be useful to implement a “/environment” endpoint that provides info on
the runtime environment that the process was started with. This is optional but can help
with operational diagnosis.

3.1.6.1 Registration of Health Check Endpoint

The registration of the health check endpoint should be done as any service endpoint.
Please see the following example on registering the endpoint:

"api": [{
 "protocol": "http",
 "port": 8040,
 "path": "/eus/v1/"
 },
 {
 "name": "ws",
 "protocol": "ws",
 "port": 8041,
 "path": "/eus/"
 },
 {
 "name": "health",
 "protocol": "http",
 "port": 8444,
 "path": "/health/"
 }
]

3.1.7 TSS & Creating New Computational Resources

All services can create new containers during their execution. This allows services to
request further resources, allowing them to scale themselves. Currently, each service
implementation manages the scaling of itself, this is also reflected in how the ESM’s
Open Service Broker API is presented. Services have a fixed set of resources depending
on the selected plan and so the goal of a service implementation is more to maintain
the service level delivered to the user of the service. Dynamic scaling is currently not
used in the ESM, rather a plan-based approach is used and therefore static scaling can
be achieved by updating the plan associated with a service instance. This work on
dynamic scaling will be investigated in upcoming release cycles.

In ElasTest, services can use docker directly using the Docker API or use the ElasTest
Platform Manager. For example, the EUS uses the Docker API to create a container for
each browser requested. Services that cannot use Docker API directly can use ElasTest
Platform Manager API instead. There is an extensive documentation18 on how to use

18 https://github.com/elastest/elastest-platform-manager/blob/master/docs/index.md

 D5.1 ElasTest Test Support Services v1

23

EPM and further documentation of the EPM can be found in D3.1. The EPM API URL is
available for all TSS instances in the environment variable ET_EPM_API.

3.1.8 TSS Costing

In order for the ElasTest Cost Engine (ECE) to carry out its function of estimating the
complete cost of a T-Job execution, the ECE must be able to retrieve the cost of each
Service Type’s offered Plan. In order to enable this, the ESM allows to combine the ECE
cost model (See D4.1) with the Service Type’s Plan19 description (see ESM’s data model
in D3.1). An ECE cost model per TSS has been created in collaboration with WP4 and is
integrated with each of the TSS’s elastestservice.json file. Once placed there, the
ECE cost model is registered along with the Service itself and this information can be
queried through the ESM’s service catalogue by the ECE. For providers of TSSs, should
they require billing of their service, they must include this information in their
elastestservice.json file. Below is an example cost model used by the EUS service
(starting from line 17).

19 This is the data structure that is used to describe the cost model of the particular service type.

 D5.1 ElasTest Test Support Services v1

24

Figure 3 EUS Cost Model Example

3.1.9 TSS Testing

It is important to implement tests for TSSs. All types of tests are important and should
take into account the test pyramid20.

In the case of E2E tests, TSSs should be tested in integration with the rest of the ElasTest
platform. At least, two E2E should be implemented in every TSS:

20 https://martinfowler.com/bliki/TestPyramid.html

 D5.1 ElasTest Test Support Services v1

25

● TSS started by GUI Test: A Test to use the TSS started manually using ElasTest
GUI.

● TSS started by T-Job Test: A Test to use the TSS associated to a T-Job started
when T-Job is executed.

These tests should simulate the interaction of a user with the ElasTest Web GUI. For this
reason, it is recommended to use Selenium technology to implement those tests. TSS
developer can use any technology to implement those tests supported by Selenium. In
the next sections, we will describe those E2E tests in further more detail.

3.1.9.1 TSS started by GUI Test

This test is implemented with the following characteristics:
● The test is implemented using Selenium technology with any programming

language and testing framework.
● The test will receive as environment variable the URL to connect to the ElasTest

web GUI.
● Test should perform the following steps:

○ Navigate to Test Support Services section of ElasTest.
○ Select the TSS to be tested.
○ Start the TSS using the GUI.
○ Wait until the TSS instance is available.
○ If the TSS can be used using a GUI:

■ Continue using Selenium to use that GUI embedded in ElasTest
GUI. For example, EUS allows the user to start and manage a
browser using the GUI.

■ If not: use the TSS instance using the endpoints shown in the GUI.
For example, EBS provides a Spark API that can be used from the
test itself using the public endpoint. For example, this21 is a test
implemented in Java using Spark.

● The Jenkinsfile22 should perform the following steps:
○ Start ElasTest using the Toolbox.
○ Wait until ElasTest is started because it can take several minutes.
○ Get ElasTest GUI URL.
○ Execute E2E tests passing the environment variable where ElasTest is

accessible.

As an example, the EUS E2E test can be viewed in this source file23 of its Maven 24
project. Also, to support this example is the EUS Jenkinsfile25 that starts this test. For
more information about the test project please see the documentation26.

21 https://blog.matthewrathbone.com/2015/12/28/java-spark-tutorial.html
22 https://jenkins.io/doc/book/pipeline/jenkinsfile/
23 https://github.com/elastest/elastest-user-emulator-service/blob/master/e2e-
test/src/test/java/io/elastest/eus/test/e2e/EusSupportServiceE2eTest.java
24 https://maven.apache.org
25 https://github.com/elastest/elastest-user-emulator-service/blob/master/e2e-test/Jenkinsfile
26 https://github.com/elastest/elastest-user-emulator-
service/blob/aad177c4bb44d720d431479685957a8fa2cee977/e2e-test/docs/index.md

 D5.1 ElasTest Test Support Services v1

26

3.1.9.2 TSS started by T-Job Test

This test is implemented similarly to the other test regarding to ElasTest platform start
and the Jenkinsfile steps. The only difference is in the steps performed by the test itself.
The following are the test steps:

● Create a new project.
● Create a new SuT in the project if necessary.
● Create a new T-Job with the following information.

○ A docker image used to execute the T-Job commands. For example, a
docker image with Java, Maven and Git.

○ The list of the commands to execute inside of the image. For example:
■ clone a git repository with one or more tests.
■ execute the tests.

● Select the TSS that is going to be used inside the test.
● Save the T-Job.
● Execute the T-Job.
● Verify that test pass using the services provided by TSS.

An example of such a test can be seen in the EUS E2E test in this source file27 (a Maven
project).

3.1.10 TSS Documentation

A TSS should be documented with two different perspectives: the user documentation
and the development documentation. This documentation is split into two new files and
is used to create a ElasTest user documentation in the ElasTest web page. All
documentation for a TSS must be placed in a folder named ‘docs’ in the root of the
service’s repository.

3.1.10.1 User Documentation

User documentation should include the following:
● Description: One paragraph description of the TSS
● Features: A complete list of features provided by the TSS in the current version.
● How to use from GUI: If the test can be used from the ElasTest GUI, it contains

a tutorial on how to use it.
● How to use from a test: It contains a tutorial on how to use the TSS from a Java

test. Other languages/technologies can also be provided in the tutorial.

This documentation should be written in /docs/user-docs.md file of the service’s
repository.

3.1.10.2 Development Documentation

Development documentation should include these points:
● Architecture: Architecture of the component specifying the relation with other

ElasTest components

27 https://github.com/elastest/elastest-user-emulator-service/blob/master/e2e-
test/src/test/java/io/elastest/eus/test/e2e/EusTJobE2eTest.java

 D5.1 ElasTest Test Support Services v1

27

● Prepare development environment: How to prepare the development
environment to develop this TSS. For example, what tools are required, in which
version, etc.

● Development procedure: All information useful to develop the component. For
example, how to execute the component in the IDE, how to compile it, etc.

● Docker images: Description of the docker images used for the component. If the
components can be developed outside ElasTest and need some docker
containers to simulate the other ElasTest components, they should be described
here.

● Continuous Integration: The description of the jobs used in ElasTest CI, how they
are used and when they are executed.

This documentation should be written in /docs/dev-docs.md file of the service’s
repository.

3.1.11 TSS Creation

Using the information contained in sections 3.1.1 to 3.1.9 a developer, along with the
support of the current set28 of TSSs creates their own TSS. The key requirements in doing
so are listed here.

• The initial step is the design and implementation of the service to be delivered
as a TSS. This can be done using whatever design methodology that is
appropriate. The architecture of the service can be monolithic all the way
through to microservices -based. The key requirement is that the service can be
accessed and operated over a network-based protocol (e.g. HTTP(s)).

• The service and subservices themselves can be implemented in any language of
choosing.

• It is highly recommended that each service implements a health endpoint as this
will allow for the ESM to check and validate that the service instances of that
particular service type are operational.

• Services should be tested and documented. Guidelines on what is expected of
TSSs can be found in sections 3.1.8 and 3.1.9

• Once a service has been implemented, it must be packaged as container
image(s). For ElasTest TSSs they must be packaged as docker containers.
Currently it is expected that these container images are placed in a container
image registry that is available to the ESM and/or EPM.

• The set of docker containers comprising the service implementation must be
described by a service manifest. The service manifest depends on the type of
container orchestration management system supported by the ESM. Currently,
docker-compose is the only manifest format supported (including the option of
deploying using the EPM).

• Once the service manifest is created, the elastestservice.json file can
then be created according to section 3.1.4. Currently, this descriptor should be
hosted at the root of the service’s code repository to which the ETM has access.

28 https://github.com/elastest?utf8=✓&q=service&type=&language=

 D5.1 ElasTest Test Support Services v1

28

o Note: should a service be billed to the submitter of a T-Job, then the
elastestservice.json must include in its service’s plan the model
used by the ECE (details in D4.1).

A note on networking: Currently, all instances share the same network. This causes
the issue of port conflicts both within the docker network and also in exposing host
ports. There are currently two proposals to fixing this issue:

o A per instance network is created for the service instance and all
containers associated with the service are placed upon this network
 a. can be done (has been experimentally) and works, except that

remapping of port numbers needs to be done by ETM/ESM
o A per tenant docker infrastructure instance is created and only service

instances of that tenant are placed here
 a. requires further integration with the EPM
 b. requires tested AAA integration in the EPM

• Currently for a service instance to be created it must be placed on a docker-
managed network named ‘elastest_elastest’. Below is the docker-
compose definition required:

Figure 4 Service docker-compose Network Definition.

 D5.1 ElasTest Test Support Services v1

29

4 ElasTest Test Support Services
In this section each of the five core ElasTest Test Support Service (TSS) is described. All
of these services are available from the main ElasTest repository29 and are available
under the open source Apache 2.0 license30, unless otherwise specified.

4.1 ElasTest User Impersonation Service

4.1.1 Introduction

The ElasTest User Impersonation Service (EUS) TSS is devoted to providing the
appropriate technologies for impersonating users in end-to-end tests. This is achieved
by handling GUIs (Graphical User Interfaces) using automation techniques. Currently,
EUS provides the ability to impersonate users manipulating web applications. In future
releases, it is planned to allow the impersonation of mobile applications too.

Moreover, EUS enables to measure the end-user's perceived quality for standard Web
Real-Time Communication (WebRTC) 31 applications, so that testing through the
validation of the perceived quality becomes possible. For this, QoS indicators are
gathered by EUS. These indicators include traffic metrics such as network latency,
network packet loss, network jitter, retransmissions and consumed/estimated
bandwidth. In the future, it is planned to offer also QoE metrics. For this, multimedia
QoE for audio and video will be analysed using different full-reference algorithms, such
as Perceptual Evaluation of Speech Quality (PESQ) for audio or Structural SIMilarity
(SSIM) for video to name a few [EUS0].

4.1.2 Features

The list of high-level capabilities provided by EUS at the moment of this writing is the
following:

1. Use browsers manually.

2. Drive browsers GUIs in an automated way.

3. Automate and assess WebRTC applications.

4. Measure the end-user's perceived quality by means of QoE and QoS indicators
(Planned).

5. Record of browser in automated and manual sessions.

These capabilities are exposed by EUS by means of a REST API. The definition to this
REST API has been defined using Open API notation [EUS1]. This specification is available
on the EUS GitHub repository32. Moreover, this API can be reviewed in a web friendly
format in the official ElasTest documentation33.

29 https://github.com/elastest
30 https://opensource.org/licenses/Apache-2.0
31 https://webrtc.org
32 https://github.com/elastest/elastest-user-emulator-service/blob/master/api.yaml
33 https://elastest.io/docs/api/eus/

 D5.1 ElasTest Test Support Services v1

30

4.1.3 Baseline Concepts and Technologies

EUS is devoted to providing user impersonation for web browsers GUIs. For this, EUS
provides a Browser as a Service (BaaS) capability suitable for exposing browser GUIs
through an API in a universal way. This service has been built on top of popular
technologies such as Selenium [EUS2]. In that way, any testing library can be used with
this TSS. In the next versions of this component a new feature will be implemented, the
ability to control mobile applications in an automated way. This will be implemented on
top of the popular open source automation for mobile applications Appium [EUS3], also
based on Selenium.

In order to drive browsers and mobile devices in an automated fashion, EUS has been
conceived as an extension of the W3C WebDriver recommendation [EUS8]. This
recommendation was based on the so-called JSON Wire Protocol34, first developed by
the Selenium team. This protocol defines a REST API instrumented by means of JSON
messages over HTTP. Nowadays, this protocol is being standardized in the WebDriver
API by W3C. Therefore, the EUS component provides full compatibility with external
browser drivers (e.g. Selenium Grid applications) but enhanced with new capabilities to
allow automation for different kinds of GUI applications (including browsers and mobiles
in the future) while allowing advance quality assessment (including QoE and QoS
metrics).

To manage the browser instances controlled by Selenium, EUS uses Docker containers.
Specifically, one Docker container it is instantiated for every controlled browser. The
containers used in EUS have been created by the ElasTest project. These images are
open and available on Docker Hub35. These images are based on the official Selenium
Docker containers [EUS4], and also on the containers provided by the Selenoid project
(a scalable Selenium Hub implementation in Go language) [EUS5]. Some of the new
features added to the ElasTest browser containers are the following:

● noVNC36 (i.e. VNC client for HTML5 canvas elements) is included in the browser
containers, allowing external browsers to be connected directly to the browser
container [EUS6].

● Recording video and audio in MP4 format. The recording is currently done
directly in the browser container using FFmpeg [EUS7].

● The ability to start and stop the recording of the browser. This allows to record
in several time ranges.

All in all, EUS provides a fully SaaS model so that developers do not need to take into
consideration problems related to computing resources scheduling, software
provisioning or system scaling. For managing the life cycle of containers, EUS is using the
service of ElasTest Platform Manager (EPM) core component.

34 https://github.com/SeleniumHQ/selenium/wiki/JsonWireProtocol
35 https://hub.docker.com/u/elastestbrowsers/
36 http://novnc.com

 D5.1 ElasTest Test Support Services v1

31

4.1.4 Component Architecture

The FMC diagram for EUS is shown in Figure 5.

Figure 5 EUS FMC Diagram

The class structure of the EUS is shown in the following UML class diagram.

Figure 6 EUS Class diagram

T-Job

Browser

EUS Web GUI

API

EPM

EPM Client

WebDriverService LogstashService ETM

EUS

ESM

EDM

AlluxioService

 D5.1 ElasTest Test Support Services v1

32

4.1.4.1 Use Case Diagrams

The uses cases for EUS identified at the time of this writing are the following:

1. W3C WebDriver. This use case is aimed to provide full compatibility with the
existing W3C WebDriver recommendation, allowing to use EUS by Selenium
tests.

2. Basic media evaluation. These operations provide custom features to assess
WebRTC applications, such as read audio level of RGB colour of video tags.

3. Event subscription. This set of operations allows to subscribe to Document
Object Model (DOM) events (e.g. click, change, and so on).

4. Advance media evaluation. This use case allows to measure advance metrics for
WebRTC applications, such as end-to-end latency of audio and video QoE.

5. Remote control. This use case allows to record and share remote sessions of user
sessions.

6. WebRTC stats. This use case allows to get complete QoS indicators for WebRTC
applications.

7. WebRTC user media. This use case will allow to set specific media content (video
and/or audio) for WebRTC communications.

As shown in the following chart, all these operations can be invoked by end-to-end tests,
typically executed from ElasTest T-Jobs.

Figure 7 EUS Use Cases

 D5.1 ElasTest Test Support Services v1

33

As introduced before, the EUS operations have been specified in OpenAPI format and
documented in the ElasTest website. The following table provides a summary of the
operations together with the REST endpoints provided by EUS.

Method URL Description

1. W3C WebDriver compatibility.

GET,
POST,
DELETE

/session/** W3C WebDriver standard
sessions operations

GET /status W3C WebDriver standard
get status operation

2. Basic media evaluation

GET /session/{sessionId}/element/
{elementId}/audio

Read the audio level of a
given element
(audio|video tag)

GET /session/{sessionId}/element/
{elementId}/color

Read the RGB color of the
coordinates of a given
element

3. Event Subscription

POST /session/{sessionId}/element/
{elementId}/event

Subscribe to a given event
within an element

GET /session/{sessionId}/event/{s
ubscriptionId}

Read the value of event
for a given subscription

DELETE /session/{sessionId}/event/{s
ubscriptionId}

Remove a subscription

4. Advance media evaluation

POST /session/{sessionId}/element/
{elementId}/latency

Measure end-to-end
latency of a WebRTC
session

 D5.1 ElasTest Test Support Services v1

34

POST /session/{sessionId}/element/
{elementId}/quality

Measure quality
(audio|video) of a
WebRTC session

5. Remote control

GET /session/{sessionId}/recordin
g

Get recording

DELETE /session/{sessionId}/recordin
g

Delete recording

GET /session/{sessionId}/vnc Get VNC session

6. WebRTC stats

GET /session/{sessionId}/stats Read the WebRTC stats

7. WebRTC user media

POST /session/{sessionId}/usermedi
a

Set user media for
WebRTC

8. Service Instance Status

GET /health Get the component health
status.

Table 1 EUS API Calls

4.1.4.2 Sequence Diagrams

At the time of this writing not all these use cases have been implemented. So far, three
out of the total use cases are supported by EUS, namely compatibility with W3C
WebDriver, gathering of WebRTC statistics, and remote control. In this section, a
sequence diagram per implemented use case is depicted, explaining how EUS interacts
with other ElasTest components to support that use case.

The following picture shows the sequence diagram of the use case “W3C WebDriver”.
In this sequence diagram two typical W3C WebDriver operations are depicted. First, the
creation of a browser session is requested in the execution of a T-Job by means of a
“POST /session” message. On the reception of this message, EUS requests the
creation of a web browser to EPM. The nature of the browser, i.e. the type (Chrome,
Firefox, etc) and the version is contained in the body of the origin request. As a result, a

 D5.1 ElasTest Test Support Services v1

35

browser is started by EPM (typically using a Docker container), and a unique session
identifier (sessionId) is returned to the T-Job. This identifier will be used in next
requests from the T-Job. At the bottom of the diagram, we can see how the value of
sessionId is used to terminate the browser session using the command “DELETE
/session/{sessionId}”.

Figure 8 EUS W3C WebDriver

The next use case described with a sequence diagram is related to the capability of
gathering WebRTC statistics from previously created web sessions. The command, new
in W3C WebDriver and supported out of the box by EUS, is invoked using the command
“GET /session/{sessionId}/stats”. On the reception of that message, EUS will
use the native WebRTC support to gather all statistics in the RTCPeerConnection objects
up and running in the browsers. That data is returned to the T-Job, and also it is sent to
the monitoring service (EMS).

 D5.1 ElasTest Test Support Services v1

36

Figure 9 EUS WebRTC Statistics

The last implemented use case so far is related to remote control capabilities. To support
these capabilities, EUS implements two additional features out of the box and by default
per browser session. On the one hand, browser sessions are recorded automatically.
These recordings can be read (and deleted) using custom messages. On the other hand,
each browser session is automatically exported using VNC desktop sharing technology.
The operation of this capabilities is represented in the following sequence diagram.

Figure 10 EUS Remote Control

 D5.1 ElasTest Test Support Services v1

37

4.1.5 Code Reports

EUS has been implemented as a Spring-Boot application in Java language, and as usual,
its source code is open and available on GitHub 37. The test suite of EUS has been
implemented using JUnit 5 [EUS9]. At the time of this writing this suite is composed by
46 tests divided in three categories:

● Unit tests, isolating unit under test using Mockito [EUS10].

● Integration tests, executing different internal components using Spring [EUS11].

● End-to-end tests, using Selenium WebDriver [EUS2] to verify the high-level
features of EUS.

The code coverage of this test suite is calculated in each new patch, as long as this new
patch does not introduce a new regression (i.e. some test fails). To keep track of the
coverage, as usual we use Codecov38. As shown in the following chart, the code coverage
of EUS remains quite stable (around 75% of line coverage and around 70% of complexity
coverage).

Figure 11 EUS Coverage Chart

4.1.6 Code Links

● The main repository of the EUS is https://github.com/elastest/elastest-user-
emulator-service

● The API of the EUS is available at https://elastest.io/docs/api/eus/

4.1.7 Contributions

ElasTest User Impersonation Service contains several innovations and advances in the
state of the art that have been published in the following contributions:

● WebRTC Testing: Challenges and Practical Solutions. Boni García, Francisco
Gortázar, Luis López-Fernández, Micael Gallego, and Miguel París. IEEE
Communications Standards, IEEE, July, 2017.

● WebRTC Testing: State of the Art. Boni García, Micael Gallego, Francisco
Gortázar, and Eduardo Jiménez. 12th International Conference on Software
Technologies (ICSOFT). SCITEPRESS. Madrid, July 2017.

37 https://github.com/elastest/elastest-user-emulator-service/tree/master/eus
38 https://codecov.io/gh/elastest/elastest-user-emulator-service

https://github.com/elastest/elastest-user-emulator-service
https://github.com/elastest/elastest-user-emulator-service
https://elastest.io/docs/api/eus/

 D5.1 ElasTest Test Support Services v1

38

● Impersonation as a Service in End-to-End Testing. Boni García, Francisco
Gortázar, Micael Gallego, and Eduardo Jiménez. 6th International Conference on
Model-Driven Engineering and Software Development (MODELWARD), Special
Session on domAin specific Model-based AppRoaches to vErificaTion and
validaTiOn (AMARETTO). SCITEPRESS. Funchal (Portugal).

In the future, it is expected to include more contributions to this list as EUS development
advances and incorporate new features.

 D5.1 ElasTest Test Support Services v1

39

4.2 ElasTest Device Emulator Service

4.2.1 Introduction

ElasTest Device Emulator Service (EDS) is a microservice developed in ElasTest as a Test
Support Service (TSS), to emulate devices used in the context of Internet of Things (IoT).
EDS facilitates rapid prototyping and testing of IoT applications. The emulated devices
include sensors, actuators and smart devices which form the basis of IoT applications.
Furthermore, EDS can be used to build and test interactive IoT applications. Particularly,
in the context of Industry 4.0, the role of Industrial Internet of Things (IIoT) is important
in order to automate production environments with the help of cyber physical systems.

The monitoring of industrial shop floor is automated using a cause and effect
relationship through the use of sensor as a source of cause and an actuator used to
realise the effect. The decision whether to apply an effect based on a set of causes is
provided by a logic, which is implemented using a program. The association of the
hardware components (such as sensors/actuators) and software components (such as
the programmable logic), brings about challenges from defining hardware/software
interfaces, to communication and connectivity. The recent advent of fog computing
technology has made it possible to distribute sensors/actuators on top of fog nodes
which are capable of communicating with other fog nodes to enable Machine to
Machine (M2M) communication. The evolution of M2M communication standards such
as oneM2M39 and OPC UA40 have made it possible to realize IIoT applications using fog
nodes.

In order to realize and test IIoT solutions, it is necessary to first procure hardware and
software components. To make feasible decisions, it would be helpful if there is a means
to test IIoT applications using virtual devices first which is compatible with concepts of
M2M communication and fog node architectures. EDS tries to address this challenge by
providing emulated devices which communicate using OpenMTC41, an implementation
of the oneM2M standard.

Furthermore, EDS is used in realizing the Industry 4.0 demonstrator in the Work Package
7 (WP7) of ElasTest.

4.2.2 Features

The features of EDS are aimed towards providing a framework to realize Industry 4.0
applications which emulates a smart factory scenario as a whole:

● A means which can provide emulated sensors and emulated actuators which can
be initiated in multiplicity based on demand.

● A means which program logic can consume the sensor data and signal actuation.

● A backend which provides the communication capability between sensors,
actuators and the application deployed as a SuT in the case of ElasTest.

39 http://www.onem2m.org
40 https://opcfoundation.org/about/opc-technologies/opc-ua/
41 http://www.openmtc.org

 D5.1 ElasTest Test Support Services v1

40

Furthermore, a backend is responsible in collecting, analysing activity due to the
deployment of the IIoT application.

In the following text, sensor refers to emulated sensor and actuator refers to emulated
actuator, a sensor and actuator is collectively referred to as a device, to the level of
abstraction that denotes a device to be a fog node.

To support the realization of a smart factory scenario, EDS provides following facilities
at various levels of abstraction:

● In the user defined IIoT application (at the level of user):

○ A facility to communicate and register the application with EDS.

○ A facility for user to specify the required sensors and actuators for that
application directed to EDS.

○ A facility that deploys the specified sensors and actuators and makes it
available to the user where each sensor and actuator is discretely
identifiable.

○ A facility for user to consume the data from a discrete sensor selected
from the required sensors via a program logic and direct the outcome of
such a logic to a discrete actuator selected among the already initiated
actuators.

● TSS EDS:

○ is deployed as a minimal component by ESM on requirement (at the level
of ElasTest platform):

■ Shall be able to identify the exact user application it is in
communication with.

■ Shall include an orchestration feature, which takes incoming
requests from demonstrator application about the required
sensors and actuators and deploys them, each as a separate
device. Thus, each device, by mechanism of mapping or other
methods, is identifiable globally by an identifier.

■ Shall track the life cycle of the entity. The entity is born when a
requirement is received from the demonstrator application. The
entity dies on the exit of the demonstrator application.

■ Shall act as a coordinating entity (gateway/hub) for
communication between the application, sensors and actuators.

○ Emulated sensors (at the level of EDS) includes a basic set of sensors
commonly found in industry environment used to monitor conditions on
the shop floor. They are: Light, Pressure, Movement, Humidity,
Temperature and Accelerometer.

 D5.1 ElasTest Test Support Services v1

41

In each case, it has to be ascertained what kind of data emulation is required by a given
user application and the required sensor, taking into account:

● Suitable range and unit (e.g. normal temperature range is between 20 and 60
degrees centigrade)

● Periodicity of generation

● Aperiodicity/sporadicity of generation

● Jitter and noise

● Probability distribution to be used while generating data

● The provision of a facility, that can communicate the characteristics of data
emulation from demonstrator application to the respective sensor.

Emulated actuators normally take in a signal of True or False. Considering this, a minimal
actuator can be designed that:

● Takes in signal from the user application.

● Employs the time required for the final actuation to take place after a signal is
received.

● The minimal actuator can relay the status of actuation back to the user
application.

4.2.3 Baseline Concepts and Technologies

EDS is built using OpenMTC as a middleware. OpenMTC is an implementation of the
oneM2M standard. The following text explains basic concepts for OpenMTC. OpenMTC
is an open source software, initiated by TU Berlin and Fraunhofer FOKUS. The software
was made open source in November 2017 and is available on GitHub42.

The following terms are relevant in the context of oneM2M and OpenMTC to
understand various entities functioning in the implementation of EDS:

● Common Services Entity (CSE): Is an entity which resides in the service layer of
oneM2M which provides necessary service functions to realize an application.
The OpenMTC gateway is the CSE, in OpenMTC implementation.

● Application Entity (AE): Is an abstraction residing in the CSE representing the user
application. Structurally, the AE resides beneath the CSE.

● Container: Is an abstraction in the CSE, which represents a placeholder as the
name suggests. In hierarchy, Container resides just under AE.

● Content Instance (CI): Is an abstraction in the CSE, which fills data in the
placeholder of Container. In hierarchy, CI resides just under container.

To access the basic facilities of OpenMTC, it is required to at least run the gateway on
node which is connected to a network and which is identifiable by an IP address.

42 https://github.com/OpenMTC/OpenMTC

 D5.1 ElasTest Test Support Services v1

42

Consider the following URL:

http://<Gateway IP>:8000/onem2m

● Gateway IP: is the IP address of the node where OpenMTC gateway is running.

● 8000 is the service port number used by OpenMTC.

● onem2m is the CSE base name.

The URL supports the REST API fully as a consequence of using OpenMTC. It accepts and
responds to requests in the form of JSON data format. As the user can nest AE, Container
or CI under the CSE base. A desired entity can be reached by using the correct path. For
a given path, the children residing under the hierarchy and the parent path are made
available in the response for a GET request.

More details about the interaction methods with the gateway can be found in the
OpenMTC documentation43. From here on, we concentrate on REST API paths starting
with the CSE base /onem2m.

A typical path looks like:

/onem2m/{AE}/{Container}/{ContentInstance}

It is up to the user to formulate reasonable paths for the his/her application identified
by name {AE}, under which multiple {Container}s can reside, where each
{Container} can have multiple nested {Container}s and so on. For each container,
there resides one or more placeholders for data called {ContentInstance}. Each
path towards an entity is unique because of the unique names given to the entities.

The key concept in building an application is defined below:

● Push data to container: Here an application can push data to a content instance
identified by the unique path to the container.

● Subscribe to a container: Here an application can subscribe to a container
identified by the unique path to the container. The application is notified and a
handler is triggered in the application, when there is data pushed to the
subscribed container.

The next subsection explains the implementation which can be understood using the
concepts detailed in this subsection.

43 https://github.com/OpenMTC/OpenMTC/blob/master/doc/openmtc-get-started.md

 D5.1 ElasTest Test Support Services v1

43

4.2.4 Component Architecture

Figure 12 EDS FMC Diagram

The above figure shows the component architecture of EDS. The architecture can be
understood by following the descriptions for both internal and external components
from the text given below:

Internal components

● OpenMTC GW:

○ This is the CSE defined by OpenMTC, called a gateway (GW) in general.
GW is an anchor for communication in EDS. It is the single point of contact
for internal and external entities intending to communicate with EDS. It
is a main actor and is initialized when EDS is run. It holds all the REST API
paths for any entity defined in the context of EDS.

○ Path: /onem2m/

● EDS Orch:

○ The EDS orchestrator is an AE, which is registered with GW first after the
GW is available for communication. The orchestrator is responsible for
receiving requests from the user application and taking necessary action
by method of first checking if the request is valid and then if valid, the
request is processed accordingly. Opens to external world with channels:
request, response and status.

○ Path: /onem2m/EDSOrch/edsorch

● DE-n:

○ DE stands for device emulator and letter n stands for the type of DE
representing a sensor. DE-n is run at start-up by EDS Orch for each type
of sensor in the manifest of EDS. DE-n is a generic term presented here.
The actual name of the DE can be found in EDS repository. The DE on

 D5.1 ElasTest Test Support Services v1

44

receiving a request from EDS Orch, is required to process the request
and allot the respective device to the requesting application. The nature
of the requested device can be obtained from the device model M-m
stored in EDS. In response to a given request, the DE on successful
installation of a device, attaches to a container under the path of the
requesting application and sends the response on its response channel.
Opens to external world with channels: request, response and status

○ Path: /onem2m/{DE-n}/

● M-m :

○ These are stored models for each DE, which can provide different
behaviour of sensor as requested by user. These are stored in EDS and
can be used by an associated DE anytime while EDS is executing.

● D-n-m-x :

○ These are the devices which are established at run time by their
respective DEs. The allotted devices are always attached to a user
application. In D-n-m-x, D stands for device, n stands for type of DE which
it belongs to, m stands for the model being used and x denotes the index
of the device from the perspective of EDS Orch. Each device is launched
as an individual thread. The thread is responsible for fulfilling the
functions of the device based on request provided by the user
application. If the device intends to send data, it pushes the data to a
container. For example, sensor devices push the sensor values to a
container. If the device intends to receive data, it subscribes to a
container. For example, an actuator subscribes to a container.

○ Path:

■ If sensor:
/onem2m/EDSOrch/{AE}/sensors/{unique_name_of_sen
sor}

■ If actuator:
/onem2m/EDSOrch/{AE}/actuators/{unique_name_of_a
ctuator}

External components

● T-Job Execution: This is the T-Job under execution in ElasTest. The T-Job is able
to access or modify the paths established by a running user application.

● SuT: This is the System under Test (SuT), defined by the user. As a result of
running the SuT with EDS, one or more new paths are introduced at the GW.

● User: A user, who is able to monitor or introduce test conditions into an
established SuT, by accessing or modifying the content instance of a container
identified by a path using the REST API.

Following channels are defined for EDS Orch in EDS:

 D5.1 ElasTest Test Support Services v1

45

● Request:

○ Path: /onem2m/EDSOrch/edsorch/request

○ This is container path, where the user application is required to update
the content instance.

○ EDS Orch is subscribed to this container.

● Response:

○ Path: /onem2m/EDSOrch/edsorch/response

○ This is the container path, where EDS Orch updates response to a given
request by the user application.

○ The user application is required to subscribe to this path.

● Status:

○ Path: /onem2m/EDSOrch/edsorch/status

○ This is the container path, where EDS Orch signals whether it is busy with
a request or idle.

○ The user application is first required to retrieve the content instance in
this container before posting a request.

Similar to the channels described above, the DEs are also provided with request,
response and status channels which perform similar functions.

They can be accessed with the following paths:

● /onem2m/{DE-n}/request

● /onem2m/{DE-n}/response

● /onem2m/{DE-n}/status

 D5.1 ElasTest Test Support Services v1

46

4.2.4.1 Use Case Diagrams

Figure 13 EDS Use Cases

The above image shows the use case diagram for EDS. They can be listed as follows:

1. Register Application: A user application registering with the EDS, in particular
with EDS Orch.

2. Register Device: A user application, requesting a device from EDS, in particular
requested from the EDS Orch.

3. Modify Device: A user application or a user, requesting the DE to modify the
behaviour of the already available device.

4. Wire Devices: A user application, is able to wire the devices together. This
involves:

a. For any incoming data to the application, the application is required to
subscribe to the container from which it expects an input.

b. For any outgoing data from the application, which the application intends
to push into the system, the application is required to push the data to
the container to which it intends to push the data as a content instance.

5. Apply Program Logic: This operation is performed on an input received from a
user supplied input or an input obtained from a subscribed container. The
program logic decides whether to signal or not signal an actuation to the user or
the system. In case of if actuation is to be signalled to the system, the application
pushes the data to the required container for actuation. Furthermore, such
actuation can be time bound, logic bound or even complex that is left to the
user’s discretion.

 D5.1 ElasTest Test Support Services v1

47

6. Terminate Application: User application or user requests to terminate the
application. This request is sent to EDS Orch.

Above, use case 4 and 5 are self-explanatory. For the purpose of understanding, use
cases 1, 2, 3 and 6 sequence diagrams are presented in the next part of the subsection.
These use cases are realised by the following REST API:

Method URL Description

1. OpenMTC GW

GET /onem2m/** Get the list of entities available

POST /onem2m/** Create AE, Container or CI

PUT /onem2m/** Modify a CI

DELETE /onem2m/** Delete AE, Container or CI entities

2. EDS Orch

POST /onem2m/EDSOrch/edsorch/re
quest

Post a request to EDS Orch

GET /onem2m/EDSOrch/edsorch/re
sponse

Get the response from EDS Orch.

GET /onem2m/EDSOrch/edsorch/st
atus

Get the status of EDS Orch
request channel.

3. Device Emulator (DE)

POST /onem2m/{DE name}/request Post a request to DE

GET /onem2m/{DE name}/response DE response from DEl

GET /onem2m/{DE name}/status Get the status of DE request
channel.

4. Sensor Device

 D5.1 ElasTest Test Support Services v1

48

GET /onem2m/EDSOrch/{AE
name}/sensors/{sensor
name}/data

Retrieve the sensor device data

5. Actuator Device

POST /onem2m/EDSOrch/{AE
name}/actuators/{actuator
name}/data_in

Signal an actuator device

GET /onem2m/EDSOrch/{AE
name}/actuators/{actuator
name}/data_out

Retrieve the information after the
actuator has finished the job

6. Service Instance Status

GET /health Get the component health
status.

Table 2 EDS API Calls.

The above table summarizes the REST API for EDS. It should be noted that the OpenMTC
provides complete REST API support (i.e. GET, POST, PUT, DELETE) on any path
constructed using /onem2m. This is denoted by the first method listed with OpenMTC
GW. However, the API type listed in the first column corresponding to the paths listed
in each row, indicate the API types which can be used safely in the context of EDS.

Added to the REST API, OpenMTC also provides a low-level SDK with methods which
might be more relevant when creating paths for implementation purposes. The
methods are listed below:

1. Retrieve.

2. Delete.

3. Create.

4. Notify.

5. Update.

The methods can be used only with the OpenMTC low-level SDK. More information can
be found in the OpenMTC documentation44.

44 https://github.com/OpenMTC/OpenMTC/blob/master/doc/sdk-client.md

 D5.1 ElasTest Test Support Services v1

49

4.2.4.2 Sequence Diagrams

Figure 14 Sequence Diagram of the Life Cycle of a Simple EDS IoT Application

 D5.1 ElasTest Test Support Services v1

50

The above shown sequence diagram tries to outline the life cycle of simple IoT
application constructed using EDS outlining use cases, 1, 2, 3 and 6 in subsection 4.2.4.1.

The following text details on the Figure 14, the sequence of steps a user follows to
interact with EDS to setup a simple IoT application. In this simple IoT application, it is
assumed that EDS provides SensorEmulator which provides device type sensor and
ActuatorEmulator which provides device type actuator. The device sensor is
assumed to emulate the behaviour of a sensor which can sample for example physical
property such as temperature. The device actuator is assumed to emulate a hypothetical
actuator which emulates the behaviour of a real-world actuator. The actuator receives
a signal to actuate and performs an actuation. In the figure, User could be SuT, T-Job or
a regular user able to communicate with EDS using the REST API provided by OpenMTC.
In the figure Orch stands for EDS Orch. Although the main entity to communicate with
is the gateway, Orch is the entity which receives requests and processes them.
Furthermore, device emulators initiated by EDS Orch, accept requests to modify the
behaviour of the devices that are already alive.

With this information, the sequence diagram could be understood with following
sequence of steps:

Step 1. Register the application: User registers with Orch the unique application name
APP. Once APP is registered with Orch, Orch maintains a code book for all the
applications registered and is able to identify each application and the facilities that the
application has been allotted with. This step represents use case 1, mentioned in
subsection 4.2.4.1.

Step 2. User requests Orch to register a device type sensor with unique name sensor-x.
The request is forwarded to the device emulator SensorEmulator. The
SensorEmulator accepts a valid request from Orch and registers a device of type
sensor with the required model and initiates it with the name sensor-x. Once allotted,
the sensor-x’s path is forwarded to the Orch and Orch in turn forwards the response of
SensorEmulator to the user. The user knowing the path for the sensor-x can now
subscribe to that path in the application so that whenever the sensor pushes a value,
the user application is notified. In a similar set of events, the device of type actuator is
allotted to user by the ActuatorEmulator. The actuator with unique name actuator-
y is identifiable by a unique path. Here the user in order to trigger the actuator, needs
to push data to the container at the actuator’s path. Collectively this step summarizes
the use case 2 as described in the subsection 4.2.4.1.

Step 3: With the allotted devices, the user can subscribe to the container in the device’s
path, if the application expects an input; else, the user application can push data to the
container in the path, if the application prefers to provide the input to the device.
Particularly when the user subscribed to the path of a container path, OpenMTC triggers
a handler function. In the handler function, it is possible to implement a program logic
to make a decision to provide or not to provide input to a container path. This collective
activity is called wiring. This step summarizes the use case 4 and 5 mentioned in
subsection 4.2.4.1.

Step 4. If required, the user is free to modify the behaviour of the device that the user
application has registered. Modification of behaviour may include tasks such as

 D5.1 ElasTest Test Support Services v1

51

switching on/off the device, change the model the device is using etc. These facilities
are subject to specific capabilities that are provided by the device emulators. This
summarizes the use case 3, mentioned in subsection 4.2.4.1.

Step 5. If the user wishes to terminate the application, this can be done by sending a
request for application termination to the Orch. This request will be acknowledged by
seizing the application and its allotted resources. The termination of the user application
does not affect other applications registered with Orch. This step summarizes the user
case mentioned in subsection 4.2.4.1.

4.2.5 Code Reports

The code coverage was extracted using the EDS unit tests written in Python and ran with
nose 45 tests. The code coverage was automated using tox 46 . The code coverage
achieved was 40%. This was due to the fact that EDS is composed of applications written
on top of OpenMTC framework. The framework in itself is providing various features
that the applications might not use to full extent. The code coverage in the case of EDS
is tricky to address. EDS is a collection of applications written using OpenMTC using
Python. OpenMTC is not present in the EDS repository, rather EDS is installed and
shipped in the docker image of EDS. The image is configured such that, on initialization,
the application written for EDS in the repository is run in a container where OpenMTC
is already installed.

Code coverage of applications where the core facilities of the applications are not
present in the repository brings about a risk for misinterpretation of the results. The
code coverage of 40% is measured against a machine which has OpenMTC installed and
against the EDS GitHub repository of ElasTest. Furthermore, improving code coverage
for EDS requires other methods of approach which needs to be planned in the coming
releases.

4.2.6 Code Links

● The main repository of EDS is available on GitHub47.

● The API documentation is available at http://elastest.io/docs/api/eds/

4.2.7 Contributions

With the availability of features with EDS, it is possible to create and test complex
applications with ElasTest. Modular applications can be created such they may be
interconnected to create more complex applications. This paves way for formulating
research problems which can include fault testing and anomaly detection areas.

In the current era, there is an explosion of IoT devices as a result of increase in IoT
services [EDS1]. Testing IoT services is expensive because it requires the IoT devices as
a pre-requisite. IoT services rely on the data generated and consumed by IoT devices.

45 https://nose.readthedocs.io
46 http://tox.readthedocs.io
47 https://github.com/elastest/elastest-device-emulator-service

http://elastest.io/docs/api/eds/

 D5.1 ElasTest Test Support Services v1

52

IoT services need to ensure that any deviation from the normal behaviour in the data
produced is to be detected and dealt with. This topic of understanding the anomaly in
the data is called “anomaly detection”. Anomaly detection applies machine learning on
top of generated data. EDS can contribute in testing anomaly detection solutions using
emulated sensors and actuators [EDS2]. The generation of data and usage could be
tracked using the device emulators provided by EDS. The research objectives of EDS can
include facilities required for anomaly detection such as changing the behaviour of the
devices both in time and type of data generated. Generated data could be modified
using the REST API to modify the behaviour of the devices.

It is common understanding that, IoT applications are deployed in multiplicity with
variable level of complexity. At the time of designing such applications, the designer is
unable to grasp the amount of data that might be generated and plan for a better
strategy to avoid faults in the system. A fault for example, could be a sensor or device
malfunction. EDS supplements theses test scenarios using the change of behaviour of
the device using the REST API. This could provide tester with more opportunities for
testing before implementing a live prototype or pilot project.

The above-mentioned publications require a problem to be solved. During the
development phase of EDS, the behaviour introduced by devices were kept in mind to
define and implement a set of features required in general for anomaly and fault
injection testing. In the next half of the project we aim to use the features of EDS to
show the impact in anomaly and fault injection testing.

Anomaly detection is another topic in the field of IIoT. This field investigates mechanisms
which are used to detect anomaly in machines and the corrective measures that need
to be taken if the anomaly is detected. In ElasTest, EDS is capable of provide facilities for
anomaly detection and fault testing for IIoT applications.

We intend to extend the features offered by EDS. There is room for improvement in
providing the basic type of device emulators. This effort is accompanied by extending
the device models of each emulator. Furthermore, a demo application which is capable
of displaying the data on a GUI is planned. Providing a wrapper for the OpenMTC
application programming interface is planned to be provided to user. This will help user
to write applications using basic functionalities of OpenMTC.

 D5.1 ElasTest Test Support Services v1

53

4.3 ElasTest Monitoring Service

4.3.1 Introduction

The goal of ElasTest Monitoring Service (EMS) is to provide a monitoring infrastructure
that T-Jobs can use for inspecting dynamically executions of a SuT. There are two main
aims that a T-Job can pursue with the aid of the EMS:

1. To determine the outcome of a test, where the correctness criteria used depend
on temporal aspects of the execution of the SuT. Simple examples include a
requirement that the CPU and bandwidth must be below a certain threshold
when the SuT is interacted with in a particular way.

2. To guide the test depending on temporal aspects of the execution, that the EMS
detects and communicates with the T-Job. A simple example is determining
which container is assigned a given task dynamically by the SuT load balancer, so
that the T-Job can then interact with the right component to continue the test.

The essential operational element of the EMS is a monitor. A monitor observes
sequences of events emitted during the execution and collects the necessary
information to ultimately detect whether the sequence contains some failure, or some
complex sequence of interest. One key aspect of the monitoring technology that we are
developing for the EMS is that the monitors are agnostic to the SuT architecture and
technology (such as programming language) as monitors are only required to inspect
event sequences. Also, the monitors execute in an outline fashion (outside the SuT and
in parallel with it) and online (while the SuT runs).

4.3.2 Features

The key features of the EMS are:

● Ability to dynamically, using the REST API, install monitors using a specification
language for describing these monitors. We offer different languages with
growing expressivity and cost of execution. Also, the ability to inspect and
remove installed monitors.

● An event language based on JSON and the beat ecosystem that allows to express
the individual elements of trace observations.

● The ability to receive events using different endpoints (HTTP, TCP) for both logs
and metrics, from multiple sources (multiple sources within a SuT, plus TSSs and
T-Jobs).

● The ability to connect subscribers to the EMS, which will receive a flow of events
that the monitors generate as part of the monitoring process. Each subscriber
can select from a variety of technologies to receive the events (RabbitMQ,
Elasticsearch, Web Socket).

● Provision of a specific endpoint for the T-Job to receive processed events from
the SuT.

 D5.1 ElasTest Test Support Services v1

54

Monitoring can also be used to aid in the automation of the assessment of performance
and load tests. Testing oracles can be defined based on the outcomes of monitors.

4.3.3 Baseline Concepts and Technologies

The main task of the EMS is to process a stream of events and deliver notifications to
subscribers. The description of how to process the input event stream is sent to the EMS
using the REST API. This description includes (1) how to classify the events from the input
stream into “channels” and (2) the monitors that process the event stream by reading
from channels, and potentially delivering events into channels. Subscribers also use the
REST API to receive events by choosing a channel and a technology to transport those
events.

As a technology for the input events, the EMS uses Logstash48 as the input adapter layer,
which allows to receive events from different sources and using different protocols. The
events received are organized and stamped as belonging to internal channels. The rules
to deliver events to channels are specified as part of the subscription language according
to the rules specified by the deployed Stampers and pass them to the main engine that
evaluates the monitor, which is written in Go. Afterwards, newly generated events are
stamped by the Stamper rules and sent to output (sink) channels. Then another instance
of Logstash is used to send these events to subscribed receivers in different protocols.

For the administration of Monitoring Machines and Stampers, an OpenAPI server was
developed using go-swagger49. As we detail below, this API is used to install and uninstall
monitors and to subscribe clients to receive the desired events as the outcome of the
monitors. The API has also facilities to check the health of the component, and to flush
(reset) the component to its initial state.

4.3.4 Component Architecture

The following diagram shows the different internal elements that form the internal
architecture of the EMS, alongside the external components that interact with the EMS
directly.

48 https://www.elastic.co/products/logstash
49 https://github.com/go-swagger/go-swagger

 D5.1 ElasTest Test Support Services v1

55

Figure 15 EMS FMC Diagram

We describe of each component shown in the diagram:

• External components
o Event publishers: these are the external components that send events

(logs, metrics, etc) in the form of individual events. Some components
that emit these events are:
 the instrumented SuT so information that may be relevant to a

particular test is collected, including logs and metrics.
 Other ElasTest components in general, who report events to the

Monitoring Service. One example are events that mark the
beginning and end of different phases of a test, for example
mocking an attack or a network or component failure. The
purpose of these events is to correlate this phase with the
response observed from the SuT. One particular case here is the
T-Job itself emitting events to the EMS. The combined stream of
events allows to correlate when certain events happen and aid
the T-Job in determining the outcome of a test and in guiding the
test to better explore a potential bug.

o Stamper deployer: external components that provide the rules to infer
the channels of events. Each event is classified (stamped) according to
these rules, where every stamp is called a channel (that is, if an event
receives a Stamp, we say that the event is sent to the corresponding
channel). One example is a stamper that classifies events as coming from

 D5.1 ElasTest Test Support Services v1

56

the SuT, or from a specific component of the SuT, or from the networking
load of a specific component of the SuT. Additionally, the Samper
deployer also describes rules that describe how to route events between
the different channels. These rules simply describe conditions on an
event to receive a stamp. For example, the channel #EDS may be
configured to receive every event, so the whole test history is recorded,
while the channel #Dashboard may be configured to receive only some
of the events that are relevant to be displayed for a given test.

o Monitoring Machines deployers: while stampers classify events and allow
to route events, the decisions that stamper rules take are simple and only
allow the evaluation of each event independently of the history.
Monitoring machines, on the other hand, describe temporal and rich
temporal and data correlations between the streams of events. The main
goal of monitoring machines is to allow TJobs to express -- using the DSL
from which the machines are created – the desired sequence of events.
The EMS then will evaluate the monitor observe the input stream of
events and inform the TJob when the pattern is detected.

o Event subscribers: external components, which are willing to receive
events sent over the channels to which they subscribe. In a typical
scenario, these include the ETM for dashboarding, the EDS for recording
a test and the T-Job for guiding the test dynamically and assessing the
outcome of a test.

o Flusher: an external component, which may reset the EMS to its initial
state in order to reuse it. The typical scenario here is the ETM that can
reuse a TSS after a test for a subsequent test, for better resource
utilisation.

• Internal components:
o Events broker: receives incoming events published by different events

publishers (that can use different endpoints) and dispatches them to the
stamper. This element is mainly a Logstash instance tailored for the task
of receiving these events.

o Monitoring Machines and Stampers manager: this is a web endpoint
developed using swagger and Go, in charge of parsing the DSL languages
that describe stampers and monitors, and validating, deploying and
undeploying these stampers and monitors in the main engine. Recall that
the main engine is the core element of the EMS that evaluates the
monitoring machines for each stamped event.

o Channels: an abstraction used to classify events of the same kind.
Channels can be directly specified by the sender or calculated by the
stampers rules. Note how there are two phases of stamping: the first
phase for incoming events (before the events are processed by the
monitors) and the second phase (for newly generated events generated
by the monitors).

o Pre and Post Stamper: these components stamp events according to the
definitions deployed by the Stampers deployers.

 D5.1 ElasTest Test Support Services v1

57

o Monitoring Machines registry: holds the list of currently deployed
Monitoring Machines and updates it accordingly for every insertion and
removal of monitors and stampers.

o Monitoring Machines: a “program” (also referred to as a “monitor”)
which reads events from certain channels, processes them, and might
generate new events as a result. These are stateful entities, so their
behaviour may depend on the history of events observed. One example
is a machine that tries to observe the behaviour “the bandwidth when no
video is played must be below 10% of the bandwidth when the video is
played”. Evaluating this behaviour requires observing, computing and
remembering average bandwidth and whether videos are being asked to
be played. The definition and implementation of the Monitoring
Machines is the core concept in the development of the EMS.

o Events dispatcher: the component in charge of feeding events written to
output channels to external components that subscribe to these
channels. It is mainly a tailored Logstash instance configured to interact
appropriately with the supported end-points.

o Flush performer: resets the EMS to its initial state by removing
subscribers, stamper and monitoring machines. It is a web endpoint
developed using go-swagger.

4.3.4.1 Use Case Diagrams

Broadly speaking, the EMS is used to ease and guide the test of a System Under Test or
the test of ElasTest itself.

To accomplish this, the following operations can be invoked during the execution of a T-
Job:

1. Event publishing. This is how external components feed input to the ElasTest
Monitoring Service, which offers a wide set of endpoints to facilitate the
information gathering.

2. Deploy, list and undeploy event Stampers. The T-Job will deploy, update and
undeploy rules to stamp and route events through different channels.

3. Deploy, list and undeploy Monitoring Machines. To digest and synthesize
information from incoming events, the T-Job will deploy different processors to
the EMS. These Monitoring Machines can later be updated or removed.

4. Subscribe to one or many event channels. The T-Job may subscribe itself and
other endpoints to receive the events sent to specific channels.

5. Reset the EMS to its initial state. To reuse an EMS after each T-Job, the EMS can
be reset to its initial state by removing every deployed Stamper, Monitoring
Machine and subscribed endpoint.

As shown in the following chart, all these operations can be invoked by end-to-end tests,
typically executed from ElasTest T-Jobs.

 D5.1 ElasTest Test Support Services v1

58

Figure 16 EMS Use Cases

Most of the EMS operations have been specified in OpenAPI and are available as REST
methods. The following table provides a summary of such operations. These
descriptions can also be found in the ElasTest Monitoring Service API online
documentation50.

Method URL Description

1. Event Stamper management

GET /stamper Get the list of deployed
Stampers.

POST /stamper Deploy new Stamper.

GET /stamper/{StamperId} Get the definition of a
particular Stamper.

DELETE /stamper/{StamperId} Undeploy a particular
Stamper.

PUT /stamper/{StamperId} Replace the definition of a
particular Stamper.

50 https://elastest.io/docs/api/ems/

 D5.1 ElasTest Test Support Services v1

59

2. Monitor management

GET /MonitoringMachine Get the list of deployed
Monitoring Machines.

POST /MonitoringMachine Deploy new Monitoring
Machine.

GET /MonitoringMachine/{MoMId} Get the definition of a
particular Monitoring
Machine.

DELETE /MonitoringMachine/{MoMId} Undeploy a particular
Monitoring Machine.

PUT /MonitoringMachine/{MoMId} Replace the definition of a
particular Monitoring
Machine.

3. Event subscription

POST /subscriber/elasticsearch Subscribe an instance of
ElasticSearch.

POST /subscriber/rabbitmq Subscribe an instance of
RabbitMQ.

DELETE /subscriber/{SubId} Unsubscribe an endpoint.

4. EMS reset

POST /flush Reset the EMS to its initial
state.

5. Service Instance Status

GET /health Get the component health
status.

Table 3 EMS API Calls

 D5.1 ElasTest Test Support Services v1

60

Currently, the EMS accepts the following endpoints to which the event publishers can
send events:

● A TCP endpoint51 listening on port 5000.

● A TCP endpoint49 listening on port 5001.

● A Beats endpoint52 listening on port 5044.

● An HTTP endpoint53 listening on port 8181.

The list of endpoints available will evolve according to the needs of the rest of the
ElasTest components.

4.3.4.2 Sequence Diagrams

We now illustrate using sequence diagrams some of the typical interactions between
the components described above:

Figure 17 Execution of a Test Sequence Diagram

In this diagram, the EPM/ESM starts the EMS. Then the subscribers indicate the channels
they want to listen to, and where (the end-point) and how (the protocol) the output
events should be sent to the subscribers. After that, the ETM deploys the Stampers to
infer the channel of events and the Monitoring Machines. Then, the test is executed,
and publishers start emitting events to the EMS, which in turn processes them using the
deployed machines and announcements and sends the outgoing events to the
subscribers. For example, the dashboard will display the desired figures and show logs,

51 http://www.elastic.co/guide/en/logstash/current/plugins-inputs-tcp.html
52 https://www.elastic.co/guide/en/logstash/current/plugins-inputs-beats.html
53 https://www.elastic.co/guide/en/logstash/current/plugins-inputs-http.html

 D5.1 ElasTest Test Support Services v1

61

the T-Job will receive events with information about how the test is evolving and the
EDS will be recording all events. Finally, at the end of the test, the EPM/ESM shall clean
up or flush the EMS in order to reset it to its initial state and mark it ready to be reused
for another test.

A similar application is shown in the next diagram. In this case, one uses the EMS to
debug a component internal to ElasTest. The information that flows through the EMS is
now a stream of events sent from the component under debugging (and not from a SuT,
as there may not even be a SuT in this scenario). Additionally, information from relevant
components is also collected. The engineer debugging the component can review this
information and even write programs and monitors to react to this information. This
allows to guide the execution to the desired state and to expose the undesired
behaviour. The interactions with the EMS are analogous to the previous case.

From the point of view of the EMS, there is no intrinsic difference between the SuT and
the infrastructure in which it is deployed (as these are “Event Publishers”). Similarly,
there is also no difference between the ElasTest platform and the infrastructure in which
it is deployed. For this reason, the EMS can be used to debug ElasTest itself using the
same tools as in the testing of third party applications. The main difference lies in the
deployed Monitoring Machines, which would focus more on events received from the
ElasTest platform, probably ignoring most of those sent by the running “stub
application”, which in turn would be specifically designed to stress the ElasTest platform
aspects of interest.

Figure 18 Debugging of the ElasTest Platform Sequence Diagram

We do not show sequence diagrams that illustrate the interaction of each component.

 D5.1 ElasTest Test Support Services v1

62

Figure 19 Management of Stampers Sequence Diagram

In the figure above, in its the first interaction, the Monitoring Machines and Stampers
manager has already received from the API a request to install a rule and has parsed and
checked that the rule is legal. Then, it installs the rule in the Stampers, which
immediately start using it to classify incoming events. In the second interaction, the API
is used to collect the list of active Stampers. Finally, the last interaction shows how the
API can be used to remove undesired rules.

The following sequence diagram shows the analogous interactions of the manager and
the Engine in terms of installing, inspecting and removing monitors. The API is used using
the analogous entries, and the processes of parsing and validating (though more
complex) are completely analogous.

Figure 20 Management of Monitoring Machines Sequence Diagram

 D5.1 ElasTest Test Support Services v1

63

The following sequence diagram shows the interactions triggered by an incoming event.
This event is received by the Event Broker which, after parsing the JSON, sends it to the
Pre-Stamper. This Stamper evaluates the rules and classifies the event by stamping it
with the right channel names. Then, the Monitoring Machine evaluates all monitors for
which the event is relevant, typically making the monitors change the state. Optionally,
the monitors can produce new events which are classified by post-Stampers. Finally, all
events (the incoming event and the new events alike) in channels that are relevant for
subscribers are sent the corresponding event dispatchers. Note this interaction is a
cascade of independent interactions (like a pipeline) and can be executed in parallel.
Note also that most of these activities can be parallelized (between different events and
between different monitors even for the same event). Note also that, unlike many
monitoring tools (for example ElasticSearch or InfluxDB), the events are not saved (but
instead the monitors keep an explicit state) and the monitors are activated precisely as
a reaction to the arrival of an event, as opposed to periodically evaluated.

Figure 21 Path of an Incoming Event Sequence Diagram

The following sequence diagram illustrates the activity of resetting the EMS. Here the
Flush Performer invokes the Stamper and main engine facilities to remove all engines
and their associated state, to move back to the initial state.

Figure 22 EMS Reset Sequence Diagram

4.3.5 Code Reports

Most of the components of the EMS, including the stampers and the main engine are
developed in the Go programming language. The exceptions are third-party software
that are configured for the specific needs, namely the Logstash components that serve

 D5.1 ElasTest Test Support Services v1

64

as adaptors of incoming and outgoing events. Unit tests are performed using the testing
framework of Golang, through the go test 54 command, while the code coverage is
calculated using the go cover55 tool and automatically reported using codecov56.

External libraries and third-party programs such as Swagger and Logstash are not
included in the unit testing.

The current percentage of code covered by unit tests is 41%, even though this figure
changes as new tests are added, and the development continues. For example, the
figure has decreased recently due to the development of new features, whose unit tests
will be developed and included in future releases. The updated code coverage
percentage can be checked as a badge in the GitHub repository:
https://github.com/elastest/elastest-monitoring-service/

Figure 23 EMS Code Coverage

4.3.6 Code Links

● The main repository of the EMS is https://github.com/elastest/elastest-
monitoring-service/

● The API of the EMS is available at http://elastest.io/docs/api/ems/

4.3.7 Contributions

Related to the research results and plans, we plan to:

1. Investigate and design correlation languages to express patterns to observe in
the flow of events received by the EMS (coming from the SuT and from ElasTest
services) for:

a. Usability: testers can express the conditions they want to observe to
assess the outcome of tests

b. Testability: testers can express conditions to maximize the likelihood of a
test failing or a repeating a failure

c. Performance: the language can be evaluated in a performant way

2. Evaluate, compare the performance of the languages designed in 1. against a
brute-force "store all" and "rich search" infrastructure (e.g. InfluxDB or
ElasticSearch).

54 https://golang.org/cmd/go/#hdr-Test_packages
55 https://golang.org/cmd/cover/
56 https://codecov.io/

https://github.com/elastest/elastest-monitoring-service/
https://github.com/elastest/elastest-monitoring-service/
https://github.com/elastest/elastest-monitoring-service/
http://elastest.io/docs/api/ems/

 D5.1 ElasTest Test Support Services v1

65

3. Assess, in synthetic cases (and then in real cases) whether the directed testing
enabled by 1.b above can help to hit concurrency bugs in elastic applications.
Note that 1.b requires a feedback of events into the T-Job.

This is the central area of research related to the EMS, which involves foundational work
on specification languages and evaluation engines for monitoring from runtime
verification. We are investigating principles, languages and methods for efficiently
evaluating real-time streams and how to provide guarantees in terms of expressivity,
parallelism, memory consumption and algorithmic cost of evaluating event streams. We
have published a related paper in SAC'18 [EMS1] (April) about monitoring algorithms for
asynchronous streams. A new paper is in preparation about a very expressive evaluation
engine, with formal correctness proofs and guarantees of resources, that subsumes the
SAC’18 work. We will probably submit this work to RV’18 [EMS2].

Future plans include adding features to this language, like parametrization, (we envision
a conference submission in early 2019) and a paper on practical empirical evaluation
based on ElasTest. We will also prepare a journal version including all main foundational
results in a comprehensive way submitted during 2019.

Related problems surface during the development of the project, typically related to the
orchestration and resource usage of complex cloud applications like ElasTest. We have
two articles that address some of these problems: one short paper in ICWS’18 [EMS3]
and one longer paper under review.

 D5.1 ElasTest Test Support Services v1

66

4.4 ElasTest Big Data Service

4.4.1 Introduction

The ElasTest Big-Data Service (EBS) is an ElasTest Test Support Service (TSS) that
provides an on-demand computing engine based on Apache Spark [EBS0] to be utilized
by tests inside ElasTest. The purpose of EBS is to allow tests (T-Jobs) or other
components to define their computation requirements using Spark API and use it to
perform complex distributed calculations on top of the Spark engine. After completing
these calculations, the EBS engine can be safely decommissioned, which allows for a
smaller cloud footprint and a potentially dramatic reduction in infrastructure costs.

Currently the component is capable of scaling independently, although the capability of
external scaling (i.e. external request) is also possible. It is hence planned for future
releases to allow dynamic scaling based on specific test performance requirements.

4.4.2 Features

The current version of ElasTest Big data Service, provides the following features:

● Spark API to launch tasks (using programming language clients / shell).

● Integration with Alluxio in EDM for importing/exporting data to/from HDFS.

● Integration with ElasticSearch in EDM for direct processing of execution logs.

4.4.3 Baseline Concepts and Technologies

The main purpose of EBS is to provide a scalable and disposable parallelized computing
engine to any tests or other components that require it. This computing engine is based
on Apache Spark, which is a widely adopted distributed processing engine currently
available. Spark does not only provide a very fast compute engine, but it can also
integrate with a wide variety of data sources, allowing for easier future extensions.

In order for EBS to be disposable, it was designed and provided as a computing engine
separate from all data persistence services. This approach allows Spark clusters to be
commissioned and decommissioned on demand. A negative side effect of this is that
Spark is detached from the Hadoop Distributed File System (HDFS) nodes, which virtually
disables data-locality awareness on Spark jobs (a query submitted to the Spark cluster).
This, however, is left to the underlying data centre management service (e.g. Kubernetes
[EBS1]) to manage, since ElasTest as a whole is distributed in the form of immutable
containers. Hence, Spark and Hadoop nodes co-location is managed externally so this
should not be considered as a drawback of the chosen architecture. Hadoop was chosen
as a data-lake store, in order to provide the most possibly flexible solution in data
management. It provides the capability to store raw data in its original format and
process it as-is, as well as extend with other technologies (e.g. Spark, Hive) and create a
data platform fit for every purpose. Relational uses Hadoop as the core of every
provided big-data solution, and we consider it to be the single most stable proposal for
the IT industry.

 D5.1 ElasTest Test Support Services v1

67

4.4.4 Component Architecture

The following Functional Modelling Diagram depicts the architecture (i.e. all the internal
components) of EBS, as well as its interactions with other ElasTest components. In
addition, a detailed description of these components and their interactions is provided
in order to further clarify the component operation.

Figure 24 EBS FMC Diagram

Based on the above diagram, a detailed description of each EBS component, as well as
the interactions with external components is given:

● Internal Components

● Spark Master: Spark Master is the entry point and central management node
of an Apache Spark cluster. Its main role is to maintain a list of alive Worker
nodes, split the incoming jobs into distributed tasks and distribute those
tasks between the Worker nodes based on several criteria such as data-
locality, current workload and available resources. In this specific
implementation (stand-alone mode), Spark Master also operates as a job
scheduler i.e. it holds the queue of incoming jobs and serves them in a FIFO
manner.
More sophisticated schedulers can also provide job prioritization based on

 D5.1 ElasTest Test Support Services v1

68

external criteria. Such implementations were avoided since there is no
requirement for job prioritization in the context of ElasTest.

● Spark Worker: A Spark Worker node is a simple calculation engine. It simply
operates by receiving Tasks from the Spark Master, performing the
calculations and returning results to the Spark Master. Spark Workers are
generally disposable, in the sense that they can be added/removed to a
running cluster during operation, without affecting the Job results. All
communication between the Spark cluster and the persistence services
(EDM) is done via the Worker nodes, i.e. each node requests the data chunks
related to its own Tasks from the corresponding EDM service.

● Management API: EBS management API is implemented in Python, using
Django [EBS2] as the Framework to implement its REST API. This API is mainly
consumed by ESM and is a single-entry point to perform all kinds of
operations to the cluster; it performs internal health checks on the whole
Spark cluster and replies back to external requests (e.g. ESM) the overall
status of the whole service.

● External Components

● ESM: Since EBS is a Test Support Service, it is managed by the Service
Manager module (ESM). ESM controls the life cycle of each EBS instance
spawned and also holds the health status information of the service. The
latter is provided by EBS API and is consumed by ESM for management
purposes.

● Docker: This is the Docker API. As every TSS is currently responsible to scale
itself, the actual scaling action can be done either via using EPM, or by
directly accessing Docker and spinning up the required resources. Currently,
EBS is able to scale itself by accessing Docker directly.

● Other ElasTest Artifacts: This is an umbrella term that contains all
components of ElasTest that may require a calculation engine for their
purposes. As an example, ERE can use Spark to apply data transformations
and machine learning algorithms to SuT and T-Job generated data (e.g. logs)
and then save the results to EDM for further consumption by ERE internal
procedures. Another example is a T-Job (ETM triggered) that could use EBS
as a calculation engine to process the T-Job generated logs and end up with
a success or failure based on specific patterns found inside those logs.

● EDM: EDM is the ElasTest component that provides all persistence services
for the platform. These persistence services (ElasticSearch, HDFS and MySQL)
are accessed by EBS as both data sources and data sinks.

4.4.4.1 Use Case Diagrams

As explained, EBS mainly operates as a calculation engine for large amounts of data. In
order to utilize EBS during the execution of a T-Job, the submission of a Spark Job to EBS
is required. After the Job execution is finished, its exit code can be grabbed and used by

 D5.1 ElasTest Test Support Services v1

69

the T-Job and the processed data can be found in EDM. The exact same operation is also
true in the case of other ElasTest components using the service.

In addition to the service usage scenarios, the Management API is used by ESM to get a
service status. All of the above scenarios are depicted in the following Use Case Diagram.

Figure 25 EBS Use Case Diagram

EBS management API methods are defined as REST methods. A Swagger[EBS3] endpoint
is also provided. The actual communication with Spark cluster is being done via job
submissions.

Method URL Description

1. Management API

GET / Swagger UI providing API
methods documentation

GET /environment Returns detailed information for
the whole EBS environment.

GET /health Get the component health status.

Table 4 EBS API Calls

Since the communication with the cluster is being done via Spark clients and the Job
submission process, there are no actual endpoints for contact with the Spark cluster. In

 D5.1 ElasTest Test Support Services v1

70

future releases it is suggested to provide such an API if needed, such as Apache Livy
[EBS4].

4.4.4.2 Sequence Diagrams

In this section sequence diagrams are provided, which depict the exact operations
performed by EBS and the components that interact directly with it. A thorough
description of these actions is provided here as well.

Figure 26 EBS Sequence diagram; Use from a T-Job

 D5.1 ElasTest Test Support Services v1

71

Figure 27 EBS Sequence diagram; Use from a T-Job without ESM

As depicted in the figure above, the actions that take place during a T-Job execution that
utilizes EBS are the following:

1. User initiates the T-Job.

2. T-Job requests an EBS instance from ESM.

3. ESM initializes EBS and returns the endpoint to ETM.

4. T-Job (via ETM) performs a spark-submit to EBS.

5. EBS performs the required calculations. During this execution, all available
persistence services from EDM (ElasticSearch, HDFS, MySQL) may be used for
reading or writing, as per Job configuration.

6. After calculation finishes, the execution stdout and the exit code are returned to
ETM.

7. ETM performs a request to ESM, in order to decommission the EBS cluster.

8. After any other remaining tasks, the T-Job returns its result to the user.

Figure 27 above describes the same process, but without an on-demand EBS cluster
created during T-Job execution. In this case, the user has requested an EBS cluster to be
created by using ETM (the exact workflow is outside the scope of this use case) so the
process is exactly the same but skips the steps 2, 3 and 7. The workflow described in this
Figure will provide a huge increase in execution speed of a larger group of tests, since
there will be no commissioning/decommissioning of clusters between T-Jobs. The
drawback of this method is that after all executions have finished, the cluster is still
active and consumes resources until the User manually requests a decommission. In this

 D5.1 ElasTest Test Support Services v1

72

case the cost of maintaining a cluster in a cloud service will increase depending on EBS
total uptime.

4.4.5 Code Reports

The EBS Management API and the component end-to-end tests are written in Python,
using several different frameworks. Unit testing is performed by nose framework [EBS5],
and code coverage is being reported using codecov. The current coverage report is at
100%, although a more realistic number is around 85%. The difference is due to a set of
codecov ignores that are planned to be removed immediately in the next release.

Figure 28 EBS Code Coverage

4.4.6 Code Links

● The EBS code repository can be found on GitHub57 and is licensed using Apache
2.0.

● Within that repository, there is documentation58 detailing how to run, use and
extend the EBS.

● The API of the EBS can be viewed online here59.

4.4.7 Contributions

Since EBS is mostly implementation work, our (RELATIONAL) research is targeted at
exploiting containerized scalable computing architectures for commercial purposes.

More specifically, demand for deploying applications in external (customer) data centres
introduces an increased complexity in describing distributed application prerequisites
to infrastructure teams. This complexity is extended by the huge diversity between
infrastructure architectures, due to the multitude of selections in that sector;
public/private clouds, bare metal systems, distributed operating systems 60 and
container orchestration systems 61 are all selections that may be used alone or in
different combinations in order to create the best approach for each case.

In this ecosystem, having a scalable distributed computing engine in the form of a single
component, able to be deployed in the majority - if not all - of the aforementioned

57 https://github.com/elastest/elastest-bigdata-service
58 https://github.com/elastest/elastest-bigdata-service/tree/master/docs
59 https://elastest.io/docs/api/ebs/
60 http://mesos.apache.org
61 Kubernetes and Docker Swarm are two well-known examples.

 D5.1 ElasTest Test Support Services v1

73

solutions without maintaining different configurations is a huge key to success for
software vendors and integrators. It is therefore our main target to bullet-proof, extend
and productize the usage of EBS as a reusable, portable scalable computing engine as a
standalone system or a software component of a larger solution.

 D5.1 ElasTest Test Support Services v1

74

4.5 ElasTest Security Service

4.5.1 Introduction

The ElasTest Security Service (ESS) is an ElasTest service for security testing cloud-based
Web Applications. ESS operates on two different modes: the passive testing mode and
the active testing mode. In the passive testing mode, ESS does not interact with the
System under Test (SuT). In this mode the HTTP traffic generated by a T-Job associated
to the SuT is analysed to identify security vulnerabilities. The second mode is the active
testing mode where ESS probes the SuT by generating security tests that mimic the
actions of a malicious user on the SuT. Through these two modes of operation, ESS
supports the detection of common Web Application security weaknesses and other
sophisticated vulnerabilities.

4.5.2 Features

The key features of the ESS are:

● Ability to identify potential security weaknesses in a SuT by:

○ analysing the HTTP traffic generated by a T-Job associated to the SuT

○ probing the SuT by crafting HTTP requests that mimics attacker behaviour

● Ability to detect common Web Application security vulnerabilities such as SQL
injection, cross-site scripting etc.

● Ability to detect vulnerabilities in the SuT that facilitates replay attacks and cross-
origin attacks

● Generates interactive HTML security test reports for the tester

4.5.3 Baseline Concepts and Technologies

Here we define some key concepts in the ESS.

• Security Tester: From the perspective of ESS, the Security Tester is an agent who
wants to identify the vulnerabilities contained within an application (i.e., the
SuT) via the ESS. The Security Tester can provide T-Jobs that test certain
functionalities in the SuT.

• Security Testing: From the perspective of ESS, Security Testing is the process of
identifying security vulnerabilities in the SuT via T-Jobs and reporting them to
the security tester.

• Security Testing through the ESS: The security tests performed by the ESS are
based on the HTTP traffic generated during the execution of the T-Jobs
associated to the test. In order to have visibility of the HTTP traffic of the T-Jobs,
the ESS provides a Man-in-the-Middle (MitM) proxy component. For performing
a security test using the ESS, the security tester must configure the T-Jobs in such
a way that they make all HTTP connections via the ESS MitM. The MitM proxy
used by the ESS is based on the OWASP ZAP MitM proxy [ESS1]. When these T-
Jobs are executed, all HTTP communication is visible to the ESS via the MitM
proxy. The ESS can control and intercept this traffic via the API provided by
OWASP ZAP.

 D5.1 ElasTest Test Support Services v1

75

The ESS operates in two mode, the passive testing mode and the active testing mode.
They are explained below.

1. Passive Testing mode: In this mode of operation, the ESS identifies security
vulnerabilities in the SuT by simply analysing the HTTP traffic generated upon the
execution of a T-Job associated to the SuT. No interaction is required between
the ESS and the SuT. An example of a vulnerability that can be identified by the
ESS by analysing the HTTP traffic of the SuT is the missing protection of cookies
from cross-site-scripting attacks. This protection is enabled by sending a “secure”
attribute in the HTTP responses for setting cookies. These insecure cookies can
be identified by analysing whether the secure attribute is missing in the Set
Cookie header in the HTTP responses of the SuT.

2. Active Testing mode: In this mode of operation, the ESS identifies security
vulnerabilities by probing the SuT. During probing, the ESS sends HTTP requests
to the SuT that resemble the actions of a malicious agent. An example of a
vulnerability that can be identified by active testing is as follows. Consider the
case where the SuT is a shopping cart application that allows shoppers to enter
coupon codes to get discounts over the prices of the products. Suppose that
there is a vulnerability in this SuT that allows an attacker to enter the same
coupon code multiple times to purchase a product for free. This vulnerability can
be discovered (via black-box testing) by sending the HTTP request for submitting
the coupon code multiple times and checking whether the SuT accepts them.

4.5.4 Component Architecture

Figure 29 ESS FMC Diagram

The architecture of ESS is shown in the figure above. The ESS components are enclosed
within the dotted lines. The explanation is as follows:

1. When a T-Job associated to the SuT is executed, as it is configured to open a Web
Browser (via EUS) and proxy its traffic via the ZAP MitM proxy (within ESS), all
the HTTP communication is visible to the ESS.

2. The ZAP passive scanner will analyse this HTTP traffic passively to identify
security vulnerabilities.

 D5.1 ElasTest Test Support Services v1

76

3. The ZAP active scanner will probe the SuT (again via the ZAP MitM proxy) for
actively detecting common security vulnerabilities.

4. The active and passive scanners within the ESS will also test the SuT via the ZAP
MitM proxy to detect replay attacks and cross-origin vulnerabilities.

5. Finally, all the detected vulnerabilities are stored in a single security test report
that can be accessed by the security tester.

4.5.4.1 Use Case Diagrams

Figure 30 ESS-based Security Test Use Case

The use case diagram of the ESS-based security testing is shown above. The explanation
is as follows. The security tester (shown as Tester in the figure) creates T-Jobs and
configures them to use the ESS MitM proxy in their HTTP communications. The tester
should also have the responsibility to notify the ESS to start the security tests because
ESS cannot know by itself when the T-Job has finished executing all the HTTP-related
actions. The tester runs the T-Jobs configured with ESS and finally after the ESS
generates the security test reports, the tester must review them to identify false
positives, come up with mitigations for the true positives etc.

 D5.1 ElasTest Test Support Services v1

77

4.5.4.2 Sequence Diagrams

Figure 31 Sequence Diagram of an ESS-based Security Test

The sequence diagram of an ESS-based security test is shown above. The explanation is
as follows:

● Steps 1 to 4: Before starting the test, the tester must create a T-Job that is
configured to make HTTP connections via the ESS MitM proxy and the tester
should also configure the T-Job to call the ESS active and passive scanners to
perform the security tests.

● Steps 5 to 10: After the T-Job has been configured, the tester executes the T-Job
via the TORM (ETM). All HTTP communications from the T-Job are logged and
proxied via the ESS MitM proxy.

 D5.1 ElasTest Test Support Services v1

78

● Steps 11 to 15: the T-Job calls the ESS API to start the passive scanner (see Table
5) and the passive scanner collects the HTTP traffic from the ESS MitM for
inspection and the passive scan report is sent to ETM.

● Steps 16 to 22: the T-Job calls the ESS API to start the active scanner (see Table
5) and the active scanner probes the SuT for vulnerabilities and the active scan
report is sent to ETM.

● Steps 23 to 26: The end of the execution of the T-Job is notified to both the ETM
and the tester and the tester retrieves the reports of the security tests from the
ETM.

The following are the API calls of ESS.

Method URL Request Body
Parameters

Description

1. API calls for starting, stopping and retrieving the status of the security scan

POST /scan/start time

zapactive

zappassive

essactive

esspassive

Start the scan

GET /scan/status Return the
progress of the
scan

POST /scan/stop consent Stop the scan

2. Retrieve the security scan reports

GET /scan/report/html Return scan
report in HTML
format

GET /scan/report/json Return scan
report in JSON
format

3. Service Instance Status

 D5.1 ElasTest Test Support Services v1

79

GET /health Get the component health
status.

Table 5 ESS API Calls

4.5.5 Code Reports

The back-end code of the ESS is written using Python and the front-end is developed
using JQuery, JavaScript, HTML and CSS (with Materialize CSS as the basis). End-to-end
tests are available for automatically testing whether new changes break the integration
with other components. ESS unit tests 62 are written using the Python unit test
framework. The details about the latest code coverage are available codecov 63. As
shown in Figure 31, the current code coverage is 28%. This low coverage is mainly due
to the recent design changes to ESS. As part of these changes, we have been removing
many existing ESS API calls and introducing new ones. Once this process is finished, the
new unit tests will be made available and the code coverage will further improve.

Figure 31 ESS Code Coverage

4.5.6 Code Links

● The link to the ESS code is repository is https://github.com/elastest/elastest-
security-service

● The API documentation is available at https://elastest.io/docs/api/ess/

4.5.7 Contributions

Most of the research in the context of ESS is happening within the topic black-box
security testing. In particular, currently we are involved in a research for detecting login
oracle attacks in Web Applications. The paper is work-in-progress and the target is to
submit a paper at the 2019 Network and Distributed Systems Security Symposium64.
Since it is a prestigious conference, the amount and quality of research results that must
be included within the paper is high. Hence, instead of disseminating the work as small
papers, we are disseminating the work as a large single paper.

As part of the same research, we are also testing the security of Web Browsers. As we
need to test many Web Browsers of different versions, we are planning to use the EUS

62 https://github.com/elastest/elastest-security-service/blob/master/test_ess.py
63 https://codecov.io/gh/elastest/elastest-security-service
64 https://www.ndss-symposium.org

https://github.com/elastest/elastest-security-service
https://github.com/elastest/elastest-security-service
https://elastest.io/docs/api/ess/

 D5.1 ElasTest Test Support Services v1

80

for our experiments. If we find interesting results within the Web Browser domain, we
will split the paper into two and disseminate at two different venues.

We found that certain concepts from the domain of program slicing can be used to
detect replay attacks in e-commerce applications. With more experimental evidence we
are planning to publish a short conference paper on this.

 D5.1 ElasTest Test Support Services v1

81

5 Conclusions
A large amount of initial research and implementation has happened in the first half of
WP5. This has resulted in an integrated plaform including the support services that
adhere to a common design, implementation and deployment approach. Along with
this, research activities have taken place including early stage publications. Now with a
platform and services that are self-supporting, further feature additions can be added
and research can be conducted upon it. Specifically, per service we conclude:

• EUS: ElasTest User Impersonation Service enables the impersonation of end-
users in their tests through GUI instrumentation. This service provides full
compatibility with external browser drivers, but enhanced with extra
capabilities, such as event subscription, log gathering, or advance media
capabilities for WebRTC applications. This service has been built extending the
W3C WebDriver specification, and therefore, popular technologies such as
Selenium and Appium are completely compatible with ElasTest. At the moment
of this writing, ElasTest is still under development. Therefore, some features are
still not available. For instance, the measurement of the end-users’ perceived
QoE is still ongoing. Measuring QoE is in general a complex topic and this task
shall perform the appropriate research activities for evaluating the most suitable
way of doing it, which may involve simple mechanisms such as evaluation of
response-time from the GUI.

• EDS: The ElasTest Device Emulator Service is available with ElasTest as a TSS. In

the present release, it is possible to define a T-Job and execute it against SuT.
The application running in SuT or T-Job is able to communicate with EDS to
request the devices. The applications use the OpenMTC to communicate with
EDS. This is planned to be changed for future release. By providing a wrapper
function it would be possible to write an application with minimal knowledge of
OpenMTC. EDS is integrated with ESM and therefore available to be deployed
from T-Jobs defined at the level of TORM. A main of objective of EDS was to
enable rapid prototyping of IoT applications with emulated devices, which is
currently possible. Furthermore, EDS is one of the free and open source device
emulators integrated into ElasTest. EDS brings OpenMTC to facilitate testing of
IIoT applications in particular.

• EMS: The ElasTest Monitoring Service is available in ElasTest as a test support

service. The main functionality of the EMS is to aid in the design of complex tests
by providing languages that automate the correlation of streams of events
(observations) from the SuT and from the T-Job. The EMS can serve to design
simpler and more effective T-Jobs as the outcome of the EMS is a processed
stream of events that can determine the outcome of the test directly. Moreover,
the EMS can also be used by the T-Job to guide the test online, based on the
execution observed. The second functionality is to route some of the events to
the ElasTest dashboard, and to the permanent storage to be analysed offline
after the testing phase. The EMS is ready to receive events that contain metrics

 D5.1 ElasTest Test Support Services v1

82

(from the SuT), logs and special purpose events emitted by the T-Job and other
TSS that serve to demark different phases of the test. In its simpler usage, the
EMS can be instructed to only filter interesting events, but more sophisticated
cases of correlations with temporal meaning can be defined (for example: the
bandwidth under an attack must be no larger than 10% more than the bandwidth
under normal usage). The domain specific language offered to program the EMS
can greatly simplify test designs. During the rest of the project we will be
extending the DSL that the EMS offers and validate these extensions against
more and more complex tests. Currently, the EMS uses Logstash as an interface
to receive events as input, and another instance of Logstash to interface the
output events with the T-Job, the dashboard and the EDS. Other technologies
are possible, and we will evaluate the usage of resources that Logstash entails
and possible remedies to alleviate its high resource consumption (if relevant).
The future work includes providing more device emulators into ElasTest as well
as making it easy for a new user to use EDS to write IIoT applications and
subsequently test them.

• EBS: ElasTest Big-data Service is an ElasTest service that provides a computing

engine to tests run on ElasTest, as well as other components. This will allow tests
to perform complex calculations in big datasets and have a ‘green light’ approach
to the calculation results, thus abstracting some complexity from the test
definition. Additionally, EBS can be used to transform and manipulate data
stored persistently in ElasTest, providing even more flexibility to the platform.
Future functionality will also allow to submit applications using a REST API, in
order to completely create a self-contained calculation engine, without any need
for client libraries. This in combination with the ability to deploy to any
underlying infrastructure, will generate a very interesting piece of software and
a very powerful extension of ElasTest when it comes to large scale data
processing.

• ESS: The ElasTest Security Service provides options for security testing cloud-

based Web applications. The main advantage of using ESS over other security
testing tools is that it supports the detection of both common Web application
weaknesses (e.g., cross-site scripting and SQL injection) and complex
vulnerabilities such as cross-origin vulnerabilities and replay vulnerabilities. ESS
operates on two different modes: the passive testing mode and active testing
mode. In passive testing mode, for identifying security vulnerabilities, ESS
depends solely on the HTTP traffic generated by a T-Job. In active testing mode,
ESS probes the SuT by mimicking the behaviors of attackers. Currently ESS
integrates OWASP ZAP (a prominent, open-source penetration testing tool) for
detecting common Web application weaknesses and detects four different
cookie-based vulnerabilities. For the future releases of ESS, we plan to add
support for detecting complex cross-origin attacks (e.g., cross-site script
inclusion) and replay attacks. The research outcomes of these efforts will be
published at top security conferences.

 D5.1 ElasTest Test Support Services v1

83

6 Appendix

6.1 References

[TSS1] J. Gilbert, Cloud Native Development Patterns and Best Practices. Packt
Publishers, 2018.

[TSS2] B. Sousa, L. Cordeiro, P. Simoes, A. Edmonds, S. Ruiz, G. A. Carella, M. Corici, N.
Nikaein, A. S. Gomes, E. Schiller, T. Braun, and T. M. Bohnert, “Toward a Fully Cloudified
Mobile Network Infrastructure,” IEEE Trans. Netw. Serv. Manage., vol. 13, no. 3, pp.
547–563, Aug. 2016.

[TSS3] Erl, Thomas, Service-Oriented Architecture: Concepts, Technology, and Design.
Service Oriented Computing Series, 2005, Prentice Hall. ISBN 0-13-142898-5.

[TSS4] OASIS. (2012). Reference Architecture Foundation for Service Oriented
Architecture (Version 1.0. utg.).

[EUS0] Möller, S. and Raake, A. eds., 2014. Quality of experience: advanced concepts,
applications and methods. Springer.

[EUS1] OpenAPI initiative. https://www.openapis.org/

[EUS2] Selenium framework. https://www.seleniumhq.org/

[EUS3] Appium framework. http://appium.io/

[EUS4] Docker-Selenium. https://github.com/SeleniumHQ/docker-selenium

[EUS5] Selenoid. https://aerokube.com/selenoid/latest/

[EUS6] noVNC (VNC client using HTML5). http://novnc.com/

[EUS7] FFmpeg. https://www.ffmpeg.org/

[EUS8] W3C WebDriver Recommendation. https://www.w3.org/TR/webdriver/

[EUS9] JUnit 5. https://junit.org/junit5/docs/current/user-guide/

[EUS10] Mockito framework. http://site.mockito.org/

[EUS11] Spring framework. https://spring.io/

[ESS1] OWASP ZAP
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project

[EBS0] https://spark.apache.org

[EBS1] https://kubernetes.io

[EBS2] https://www.djangoproject.com

[EBS3] https://swagger.io

[EBS4] https://livy.incubator.apache.org

[EBS5] http://nose.readthedocs.io/en/latest/

[EMS1] https://www.sigapp.org/sac/sac2018/

[EMS2] https://rv2018.isp.uni-luebeck.de

https://www.openapis.org/
https://www.seleniumhq.org/
http://appium.io/
https://github.com/SeleniumHQ/docker-selenium
https://aerokube.com/selenoid/latest/
http://novnc.com/
https://www.ffmpeg.org/
https://www.w3.org/TR/webdriver/
https://junit.org/junit5/docs/current/user-guide/
http://site.mockito.org/
https://spring.io/
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://spark.apache.org/
https://kubernetes.io/
https://www.djangoproject.com/
https://swagger.io/
https://livy.incubator.apache.org/
http://nose.readthedocs.io/en/latest/
https://www.sigapp.org/sac/sac2018/
https://rv2018.isp.uni-luebeck.de/

 D5.1 ElasTest Test Support Services v1

84

[EMS3] http://www.icws.org/2018/

[EDS1] Gartner Says 8.4 Billion Connected "Things" Will Be in Use in 2017, Up 31 Percent
From 2016 (URL: https://www.gartner.com/newsroom/id/3598917)
accessed:25.06.2018

[EDS2] Brady, Shane & Hava, Adriana & Perry, P & Murphy, John & Magoni, Damien &
Portillo, Omar. (2017). Towards an Emulated IoT Test Environment for Anomaly
Detection using NEMU. 10.1109/GIOTS.2017.8016222.

http://www.icws.org/2018/

	1 Executive Summary
	2 Introduction
	3 Test Support Service Management
	3.1.1 Definitions
	3.1.2 TSS Life Cycle
	3.1.3 TSS Interaction with ElasTest
	3.1.3.1 TSS Registration
	3.1.3.2 TSSs Used by Tester
	3.1.3.3 TSSs Used by Tests Inside a T-Job

	3.1.4 TSS Description
	3.1.4.1 TSS Descriptor File (elastestservice.json)
	3.1.4.2 TSS Context and Configuration Information

	3.1.5 TSS Instance Monitoring for T-Jobs
	3.1.6 TSS Health Check
	3.1.6.1 Registration of Health Check Endpoint

	3.1.7 TSS & Creating New Computational Resources
	3.1.8 TSS Costing
	3.1.9 TSS Testing
	3.1.9.1 TSS started by GUI Test
	3.1.9.2 TSS started by T-Job Test

	3.1.10 TSS Documentation
	3.1.10.1 User Documentation
	3.1.10.2 Development Documentation

	3.1.11 TSS Creation

	4 ElasTest Test Support Services
	4.1 ElasTest User Impersonation Service
	4.1.1 Introduction
	4.1.2 Features
	4.1.3 Baseline Concepts and Technologies
	4.1.4 Component Architecture
	4.1.4.1 Use Case Diagrams
	4.1.4.2 Sequence Diagrams

	4.1.5 Code Reports
	4.1.6 Code Links
	4.1.7 Contributions

	4.2 ElasTest Device Emulator Service
	4.2.1 Introduction
	4.2.2 Features
	4.2.3 Baseline Concepts and Technologies
	4.2.4 Component Architecture
	4.2.4.1 Use Case Diagrams
	4.2.4.2 Sequence Diagrams

	4.2.5 Code Reports
	4.2.6 Code Links
	4.2.7 Contributions

	4.3 ElasTest Monitoring Service
	4.3.1 Introduction
	4.3.2 Features
	4.3.3 Baseline Concepts and Technologies
	4.3.4 Component Architecture
	4.3.4.1 Use Case Diagrams
	4.3.4.2 Sequence Diagrams

	4.3.5 Code Reports
	4.3.6 Code Links
	4.3.7 Contributions

	4.4 ElasTest Big Data Service
	4.4.1 Introduction
	4.4.2 Features
	4.4.3 Baseline Concepts and Technologies
	4.4.4 Component Architecture
	4.4.4.1 Use Case Diagrams
	4.4.4.2 Sequence Diagrams

	4.4.5 Code Reports
	4.4.6 Code Links
	4.4.7 Contributions

	4.5 ElasTest Security Service
	4.5.1 Introduction
	4.5.2 Features
	4.5.3 Baseline Concepts and Technologies
	4.5.4 Component Architecture
	4.5.4.1 Use Case Diagrams
	4.5.4.2 Sequence Diagrams

	4.5.5 Code Reports
	4.5.6 Code Links
	4.5.7 Contributions

	5 Conclusions
	6 Appendix
	6.1 References

