

 D6.1
Version 1.0

Author NAEVATEC

Dissemination PU

Date 27-06-2018

Status FINAL

D6.1: ElasTest Continuous Integration and

Validation System v1

Project acronym ELASTEST

Project title ElasTest: an elastic platform for testing complex distributed

large software systems

Project duration 01-01-2017 to 31-12-2019

Project type H2020-ICT-2016-1. Software Technologies

Project reference 731535

Project website http://elastest.eu/

Work package WP6

WP leader Guiomar Tuñón de Hita

Deliverable nature PUBLIC

Lead editor Guiomar Tuñón de Hita

Planned delivery date 30-06-2108

Actual delivery date 27-06-2018

Keywords Open source software, cloud computing, continuous

integration, continuous validation,

Funded by the European Union

http://elastest.eu/

D6.1: ElasTest Continuous Integration and Validation System v1

2

License

This is a public deliverable that is provided to the community under a Creative Commons

Attribution-ShareAlike 4.0 International License:

http://creativecommons.org/licenses/by-sa/4.0/

You are free to:

Share — copy and redistribute the material in any medium or format.

Adapt — remix, transform, and build upon the material for any purpose, even

commercially.

The licensor cannot revoke these freedoms as long as you follow the license

terms.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and

indicate if changes were made. You may do so in any reasonable manner, but not

in any way that suggests the licensor endorses you or your use.

ShareAlike — If you remix, transform, or build upon the material, you must

distribute your contributions under the same license as the original.

No additional restrictions — You may not apply legal terms or technological

measures that legally restrict others from doing anything the license permits.

Notices:

You do not have to comply with the license for elements of the material in the

public domain or where your use is permitted by an applicable exception or

limitation.

No warranties are given. The license may not give you all of the permissions

necessary for your intended use. For example, other rights such as publicity,

privacy, or moral rights may limit how you use the material.

For a full description of the license legal terms, please refer to:

http://creativecommons.org/licenses/by-sa/4.0/legalcode

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/legalcode

D6.1: ElasTest Continuous Integration and Validation System v1

3

Contributors

Name Affiliation

Guiomar Tuñón NAEVATEC

Francisco Ramón Díaz URJC

Gordon Doyle IBM

Piyush Harsh ZHAW

Felipe Gorostiaga IMDEA

Varun Gowtham TUB

David Rojo ATOS

Nikolaos Gavalas REL

Francisco Gorostiaga URJC

Micael Gallego URJC

Version history

Version Date Author(s) Description of changes

0.1 11/12/2017 Guiomar Tuñón Initial version (DRAFT)

0.2 30/01/2018 Guiomar Tuñón Contribution from partners for e2e

tests.

0.3 20/04/2018 Guiomar Tuñón 2nd round of contributions from

partners for e2e tests.

0.4 26/04/2018 Guiomar Tuñón 3rd round of contributions from

partners for e2e tests.

0.5 11/06/2018 Enric Pages Quality Review Process

0.6 21/06/2018 Guiomar Tuñón Quality Review Process, apply

changes.

0.7 22/06/2018 Guiomar Tuñón Added Index of tables and figures

0.8 24/06/2018 Micael Gallego Review alignment with architecture

terminology

D6.1: ElasTest Continuous Integration and Validation System v1

4

Table of contents

1 Executive summary ... 9

2 Strategic context and objectives .. 10

3 CI environment ... 10

3.1 Self-hosted Services ... 11

3.1.1 Main Instance. ... 11

3.1.2 ElasTest Nightly Instance. .. 12

3.1.3 ElasTest Stable Instance. .. 13

3.2 Tools. .. 13

3.2.1 Tool chain. .. 13
 GitHub .. 14
 CI Server: Jenkins ... 14
 Sonatype OSSRH .. 16
 Nexus Repository Manager (OSS). ... 17
 DockerHub ... 18
 Amazon EC2 Container Registry .. 18
 Private User Registry .. 19
 ElasTest .. 20

3.2.2 Add-ons and auxiliary tools. ... 21
 Codecov. .. 21
 SonarCloud. .. 22
 ElasTest Jenkins Library. .. 22

3.3 Security and User Access .. 25

3.3.1 Security... 25

3.3.2 User Access .. 26

3.4 Maintenance .. 28

4 Methodology and Procedures ... 30

4.1 Methodology and Procedures .. 30

4.1.1 Basic Rules and Best practices. .. 30

4.1.2 Jenkins: Login ... 30

4.1.3 Jenkins: Tagging slaves and jobs.. 31
 Slaves ... 31
 Jobs .. 31

4.1.4 Private User Registry: Login and Register .. 32

4.1.5 Private User Registry: Manage User, ... 34
 Delete User. ... 34
 Edit User Information. ... 35
 Requesting access to Nexus Repository... 35
 Requesting access to ECR... 36
 Refresh access to Nexus... 36
 Refresh access to ECR .. 37
 Revoke access to Nexus ... 37
 Revoke access to AWS ECR .. 37

4.2 Development environment configuration for AWS ECR .. 37

4.3 Jenkins Jobs Naming ... 37

4.4 Development .. 38

4.5 Testing .. 41

4.5.1 Unitary and integration (component) .. 41

D6.1: ElasTest Continuous Integration and Validation System v1

5

4.5.2 End-to-end tests. .. 42
 ElasTest-library... 42
 Jenkins end-to-end tests job structure .. 44
 End-to-end tests per component ... 45
 Integrated UI end-to-end tests .. 50

4.6 Releasing .. 58

4.6.1 Maven/Gradle Artifacts. .. 59
 Basic rules and best practices .. 59
 Procedure .. 59
 Configuration for consuming private Maven artifacts. .. 61

4.6.2 Docker Images. .. 62
 How to create component images ... 62
 How to create Environmental Images ... 63

4.6.3 Documentation. ... 63
 Docker Images descriptions ... 63

4.7 Maintenance. ... 64

4.7.1 Request to admin. .. 65

4.7.2 Plan and document the maintenance. ... 65

4.7.3 Execution. ... 65

5 References .. 65

ANNEXES .. 69

A1. GitHub Readme.md Template. .. 69

A2. Docker Image long description template .. 71

A3. Cobertura Reports and CodeCov.io integration procedure. 72

A3.1. Integration .. 72

A3.2. Other Useful integration .. 74

A3.2.1. Badges: .. 74

A4. Maintenance Window Procedure Template ... 74

A4.1. General Information ... 74

Affected tools / SW ... 74

Template to be filled on each Maintenance Window one row per tool.................................. 74

Motivation... 75

Risks .. 75

Contact information. ... 75

Upgrade Plan .. 75

A4.2. Procedure ... 76

A4.2.1. Notification .. 76

A4.2.2. System shutdown... 76
A4.2.2.a Main Instance. .. 76
A4.2.2.b Slaves. ... 76
A4.2.2.c ElasTest Nightly. .. 76

A4.2.3. Back Up .. 76
A4.2.3.a Main Instance. .. 76
A4.2.3.b Slaves. ... 77
A4.2.3.c ElasTest Nightly. .. 77

A4.2.4. Upgrade ... 78
A4.2.4.a Main Instance. .. 78

D6.1: ElasTest Continuous Integration and Validation System v1

6

A4.2.4.b Slaves. ... 80
A4.2.4.c ElasTest Nightly. .. 81

A4.2.5. Test and Confirmation ... 82

A4.2.6. Roll Back .. 82
A4.2.6.a Main Instance. .. 82
A4.2.6.b Slaves. ... 82
A4.2.6.c ElasTest Nightly: .. 83

A4.2.7. Open System and Result Notification. ... 83

A4.3. Results .. 83

A4.3.1. Table of results .. 83

A4.3.2. Actions to be executed after upgrade ... 84
A4.3.2.a Main Instance ... 84
A4.3.2.b Slaves .. 84
A4.3.2.c ElasTest Nightly ... 84

A4.4. Logs .. 84

A4.5. Issues .. 84

A5. ElasTest Jenkins Library API. .. 84

A5.1. Configuration methods: ... 84

A5.2. Support functionalities for end-to-end testing: ... 85

A5.3. ElasTest management functionalities: ... 85

A5.4. Pipeline encapsulation: .. 86

D6.1: ElasTest Continuous Integration and Validation System v1

7

List of Figures

Figure 1. Self-hosted services architecture .. 11

Figure 2. Jenkins jobs execution sequence .. 12

Figure 3. ElasTest Jenkins. .. 15

Figure 4. Sonatype OSSRH. Public maven repository ... 16

Figure 5. Nexus Repository Manager (OSS) .. 17

Figure 6. DockerHub ElasTest Dashboard .. 18

Figure 7. Amazon ElasTest ECR ... 19

Figure 8. Private User Registry - manage user access interface 20

Figure 9. Authorization management: Teams .. 27

Figure 10. Jenkins user login ... 28

Figure 11. Authorize Jenkins GitHub .. 30

Figure 12. Revoke Jenkins GitHub .. 31

Figure 13. User Registration home ... 32

Figure 14. User Registration. GitHub Authorization ... 33

Figure 15. User Registration form .. 33

Figure 16. User Registration. User Management ... 34

Figure 17. User Registration. User Information edition ... 35

Figure 18. User Registration. Access to Nexus activated ... 36

Figure 19. User Registration. Access to AWS ECR activated .. 36

Figure 20. Example of README.md .. 40

Figure 21. Jenkins ElasTest-library. Pipeline ... 44

Figure 22. Graphics of EIM execution... 54

Figure 23. Test coverage job configuration .. 73

Figure 24. AWS disable inbound rules .. 76

Figure 25. AWS EC2. Create Image ... 77

Figure 26. AWS EC2. Configuration of the Image ... 78

Figure 27. AWS EC2. Available Image ... 78

Figure 28. AWS enable inbound rules .. 83

List of Tables

Table 1. CI environment main tools. .. 14

D6.1: ElasTest Continuous Integration and Validation System v1

8

Table 2. CI environment auxiliary tools and add-ons. .. 21

Table 3. Maintenance schedule. ... 29

Table 4. Code Coverage. Date: 21-06-2018 .. 41

Glossary of acronyms

Abbreviation Full definition

APIs Application programming interfaces

AMI Amazon Machine Images

AWS Amazon Web Services

CI Continuous Integration

CV Continuous Validation

E2E End-to-end

ECR Elastic Container Registry

GUI Graphical User Interface

OS Operating System

SW Software

UI User Interface

QoE Quality of Experience

SuT Software under Test

SiL Systems in the Large

TiL Test in the Large

TSS Test support service

TORM Test Orchestration and Recommendation Manager

QoS Quality of Service

UAT User Acceptance Testing

IPR Intellectual Property Rights

D6.1: ElasTest Continuous Integration and Validation System v1

9

1 Executive summary

The present document describes the design, architecture and maintenance of the

ElasTest Continuous Integration (CI) and Continuous Validation (CV) System used in the

project. This system has been designed and maintained in the context of the Work

Package 6 (WP6) “Continuous Integration & Validation”.

This document describes the design, architecture and maintenance of the ElasTest CI

environment, including aspects such as the following:

- Description of the strategic objectives to be fulfilled.

- Description of the environment design and architecture.

- Description of the available tools in the environment.

- Description of the maintenance plan.

- Description of the CI and CV methodology.

During the upcoming eighteen months the content of this document will be reviewed

and updated with any new tools that could be added to the environment, new or revised

procedures as well as new cloud instances that would be needed.

The initial environment devised for running CI/CV tasks for the project started with a

single instance that ran the main tools related to the software development process and

from the first release of the ElasTest platform it has grown having now four instances,

each one with a clear objective regarding the tasks that are meant to be executed over

them:

I. Main Instance. Holds the main tools related to the software development

process – CI server, repositories, credential generator, etc. –

II. ElasTest Nightly Instance. Hosts the latest developed version of ElasTest (not

necessarily stable). This instance main objective is to provide an ElasTest

platform where latest changes on the code could be tested.

III. ElasTest Stable Instance. Host the latest stable version of ElasTest. This instance

will be used to test the ElasTest Nightly Instance with ElasTest, as specified in the

DoA.

In order to have a complete and intensive test suite for the whole ElasTest platform all

the components have contributed with specific test suits for their components, these

tests are continuously changing as the functionalities of the components expand and

mutate, so the suites cover this new or changed functionalities. In the deliverable these

suites are described as they are at the moment of writing, whereas these descriptions

could be outdated in a few weeks, as the platform is continuously improved.

In section 5 of the document we define the scheduled next steps into the Continuous

Validation and Integration System that covers tasks such as completion the validation of

ElasTest with ElasTest.

D6.1: ElasTest Continuous Integration and Validation System v1

10

2 Strategic context and objectives

The ElasTest CI environment and methodology has been designed with the objective of

providing the project with a complete set of tools and procedures that must grant the

appropriate level of quality of each component and the right integration of all of them.

The CI methodology comprises all the tasks that assure:

 High quality of each of the components from development to release.

 High quality of integration between components.

 High quality of ElasTest as a whole.

 High quality of the CI methodology and CI environment.

The CI environment comprises all the tools that help to achieve and maintain the highest

levels of quality in all the steps of the development, testing and release.

The specific configuration of the consortium and the diverse licenses (public/Apache 2.2

and Proprietary) of the components are managed within the CI tasks and tools to grant

the appropriate access and dissemination of each component.

The following sections contain the details of the CI Environment [Section 3], and the CI

and CV methodology [Section 4].

The current status of the CI and CV system is aligned with the declared Milestones in the

DoA, where MS4 scheduled for month 16, where it was required from the ElasTest CI

system to be fully qualified and in production to enable the delivery and testing of all

ElasTest components. As this document demonstrates this objective is completed. For

month 24 it is defined MS5 where it is expected to have a mature implementation of

ElasTest validated in laboratory through the ElasTest CI system and tests. Here we

include to have ElasTest tested by ElasTest. Actually the CI / CV system includes an

ElasTest instance with the objective of being used with this purpose and as soon as the

ElasTest platform is mature enough it will be used on for validating newer versions of

ElasTest.

3 CI environment

The CI environment is composed by a set of tools managed by NaevaTec and available

to the consortium partners.

The CI environment has two kinds of applications/tools: self-hosted services and

provided services. Self-hosted services are those that have been deployed on our own

managed servers. Those are fully managed by NaevaTec. This requires the CI

administrator (NaevaTec) to manage security, access policy, system stability and

maintenance (corrective and upgrades). On the other hand, provided services are those

that hosted on the providers premises or clouds and serve the technologies and services

mainly through an accessible web URL.

D6.1: ElasTest Continuous Integration and Validation System v1

11

3.1 Self-hosted Services

3.1.1 Main Instance.

The core of the environment is a cloud (AWS) hosted instance that runs the self-hosted

tools. All the applications hosted in this instance are containerized for 3 main reasons:

 Simplicity of maintenance: having a well-maintained environment where times

without service are rare and short is a very much valued property for any service.

 Simplicity of recovery: if somehow the system is unstable, breaks, or its security

is compromised, the application configuration and data can be recovered easily

and the risks of data loss are reduced considerably.

 Simplicity for replication: This environment can be easily reproduced and

customized to be used in other projects.

Figure 1. Self-hosted services architecture

The CI Server (Jenkins) should run different jobs for compiling, testing [4.5] and delivering

[4.6] the ElasTest components. In order to maintain the core instance clean, secure and

available without interference of the running jobs, we have designed a system of volatile

slaves. Those slaves are launched on demand for the jobs into the (AWS) cloud, they are

managed by the CI server and they are inaccessible from outside the environment.

D6.1: ElasTest Continuous Integration and Validation System v1

12

Figure 2. Jenkins jobs execution sequence

The last entity in our environment of self-hosted tools is an ElasTest Instance running in

a (AWS) cloud instance. This ElasTest instance is accessible from everywhere but

protected by basic authentication -currently the only one that is available in ElasTest-.

This instance is isolated from the rest of the environment, it can be accessed by volatile

nodes and the core instance but the other way is closed.

3.1.2 ElasTest Nightly Instance.

The ElasTest Nightly Instance is an AWS EC2 instance has been commissioned with the

objective of having a full operative ElasTest platform running so the partners can test

the functionality. It has been created with the Amazon CloudFormation template that

can be found as a part of the elastest-toolbox repository [60].

This instance is exclusively devised with the objective of hosting an ElasTest platform.

This ElasTest platform is automatically daily refreshed, so it is always running the last

developed version of the platform.

D6.1: ElasTest Continuous Integration and Validation System v1

13

As the platform has evolved the type of instance needed for a correct behaviour of the

system has also changed. AWS EC2 instances allows us to adapt the instance running to

the real requirements of the ElasTest platform.

3.1.3 ElasTest Stable Instance.

The ElasTest Stable Instance is the last addition to the ElasTest CI/CV system. It is nearly

a copy of the ElasTest Nightly Instance which main difference is that on the ElasTest

Stable Instance, there isn’t an automatic update of the ElasTest platform, but the update

of the ElasTest platform is done manually wherever a new stable version is released.

3.2 Tools.

3.2.1 Tool chain.

Name Type License
Self-

hosted?
Access Description

GitHub[8]

Source

code

repository

Proprietary No Public

GitHub is a Web-

based Git version

control repository hosting

service. It is mostly used

for computer code. It offers

all of the distributed version

control and source code

management (SCM)

functionality of Git as well as

adding its own features.

Jenkins[1] CI Server OSS (MIT) Yes

Consort

ium

only

Jenkins is a self-contained,

open source automation

server which can be used to

automate all sorts of tasks

such as building, testing, and

deploying software.

DockerHub

[2]

Docker

image

repository

Proprietary No Public

The Docker Hub Registry is

free to use for public

repositories. Plans with

private repositories are

available in different sizes.

All plans allow collaboration

with unlimited people.

OSSRH[3]

Maven and

Gradle

artifact

repository

OSS

(Eclipse)
No Public

Sonatype OSSRH (OSS

Repository Hosting)

uses Sonatype Nexus

Repository Manager to

provide repository hosting

service for open source

project binaries.

http://links.sonatype.com/products/nexus/pro/home
http://links.sonatype.com/products/nexus/pro/home

D6.1: ElasTest Continuous Integration and Validation System v1

14

Nexus

Repository

Manager

OSS[4]

Maven and

Gradle

artifact

repository

OSS

(Eclipse)
Yes

Consort

ium

only

Nexus Repository OSS is a

universal repository

manager with support for all

major package formats and

types.

Private

User

Registry[5]

Custom

user access

manager

Proprietary Yes

Consort

ium

only

Private User Registry is a

service developed by

NaevaTec to manage the

access to private Nexus

Repository and Amazon ECR,

providing access to only

Consortium members to the

resources published there.

ElasTest[6] --
OSS

(Apache)
Yes

Consort

ium

only

An elastic platform to ease

end to end testing.

Amazon

ECR[7]

Docker

image

repository

Proprietary No

Consort

ium

only

Amazon Elastic Container

Registry (ECR) is a fully-

managed Docker container

registry that makes it easy

for developers to store,

manage, and deploy Docker

container images.

Table 1. CI environment main tools.

 GitHub

All the public repositories regarding ElasTest components, documentation, webpages,

etc. are hosted in GitHub.

Also, GitHub is the main tool used for managing access to the different tools and

contents related to the ElasTest project. This way teams for each partner and

component are managed trough GitHub Teams (See 3.2.2.1 User Access).

 CI Server: Jenkins

Jenkins [1] will serve as CI server. We have chosen Jenkins over other alternatives

(Atlassian Bamboo [55], CruiseControl [56], Team Foundation Server [57], Travis CI [58],

etc.) because of the characteristics described in the original proposal:

 It must be a FOSS CI tool so that the ElasTest FOSS strategy is strengthened by

this integration.

 It must be a very popular CI tool having a strong community spread worldwide.

 The tool must provide an API enabling the creation of extensions and plugins into

it.

Travis CI and Jenkins both comply with the project requirements. Being both suitable we

chose Jenkins because among the open source alternatives, Jenkins is the one with the

biggest market share, with a strong community and a lot of plugins and the knowledge

https://aws.amazon.com/docker/

D6.1: ElasTest Continuous Integration and Validation System v1

15

and expertise we already have on Jenkins configuration, usage and plugins

development.

Figure 3. ElasTest Jenkins.

The partners would be using Jenkins in order to validate and integrate their work. Also,

Jenkins will provide a safe environment for each of the partners where only authorized

people will run partners’ defined jobs.

Users within the ElasTest Organization in GitHub that are members of any of the

partner’s teams would be granted access. Anybody inside the ElasTest Organization that

isn’t member at least of one of the partners’ team won’t be able to access.

Each user will have permissions over the different folders. By default, there will be a

folder for each team in the GitHub organization and each user will have permission over

the jobs inside the folders of all the groups he/she belongs to.

All users that need to be granted additional permissions such as administrative

permissions or permissions to other jobs outside his/her groups, can request them filling

a row in the Jenkins sheet of the User Registration spreadsheet.

3.2.1.2.1 Slaves

Jenkins supports the "master/slave" mode, where the workload of building projects is

delegated to multiple "slave" nodes, allowing a single Jenkins installation to host a large

number of projects, or to provide different environments needed for builds/tests.

A Jenkins slave can be seen as an external provider of executors for running jobs.

The Jenkins master can’t be used for any user jobs, all the user jobs by default will be

launched on an Amazon EC2 Instance that will act as Jenkins Slave. This slave will be

launch on demand as a job is programmed to be run. If the slave is already available and

has free executors it will be launch at the moment but if the slave isn’t up or no

executors are available the job will wait to the slave to be launched (automatically) or

an executor is released.

D6.1: ElasTest Continuous Integration and Validation System v1

16

3.2.1.2.2 Jobs

All users will be allowed to create jobs inside the folders that belongs to the teams that

he/she belongs to.

Users are encouraged to containerize their builds and tests.

Procedures and/or recommendations will be explained in section 4.1 -Methodology and

Procedures- for different kinds of jobs. Also, there are shared folders with some jobs

examples inside the Jenkins.

3.2.1.2.3 ElasTest Plugin

The ElasTest Jenkins plugin developed in the context of the WP6 Task 6.4 and described

in D6.2 ElasTest platform toolbox and integrations v1 isn’t currently available in the

ElasTest CI server. It will be added in future maintenances.

 Sonatype OSSRH

As ElasTest is an Open Source project, all the public artifacts can be hosted on Sonatype

OSSRH (OSS Repository Hosting) [3]. This repository hosting allows ElasTest to maintain

a public release repository that will be published to Central automatically, and also a

public snapshot repository.

We have been granted with the io.elastest groupId inside the central maven repository.

So, all the artifacts developed in the context of ElasTest should be within the io.elastest

group.

Full documentation on how to publish ElasTest artifacts have been provided to all the

partners. And the procedure description can be found in section 4.6 Releasing.

Any user (consortium member or not) will have access to the artifacts here deployed

(releases and snapshots).

Figure 4. Sonatype OSSRH. Public maven repository

D6.1: ElasTest Continuous Integration and Validation System v1

17

 Nexus Repository Manager (OSS).

As described in D8.3 the IPR (Intellectual property rights) of most components are

licensed under Apache 2.0 or MIT 2, so they are open source but there is one component

at the moment that has one proprietary license (belonging to IBM). This forces the CI

environment to provide private repositories for that component’s artifacts and images.

All the artifacts that shouldn’t be shared with the public but are necessary to collaborate

within the consortium will be deployed to our own hosted nexus repository [4].

Access to this repository will be nominative even for read-only purposes, this will grant

some control over the artifacts that are shared there. The access to the repository will

be solicited with the User-registry application that will automatically check the access

with the user GitHub account. Any user without a GitHub account or not member of the

ElasTest organization in Jenkins will not be allowed to access to the repositories.

Full documentation on how to publish ElasTest private maven artifacts have been

provided to all the partners. And the procedure description can be found in section 4.6

Releasing.

Figure 5. Nexus Repository Manager (OSS)

Both Sonatype OSSHR and Nexus Repository Manager OSS are the same tool and have

exactly the same Graphic User Interface (GUI) –See Figure 4. Sonatype OSSRH. Public

maven repository and Figure 5. Nexus Repository Manager (OSS)-. The main difference

is that Sonatype OSSHR is a provided service and it is hosted on the Sonatype premises

–or cloud- so it is maintained by them; whereas the Nexus Repository Manager (OSS) is

self-hosted and it is deployed on our Main Instance –See Figure 1. Self-hosted services

architecture –.

D6.1: ElasTest Continuous Integration and Validation System v1

18

 DockerHub

DockerHub [2] is public Docker Registry with possibility to host public and private

Images. For public Images it is completely free of charges.

This Registry is widespread within the community of developers, and many well-known

OSS projects have there their official images some examples are: nginx, ubuntu, Apache

Tomcat… DockerHub is really easy to work with as it is the predefined Registry while

working with Docker. This will provide a good way to share the public images with the

community.

All the images published here will be public and any user will be able to pull it but images

would be only pushed from Jenkins jobs (See 4.6 Releasing).

Figure 6. DockerHub ElasTest Dashboard

 Amazon EC2 Container Registry

As explained in section 3.2.1.4 Nexus Repository Manager (OSS). There is one

component that is licensed under a proprietary license, but it should be available for the

consortium. With this objective the Amazon EC2 Container Registry [7] has been chosen.

The access to the repository is completely private and it will be nominative even for

read-only purposes, this will grant some control over the Docker images that are shared

there. The access to the repository will be solicited with the User-registry application

that will automatically check the access with the user GitHub account. Any user without

a GitHub account or not member of the ElasTest organization in Jenkins will not be

allowed to access to the repositories.

Amazon EC2 Container Registry transfers images over HTTPS and automatically encrypts

your images at rest.

D6.1: ElasTest Continuous Integration and Validation System v1

19

Full documentation on how to publish ElasTest private Docker Images have been

provided to all the partners. And the procedure description can be found in section 4.6

Releasing.

Figure 7. Amazon ElasTest ECR

 Private User Registry

Some of the tools included in the environment don’t provide GitHub Oauth2 integration

(e.g. AWS ECR and Nexus Repository Manager OSS). In order to make the access unique,

nominal and easy to manage and monitor, NaevaTec has developed a small application

that manages the authorization of those tools. This application aims to ease the

management of credentials for the private repositories, this way manual intervention

isn’t needed.

The Private User Registry is an application developed by NaevaTec, in the context of the

ElasTest Project in order to enable developers from the consortium a way to consume

private maven/gradle artifacts and private Docker images.

The application will verify the user GitHub account for checking his/her involvement in

the project and his/her membership to one of the partners of the consortium. Once the

user is validated she/he will be able to request credentials to access ElasTest private

repositories.

The credentials provided by the application will only allow the user to read information

from these repositories, as the publication of images and artifacts is done exclusively

from the CI server (Jenkins). These credentials will enable developers to work in a local

environment, for example to test the integration between components.

The application relays in the GitHub login, so any user who want to get credentials

should be registered in GitHub.

D6.1: ElasTest Continuous Integration and Validation System v1

20

Figure 8. Private User Registry - manage user access interface

Once registered the user will be able to manage his/her credentials (activate, deactivate,

refresh) or edit/delete the user.

The information provided by the user is kept in a NaevaTec Database according to the

following objectives:

 To keep track of the credentials used to access the repository.

 To enable the user to create, revoke and refresh credentials associated to his/her

user name.

The database is completely private, only NaevaTec administrators related to the ElasTest

project will have access to the database.

 ElasTest

ElasTest is the tool developed within this project context, and it is used in two contexts

on the CI / CV System:

 As object of the tests, the platform that should be tested before it can be

released.

 As part of the tools for testing the SW, the platform that is used for testing.

Because we use this tools in two different contexts we have deploy the ElasTest platform

twice, and we have aliased them as Nightly and Stable.

3.2.1.8.1 Nightly

ElasTest Nightly is a nightly updated live ElasTest instance, running with the aim of

providing the latest ElasTest version of every component so end-to-end integrated tests

can be run.

This ElasTest instance aims to provide all partners a place to test their own components

on a production-like environment. Partners can access the ElasTest Nightly UI to do

D6.1: ElasTest Continuous Integration and Validation System v1

21

manual testing, check the look and feel, and of course run automated tests with Jenkins

jobs.

ElasTest Nightly has been deployed on AWS following the specification shared in the

ElasTest Community Web [11] validating in this way the correctness of the

documentation.

3.2.1.8.2 ElasTest Stable

Since March 2018 we have also a stable version of ElasTest running that is being used

for testing the ElasTest Nightly with ElasTest. This is a milestone – MS5 – set out in the

DoA by end 2018, and the tasks to reach this milestone is in progress.

3.2.2 Add-ons and auxiliary tools.

Name Type License
Self-

hosted
Access Description

Codecov

[9]

Cobertura

reports

analyser

OSS

(Apache

2.2)

No Public

Codecov provides highly

integrated tools to group,

merge, archive and compare

coverage reports. Whether your

team is comparing changes in a

pull request or reviewing a

single commit, Codecov will

improve the code review

workflow and quality.

SonarClo

ud [62]

Code

review

tool

OSS

(LGPL-

3.0)

No Public

Analyse the quality of your

source code to detect bugs,

vulnerabilities

and code smells throughout the

development process.

ElasTest

Jenkins

Library

[59]

Jenkins

library for

manage

ElasTest

OSS

(Eclipse)
-- Public

Developed groovy library to be

used within Jenkins to help to

launch ElasTest and manage

ElasTest nodes. Developed in

the context of the ElasTest

project.

Table 2. CI environment auxiliary tools and add-ons.

 Codecov.

3.2.2.1.1 What is code coverage?

Code coverage [61] is a measurement used to express which lines of code were executed

by a test suite. We use three primary terms to describe each line executed:

 hit indicates that the source code was executed by the test suite.

 partial indicates that the source code was not fully executed by the test suite;

there are remaining branches that were not executed.

 miss indicates that the source code was not executed by the test suite.

D6.1: ElasTest Continuous Integration and Validation System v1

22

Coverage is the ratio of hits / (sum of hit + partial + miss).

Phrased simply, code coverage provides a visual measurement of what source code is

being executed by a test suite. This information indicates to the software developer

where they should write new tests in the effort to achieve higher coverage.

Testing source code helps to prevent bugs and syntax errors by executing each line with

a known variable and cross-checking it with an expected output.

3.2.2.1.2 What does Codecov bring to the table?

Code coverage tools incentivize developers to write tests and increase coverage. During

the process of writing tests, the developer may discover new bugs or syntax issues in

the source code that are important to resolve before distributing the application.

Codecov [9] takes coverage to the next level. Unlike open source and paid products,

Codecov focuses on integration and promoting healthy pull requests. Codecov delivers

-or "injects"- coverage metrics directly into the modern workflow to promote more code

coverage, especially in pull requests where new features and bug fixes commonly occur.

 SonarCloud.

SonarCloud [62] is a service operated by SonarSource [65], the company that develops

and promotes open-source code quality products SonarQube [63] and SonarLint [64].

SonarQube provides the capability to not only show health of an application but also to

highlight issues newly introduced. With a Quality Gate in place, you can fix the leak and

therefore improve code quality systematically.

SonarLint gives you feedback on new bugs and quality issues injected into your code.

At the moment just, some components use SonarCloud to assure its quality and a proper

procedure is expected to be designed so more of ElasTest can make use of the features

it provides.

 ElasTest Jenkins Library.

The ElasTest-library has been developed by NaevaTec in order to ease the integrated

end-to-end tests of every component on Jenkins.

This library has 3 main objectives:

 Encapsulate all the main stages related to the ElasTest platform lifecycle

management such as commissioning and decommissioning of ElasTest.

 Configure the type of ElasTest instance that should be run (authentication,

mode, exclusive or shared instance, etc.) Making the jobs agnostic to the details.

It is very useful on the current stage of the project as the ElasTest platform is still

changing quite regularly.

 Enable the jobs to be run against a clean exclusive ElasTest platform launched

for the specific job, and to run the same job against the nightly ElasTest or other

D6.1: ElasTest Continuous Integration and Validation System v1

23

ElasTest running on another server. This can be configured by the job itself but

also it can be forced by the CI admin, without changing the job definition

(Jenkinsfile).

The library is in constant change, adapting itself to the changes of the ElasTest platform

and reducing the impact that those changes have on the components jobs. In addition,

it has the ability to grow-up to satisfy new requirements from the components. It has

been designed to be as backwards compatible as possible with previous versions of

ElasTest platform and with previous versions of the library itself.

The library is available as an open source resource on the ElasTest GitHub [59]. The

following methods are provided by the library in order to configure and customize the

ElasTest platform that would be used on the end-to-end tests.

3.2.2.3.1 Configuration methods:

setVerbose(boolean)

Overrides the Verbose configuration parameter value (false) of the Library

setVersion(String)

Overrides the ElasTest Version configuration parameter value (“latest”) of the

Library

setERE(String)

To select if and which version of the ERE component will be deployed and used on

the running ElasTest instance

setContext(value)

Initializes the context that should be applied for the execution of certain steps and

commands.

setMode(String)

Initialization of the parameter Lite just for personalization, for normal execution

leave it empty. For lite execution initialize with ‘--lite’

setShared(boolean)

Overrides the ElasTest Shared configuration parameter value (false) of the Library

setAuthenticatedElastest(boolean)

Overrides the default ElasTest Authentication parameter configuration parameter

value (false) of the Library. If true the launched ElasTest would be initialized with

basic authentication.

setTestLink(boolean)

D6.1: ElasTest Continuous Integration and Validation System v1

24

Overrides the default ElasTest TestLink parameter configuration parameter value

(false) of the Library. The TestLink component will be launched on the new

instance.

3.2.2.3.2 Support functionalities for end-to-end testing:

String getIp()

Executed after the ElasTest start returns the IP address where the main component

(ETM) is listening

String getPort()

Executed after the ElasTest start returns the port where the main component

(ETM) is listening

String getEtmUrl()

Executed after the ElasTest start returns the full http connection URL where the

ETM is listening (Example: http://172.0.18.10:8091)

Object getElastestMethods()

Returns an object that can execute the methods implemented by the library in the

user defined stages.

String getElasTestUser()

Returns the user for the ElasTest Basic Authentication if the ElasTest is

authenticated

String getElasTestPassword()

Returns the password for the ElasTest Basic Authentication if the ElasTest is

authenticated

3.2.2.3.3 ElasTest management functionalities:

boolean startElastest()

Executes the ElasTest platform with the options configured in the library (version,

lite)

boolean elastestIsRunning()

Return (in the moment) while ElasTest is already running. Checking if ElasTest

Platform container is running and if ETM is running too.

boolean waitElasTest()

Waits up to 900s to ElasTest to start up. Returns true if it has started, and false

otherwise.

boolean elastestIsStuck()

D6.1: ElasTest Continuous Integration and Validation System v1

25

This is a variation of the waitElasTest that detects if any the platform component

has been launched but the rest of the platform hasn’t.

connect2ElastestNetwork()

After the ElasTest platform is launched as a Docker container, if this method is

executed inside another container the method adds it with the ElasTest network.

stopElastest()

Stop the ElasTest platform and all the components.

getApi()

After the ElasTest Platform is started, this method initializes the connection

information for the ElasTest

pullERE(optional version)

In case the ERE is expected to be launched the pullERE method will pull the defined

version of the component if selected and the latest if void.

pullERE(optional version)

In case the ERE is expected to be launched the pullERE method will pull the defined

version of the component if selected and the latest if void.

testRemoteElastest()

If the library is configured to connect with an external ElasTest (nightly mainly) the

library would try to connect with it instead of “startElastest”.

3.2.2.3.4 Pipeline encapsulation:

pipeline(body)

This method receives as parameter the user defined stages of the pipeline and

encapsulates them between the necessary logic to select the kind of ElasTest

execution and the management logic of the ElasTest. Resulting in a more complete

pipeline with the start ElasTest and release ElasTest stages added to the user

defined stages.

3.3 Security and User Access

3.3.1 Security

The CI environment has been designed to grant a great level of security by applying the

following rules:

 Minimize doors to the environment:

D6.1: ElasTest Continuous Integration and Validation System v1

26

The accesses to the instances where the tools are running are only accessible

from NaevaTec VPN. By default, all the ports are closed for inbound connections,

and only SSH port is open for NaevaTec VPN and it is secured by SSH2 and private

key, with no user/password enabled. Ports 80 and 447 for the world. All the

connections through the port 80 (HTTP) are redirected to port 447 (HTTPS).

 Nominative access to resources:

All the not public resources are behind a log-in process. All the log-ins are

nominative. And the accesses to the resources are logged and can be audited in

case of secret revelations.

3.3.2 User Access

The CI environment and procedures allows all the members of the consortium to access

the whole set of tools in a secured way with different access profiles, which depend on

the roles they have within the project.

We have designed a GitHub Oauth2 based centralized login for most of the tools access.

The groups of access are mainly maintained on the GitHub so the same access to the

code management is replicated to most of the CI environment tools.

Each user will be probably assigned to more than one group, and that will enable

different scopes within the CI environment.

Two groups for each Partner:

<Partner>-admin

 Users: Only selected users from the partner designed to admin CI reserved

scope.

 CI functionalities: Full access to functionalities within the partner reserved

scope.

<Partner>

 Users: All the users from the partner that will be using the CI.

 CI functionalities: <Partner>-admin will enable the features within its reserved

scope that these users can use.

Two groups for each Component:

<Component>-admin

 Users: Only selected users from the partners working on the component,

designed to admin CI reserved scope. Most probably users from the partner who

is leading the WP or the related task.

 CI functionalities: Full access to functionalities within URJC reserves scope.

<Component>

 Users: All the users from the group of partners working on this component that

will be using the CI.

D6.1: ElasTest Continuous Integration and Validation System v1

27

 CI functionalities: <Component>-admin will enable the features within its

reserved scope that these users can use.

Figure 9. Authorization management: Teams

As presented in the Figure 9. We have defined Teams for each Partner and each

component.

 Any consortium user will be part of its company team and also part of any of the

teams where she/he is collaborating.

 Each organization can name any number of administrators of his/her group. And

they will have administrator rights over that team.

 Each component leader will be administrator of the component team they are

leading. And the leader can grant any user administrator rights over her/his

managed group.

 Then there is a nominative group (with no associated team on GitHub) that have

administrative access to all the teams, and to the GitHub organization.

 In addition to the GitHub Teams, some users would be selected as administrators

of selected tools with independence of the partner and components he/she

belongs to.

The rest of the applications in the environment will rely on the GitHub OAuth2 login and

retrieve the user teams to grant the appropriate access to the tool to each user. By

default, Partners teams are used for granting access to the tools and then components

to add the appropriate level of access to the user.

The user access configuration allows to open the contribution to the project to people

outside the consortium while maintaining the tools and the access to the sensitive tools

and applications restricted to the Consortium.

D6.1: ElasTest Continuous Integration and Validation System v1

28

The following figure shows a diagram of a Jenkins user login.

Figure 10. Jenkins user login

The user would be required to give each of the linked applications read permissions over

his/her GitHub account. Those permissions can be revoked from her/his GitHub account

at any moment.

3.4 Maintenance

The CI environment is regularly updated for maintaining the set of tools in a stable,

secure and updated state.

The maintenance has been scheduled to be carried every three months with a full

upgrade to the latest stable version of each of the hosted tools. Also, Exceptional

maintenances have been taken into account for critical or important bugs or security

issues. [See 4.7 Maintenance procedures]. Each of the actuations held on the

environment are documented and these documents are kept for future reference and

available for all the partners to read.

At the moment the following actuations have been run/ scheduled in the environment:

Date Name Cause Status Description

03/07/2017

20170703 -

Maintenance

Window

Scheduled Done
OS, Jenkins, Nginx and

Docker updates.

02/10/2017

20171002 -

Maintenance

Window

Scheduled Done
OS, Jenkins, Nginx,

Docker, Docker

D6.1: ElasTest Continuous Integration and Validation System v1

29

Compose, aws-cli

updates.

20/11/2017

20171120 -

Maintenance

Window -

Exceptional

Security Done OS, Jenkins updates.

22/12/2017

20171222 -

Maintenance

Window -

Exceptional

Security Done OS, Jenkins updates.

16/01/2018

20180116 -

Maintenance

Window

Scheduled
Done with

issues

OS, Jenkins, Nginx,

Docker, Docker

Compose, aws-cli

updates.

26/02/2018

20180226 -

Maintenance

Window -

Exceptional

Security Done OS, Jenkins updates.

02/04/2018

20180402 -

Maintenance

Window

Scheduled Done

OS, Jenkins, Nginx,

Docker, Docker

Compose, aws-cli

updates.

02/07/2018

20180702 -

Maintenance

Window

Scheduled Delayed

OS, Jenkins, Nginx,

Docker, Docker

Compose, aws-cli

updates.

01/10/2018

20181001 -

Maintenance

Window

Scheduled Scheduled

OS, Jenkins, Nginx,

Docker, Docker

Compose, aws-cli

updates.

10/01/2019

20190110 -

Maintenance

Window

Scheduled Scheduled

OS, Jenkins, Nginx,

Docker, Docker

Compose, aws-cli

updates.

01/04/2019

20190401 -

Maintenance

Window

Scheduled Scheduled

OS, Jenkins, Nginx,

Docker, Docker

Compose, aws-cli

updates.

01/07/2019

20190701 -

Maintenance

Window

Scheduled Scheduled

OS, Jenkins, Nginx,

Docker, Docker

Compose, aws-cli

updates.

07/10/2019

20191007 -

Maintenance

Window

Scheduled Scheduled

OS, Jenkins, Nginx,

Docker, Docker

Compose, aws-cli

updates.

Table 3. Maintenance schedule.

D6.1: ElasTest Continuous Integration and Validation System v1

30

4 Methodology and Procedures

The following section describes all the procedures defined to interact with the

environment and tools and maintaining them.

4.1 Methodology and Procedures

4.1.1 Basic Rules and Best practices.

The following rules apply to all the CI environment users:

 Actively protect her/his access data to private repositories

 Not sharing his/her access data with any other person, especially with those

external to the consortium.

 Communicate to the administrators any suspicion of misbehaviour or data access

loss.

 Grant the SW published by Jenkins under her/his control to behave as expected.

 Not to publish any “dangerous” or “malicious” artifact.

4.1.2 Jenkins: Login

Users within the ElasTest Organization in GitHub that are members of any of the

partner’s teams would be granted access. Anybody inside the ElasTest Organization that

isn’t member at least of one of the partners’ team won’t be able to access.

1. Go to https://ci.elastest.io/jenkins

2. Authorize the application in your GitHub Account

Figure 11. Authorize Jenkins GitHub

Users can revoke the authorization at any moment:

1. Go to https://github.com/settings/applications

https://ci.elastest.io/jenkins
https://github.com/settings/applications

D6.1: ElasTest Continuous Integration and Validation System v1

31

2. Select Jenkins and press revoke:

Figure 12. Revoke Jenkins GitHub

4.1.3 Jenkins: Tagging slaves and jobs

Whenever a slave is registered Jenkins offers the possibility of setting a set of labels/tags

that defines the slave. So, jobs can restrict their execution to a specific slave or set of

slaves that provide them with the necessary environment.

As it is a good practice to use the tags “wisely”. The following rules are recommended

for tagging slaves and jobs.

 Slaves

All the slaves should be tagged so they will be assigned jobs that they are capable of

executing. At least, there should be one tag for each of the following:

 OS: general, distribution, distro+version (e.g.: Linux ubuntu14.04)

 Tools /SW: one tag for each tool/SW installed on the AMI with version if it

applies. (e.g.: java8, mvn3.3.9)

Also, when a slave is too sensitive or it is too specific for a job, it can be tagged with a

name or token and the jobs can configure the aforementioned tag so they will be

executed in that slave specifically.

 Jobs

In order to launch the job on the correct Instance the Flag “Restrict where you can run

this project” should be checked. This will enable a field where tags can be used in logical

predicates to set the kind of instance this job needs to run.

The following rules apply to compose the predicate:

 Set the OS, as restrictive as it is necessary. Examples:

o Linux - no specific distribution is necessary

o ubuntu14.04 - this specific distribution is needed.

o Linux && !ubuntu - this job needs a Linux but it cannot be Ubuntu, but all

other distributions will be valid...

D6.1: ElasTest Continuous Integration and Validation System v1

32

 Set of tools needed. Examples

o (OS predicate) && (maven && java8)

 Specific label of a node.

As the predicate is written the user will see the number of slaves or cloud resources that

satisfies the predicate in that moment. If there isn’t any slaves or cloud resources that

satisfies the predicate and there isn’t any restriction that can be overseen system

administration will look for a solution – probably create and define a new type of

instance that would act as a Jenkins Slave –.

4.1.4 Private User Registry: Login and Register

In the main page the user should click on the Sign in with GitHub button located on the

top right corner.

Figure 13. User Registration home

Along the first attempt to access to this application, GitHub will request the user

permission to enable ElasTest User Registry application in order to gather the user data

from his GitHub account. The mechanism requests access to the user public information

and his membership within organizations and teams (read-only). If the user is member

of more than one organization she/he can chose only the ElasTest organization, as the

application won’t be reading other information.

D6.1: ElasTest Continuous Integration and Validation System v1

33

Figure 14. User Registration. GitHub Authorization

If the user is member of the ElasTest organization and belongs to at least one of the

Consortium Teams (ATOS, CNR, FOKUS, IBM, IMDEA, NaevaTec, REL, TUB 5G, TUB IIoT,

URJC, ZHAW), he/she will be able to register and then generate his/her credentials.

The first time the user is logged in, a form will pop-up. Filling this form will grant the

administrators to gather the information needed to provide the user with the requested

credentials.

Figure 15. User Registration form

1. User Name. Retrieved from GitHub and it can’t be modified from this form.

2. Email. Retrieved from GitHub and could be overwritten with a different email

address provided by the user. This information will be used to send the user

credentials.

3. First Name. This field is retrieved from GitHub and could be overwritten from

this form and should contain the user’s REAL first Name.

4. Last Name. Not pre-initialized and must be filled by the user’s REAL last name.

5. Partner. To which partner does the user belongs to. (Can’t be changed once

submitted).

D6.1: ElasTest Continuous Integration and Validation System v1

34

6. Submit. To proceed with the registration

4.1.5 Private User Registry: Manage User,

Once registered, the user will be able to manage his/her information, and his/her

credentials. Also, the user will be able to delete him/her-self from the application

Figure 16. User Registration. User Management

 Delete User.

Deleting a user will prompt a confirmation dialog. Once it is confirmed the following

actions will take place:

 If the user has active credentials they will be revoked.

 The data kept in the application database will be deleted, no information will be

kept (except the logs of his/her activity within the tools).

D6.1: ElasTest Continuous Integration and Validation System v1

35

 Edit User Information.

Figure 17. User Registration. User Information edition

The fields that can be edited are:

 Name

 Last Name

 Email.

 Requesting access to Nexus Repository.

The nexus repository is used as a private software Artifact repository where those

components that shouldn’t be published outside the consortium should be published.

Activate the access to Nexus will create a user inside the nexus with the same username

as GitHub, and a secure password will be sent to the provided email.

Once the user has an active credential for the nexus the options to refresh and delete

the credentials will be enabled.

D6.1: ElasTest Continuous Integration and Validation System v1

36

Figure 18. User Registration. Access to Nexus activated

 Requesting access to ECR

ECR is a private Docker container registry where those images that shouldn’t be

published outside the consortium should be published.

Activate the access to Nexus will create the credentials to access the Docker registry.

The credentials will be sent to the provided email. Once the user has an active credential

for the ECR the options to refresh and delete the credentials will be enabled.

Figure 19. User Registration. Access to AWS ECR activated

 Refresh access to Nexus

Refreshing the access to Nexus will revoke the previous credentials and a new password

will be sent to the user.

D6.1: ElasTest Continuous Integration and Validation System v1

37

 Refresh access to ECR

Refreshing the access to ECR will revoke the previous credentials and new credentials

will be sent to the user.

 Revoke access to Nexus

The revocation of the access to Nexus will disable the user in the Nexus. But it won’t

delete the user so we can keep track of the previous actions done by the user.

 Revoke access to AWS ECR

The revocation of the access to ECR will disable the user in the ECR and the credentials

provided previously will be revoked. But it won’t delete the user so we can keep track

of the previous actions done by the user.

4.2 Development environment configuration for AWS ECR

The following procedure should be followed in order to access any of the Docker images

hosted in the private AWS ECR.

1. Register for an AWS ECR private registry account. (See section 4.1.4 Private User

Registry: Login and Register). Once you have registered for ECR you will receive

credentials by email

2. Install AWS CLI tools for your platform using the AWS CLI Installation guide

provided by Amazon.

3. Configure AWS by running aws configure with the following parameters:

 AWS Access Key ID - provided in the email received in step 2.

 AWS Secret Access Key - provided in the email received in step 2.

 Default region name - eu-west-1

 Default output format - json

4. Login to the private ECR registry by running $(aws ecr get-login --no-

include-email)

4.3 Jenkins Jobs Naming

As a component owner, you can have as many jobs in Jenkins as you want. There is a

Jenkins folder per each component. The more common jobs are the following:

 Compile jobs: These jobs are executed in every commit that lands to master

branch (directly or after a merge or rebase). They execute unitary and integration

tests and if there are no errors, it publishes development artifacts to binary

repositories. In the case of platform components, they create and publish the

main component image in DockerHub. The names of these jobs are simply the

acronym of the component. For example: EDM, EPM, ETM, among others.

 End to end test jobs: These jobs execute end-to-end tests against Docker images

generated in the compile job. They are executed also in every commit, after the

compile jobs. In the future, if these tests spend too much time to execute (and

D6.1: ElasTest Continuous Integration and Validation System v1

38

use too much computing resources), it will be considered executing them once a

day, at night or even with fewer periodicity -every two days or even weekly-. The

names of these jobs are the acronym of the component followed by “e2e”. For

example: edm-e2e, epm-e2e, etm-e2e, etc.

 Docker images jobs: As complementary component images and test images

change less often than main component images, it is not necessary to recreate

them in every commit of the main repository. For that reason, it can be useful to

have Jenkins jobs tailored specifically to the creation of complementary

component images and test images. To reduce the number of jobs to maintain,

it is ok to have only one job per component that creates all complementary

component images and test images of that component. But it will be also

accepted to have a job per complementary in case more fine-grained control

over image creation is needed. Those jobs can be executed manually by the

component developer or can be executed on every commit that affects to files

on that image. A crucial aspect is to follow the name format for the jobs. If only

a job for all images exists, the name of that job is the acronym followed by “-

comp-images”. For example: edm-comp-images, epm-comp-images, etc.… In

other case each subcomponent job should be named according to the image

name, for example: eim-logstash, edm-mysql, etc.

In summary, we will have the following Jenkins jobs in every component folder:

1. Compile job: <component_acronym>

2. End to end job: <component_acronym>-e2e

3. Docker images job:

 Multiple images: <component_acronym>-comp-images

 One image: <component_acronym>-<complement>

4.4 Development

 Source code management:

All the ElasTest repositories must be contained in the ElasTest GitHub organization:

https://github.com/elastest. Inside this organization, there are two types of

repositories:

 Internal repositories, i.e. repositories created directly in the ElasTest

organization.

 Forked repositories, i.e. repositories originally created in a different

organization, but forked inside the ElasTest GitHub organization.

Each of the repositories would be managed and administered by the component leader.

Leaders have the freedom of add people to the contributors and select the best

branching and merging directives that would fit better for the managed component.

As defined in the Grant Agreement document, the license of the public repositories

should be one of the following: LGPL, Apache 2, or MIT. For the sake of simplicity, we

https://github.com/elastest

D6.1: ElasTest Continuous Integration and Validation System v1

39

selected Apache 2.0 [10] license for every public software artifact of ElasTest, except

those that pertain to the background of a partner.

Each repository should contain a README file, written in Markdown format, in the root

with the default template (See [27]) defined for the project. At least the following

information should be present in each README file:

 Badges

 Header (ElasTest logo, copyright, license)

 Name of repository and description

 Brief description of ElasTest

 License and distribution information

 Contribution policy

 Support

In addition to the README file each repository that belongs to an ElasTest component

should have a folder for the user documentation.

The badges expected to be found in each of the repositories are the following:

 License.

 Documentation.

 Build Status.

 Code Coverage.

 Quality.

D6.1: ElasTest Continuous Integration and Validation System v1

40

Figure 20. Example of README.md

D6.1: ElasTest Continuous Integration and Validation System v1

41

4.5 Testing

4.5.1 Unitary and integration (component)

All the components are expected to have a complete suite of unitary tests. The suite

should reach about a 70% test coverage for mature components whether those

components where research is more prominent are expected to have weaker test

coverage at this point.

Test coverage changes rapidly with the different iterations on the development process

but as an idea at the moment of writing this document the test coverage of each

component is the following:

Component Test Coverage

elastest-torm 43,71%

elastest-user-emulator-service 73,74%

elastest-monitoring-service 95,45%

elastest-instrumentation-manager 7,21%

elastest-monitoring-platform 69,91%

elastest-cost-engine 79,70%

elastest-platform-manager 55,18%

elastest-data-manager 90,91%

elastest-service-manager 84,64%

elastest-bigdata-service 92,31%

elastest-device-emulator-service 34,31%

Table 4. Code Coverage. Date: 21-06-2018

To report the test coverage, we have selected CodeCov.io tool that provides a good

graphic interface for the public repositories of GitHub and provides a good insight of the

improvements made with each commit to the test coverage.

In order to publish the test coverage into CodeCov.io the following steps should be as

follow:

1) Generate the Cobertura reports in a Jenkins Job.

2) Use the provided Tokens (as Jenkins Constants) for the appropriate repository,

to upload the reports to CodeCov.io

3) Add badge for code Coverage in the GitHub documentation.

Jenkins jobs examples for the configuration of Cobertura reports and codecov.io

integration have been provided for the partners to follow. You can find more

information in A3. Cobertura Reports and CodeCov.io integration procedure.

D6.1: ElasTest Continuous Integration and Validation System v1

42

4.5.2 End-to-end tests.

 We have devised an end-to-end test plan that have 3 main stages:

1. Component end-to-end: Components provide end-to-end tests that ensure the

behaviour of the component and all the services that it makes use of. This kind

of tests are usually held against the component API and can be launch against

the component running as a part of the ElasTest platform, or against an isolated

instance of the component if applies. This kind of test aren’t applicable to all the

components, see section 4.5.2.4.

2. Platform end-to-end, traditional tools: Most components have defined their

own end-to-end tests that test their behaviour within the ElasTest platform

through the GUI. These tests reproduce use cases that would make use of the

component tested. The assertion clauses are focused on the component tested.

Only components that have no GUI are excluded from these end-to-end tests.

This way once run all the component end-to-end tests we have an idea of the

actual behaviour of the whole platform. These tests are run by Jenkins jobs

nightly.

3. Platform end-to-end, ElasTest: All the Jenkins jobs of the stage 2 are being

converted on TJobs of for ElasTest. These TJobs would be run on a Stable

ElasTest. This is a project milestone planned for the end of 2018.

 ElasTest-library

In order to use the described library in section 3.2.2.3 a procedure have been created,

in order to simplify and unify the style of the end-to-end tests jobs that run over a full

ElasTest.

The code and basic documentation can be found in the following repository:

https://github.com/elastest/ci-elastest-jenkins-lib and can be used in Jenkins pipelines

with the following reference: @Library('ciElastestConnect') _

The library has been developed with the basic functionality provided by the

elastest/platform component, but other common useful functionalities can be added at

any time.

 The library can be configured to launch different configurations of the ElasTest:

 Normal / experimental / experimental-lite

 One per job / one shared for all the jobs…

 Specific version of the ElasTest

4.5.2.2.1 Library initialization

First of all, the library should be instantiated. The name the library has been registered

with in the Jenkins is 'ciElastestConnect'

@Library('ciElastestConnect') _

https://github.com/elastest/ci-elastest-jenkins-lib

D6.1: ElasTest Continuous Integration and Validation System v1

43

After the declaration of the library it should be configured to behave as we expect. We

have two kind of configuration parameters: mandatory and optional.

 Mandatory:

o Context:

//initialization of the context for the library

elastest_lib.setContext(this)

 Optional:

o Mode

 Values: “normal” [default], "experimental", "experimental-lite"

o Verbose

//uncomment this if you want to use a lite or augmented version of

elastest
//elastest_lib.setMode(“experimental”)

o Version

//uncomment this if you want a more detailed log
//elastest_lib.setVerbose(true)

o Shared

 The shared parameter is recommended to be used with the

default value.

More configuration options are described in section A5. ElasTest Jenkins Library API.

Lastly in the library set up we need to instantiate an ElasTest object to be able to execute

the methods provided by it within our stages.

//initialization of the runnable object to access elastest methods

//inside the pipeline

def elastest = elastest_lib.getElastestMethods()

4.5.2.2.2 End-to-end stages

In order to define our custom stages, it is important to notice that no node declaration

is accepted (the library will take care of it).

Once marked that, the stages should be declared inside of the

elastest_lib.pipeline({...}) method. Example:

//definition of nodes is managed by the library. Just declare the

//steps of your pipeline inside the elastest_lib.pipeline({...})

elastest_lib.pipeline({

 stage('Conf tests')

 echo 'Test configuration'

 stage(‘E2E tests')

D6.1: ElasTest Continuous Integration and Validation System v1

44

 echo 'Here your tests'

})

This definition of stages will lead to a pipeline like this one:

Figure 21. Jenkins ElasTest-library. Pipeline

Stages “launch elastest” and “release elastest” are added by the library.

Inside the user defined stages, the following rules apply:

 Plugins and common stages:

o As the execution of the commands is done inside the library the context

is different, and some objects or stages are unavailable. The invoked

object or stage will fail with the next error:

java.lang.NullPointerException: Cannot invoke method image() on null object

 at org.codehaus.groovy.runtime.NullObject.invokeMethod(NullObject.java:91)

 at org.codehaus.groovy.runtime.callsite.PogoMetaClassSite.call(PogoMetaClassSite.java:48)

 at org.codehaus.groovy.runtime.callsite.CallSiteArray.defaultCall(CallSiteArray.java:48)

 at org.codehaus.groovy.runtime.callsite.NullCallSite.call(NullCallSite.java:35)

 at org.codehaus.groovy.runtime.callsite.CallSiteArray.defaultCall(CallSiteArray.java:48)

 at org.codehaus.groovy.runtime.callsite.AbstractCallSite.call(AbstractCallSite.java:113)

o This error can be solved by adding elastest.ctx to the object or the stage

for example:

docker.image('...') //fails

elastest.ctx.docker.image('...')//works

 Inside a custom container:

o When the job launches a custom container and when from inside that

container, the job tries to connect with the ElasTest in any way curl,

Selenium, etc. The launched ElasTest wouldn’t be reachable.

o The solution is to execute inside the container and before trying to

connect with the ElasTest, the following library method:

elastest.connect2ElastestNetwork()

 Jenkins end-to-end tests job structure

In order to compare the jobs execution and have a “meta-job” that can run parallel end-

to-end test jobs and be able to compare stages the end-to-end job pipelines should be

similar. The proposed stages are the following:

D6.1: ElasTest Continuous Integration and Validation System v1

45

1. “Launch elastest”: Library Stage. It will launch the ElasTest instance or check the

nightly Instance.

2. “Configuration: User stage. Here the entire configuration previous to the tests

execution will take place. From launching a specific container and connecting it

to ElasTest, to load tests parameters.

3. “E2E tests”: User stage. Here only the execution of the test should take place.

4. “Results”: User stage. The results can be published here.

5. “Release elastest”: Library Stage. It will release and delete the ElasTest Instance

or doing nothing in case the shared library is used.

We recommend to add all the proposed stages and fit your steps in the proposed stages,

without any addition or deletion, in case one stage is empty it should be filled with an

echo step.

 End-to-end tests per component

Each component can be tested as a black box, to assert the validation of the provided

APIs, and expected behaviour. Each component can define its own method of validation

and test execution scheduled. These tests aren’t mandatory so they are a

recommendation, as a first step towards the Integrated UI end-to-end tests.

4.5.2.4.1 ElasTest Big Data Service (EBS)

The ElasTest Big-Data Service consists of an Apache Spark [40] cluster, the necessary

connectors for persistence services (EDM) and a REST API to provide detailed health

information for the cluster.

The API tests are written in Python using the requests library and fully check the

functionality of the cluster. An abstract explanation of the steps is given below:

1. Create a TJob (described below).

2. Execute the TJob

3. Probe for results.

4. Exit (successfully or unsuccessfully).

While the test performs a thorough check of ElasTest API functionality for interacting

with EBS, the specific TJob is specifically created to perform an end-to-end test on the

EBS service by going through the whole lifecycle of a Spark application. More specifically

the job will:

1. Git clone a demo Spark application from ElasTest demo projects [41].

2. Build the application using maven.

3. Download a big text file [42] from the internet and save it to HDFS (EDM).

4. Submit the application to the cluster. This is a word-count application that will

return the number of occurrences of every word on the specified file and save

the results back in HDFS.

5. Pull the result file back out from HDFS.

6. Perform a printout on the result file.

D6.1: ElasTest Continuous Integration and Validation System v1

46

4.5.2.4.2 ElasTest Cost Engine (ECE)

The ElasTest Cost Modelling Engine (ECE) has been implemented in Java, using Spring-

boot [37] and Thymeleaf [38] templating framework. The unit tests are written as Junit

4 [33] tests and code coverage are assessed using Cobertura [34] reports. The project

itself is developed as a Maven [35] project and the tests can be executed locally as well

as on the ElasTest CI server [36]. The unit tests cover the following functionality in ECE:

 REST driver functions

 Controller functions which controls the UI rendering of cost analysis requests

In the next iteration of ECE, online accounting and billing mode will be added, and JUnit

tests will be enhanced to cover the new features in order to maintain or increase the

code coverage of the module.

4.5.2.4.3 ElasTest Data Manager (EDM)

The ElasTest Data Manager (EDM) is a bundled set of persistence services in a single

component. All tests (with or without ElasTest GUI) must utilize other components in

order to test EDM functionality, as most parts of EDM are not API nor GUI directly

accessible, only via other services. The only components that can be directly end-to-end

tested are cloudcmd (via ElasTest Platform UI) and Kibana (via ElasTest Platform UI).

4.5.2.4.3.1 Hadoop/Alluxio

Hadoop and Alluxio are tested via EBS end-to-end test 4.5.2.5.1 ElasTest Big Data Service

(EBS). The job functionality described in the relevant section is specifically designed to

perform different operations on Hadoop, in order to verify both components work.

4.5.2.4.4 ElasTest Device Emulator Service (EDS)

The goal of EDS end-to-end tests is to invoke the TSS EDS via ETM, use the facilities

offered by EDS in particular the facilities offered by service eds-base to initiate sensors

and actuators. Furthermore, the initiated sensors and actuators can be wired at the

application level where the end-to-end test is written.

The tests are executed in the ElasTest CI server [36] and are defined by a Jenkinsfile [44].

The EDS provides a test [45] that uses the API facilities of the ETM to invoke and use eds-

base in the steps mentioned below:

1. Open ElasTest using a HTTP request with authentication parameters that is

available on the machine running Jenkins.

2. Create a new project with name EDSE2E via http request to ETM.

3. Send a request to the ElasTest Platform to facilitate new TJob with the following

details:

a. TJob name as demotjob.

D6.1: ElasTest Continuous Integration and Validation System v1

47

b. Commands required to run the end-to-end test.

c. ESM string to indicate initiation of required TSS. In this case only

component EDS.

4. TJob execution process -

a. Wait until the TSS is available.

b. After TSS is made available from ETM, execute the TJob until its

completion.

c. A successful exit of the test indicates the TJob was successful in execution

else the TJob execution is marked as Fail.

4.5.2.4.4.1 Test Application for the EDS tests

The test application interacts with service eds-base offered by EDS to request

components and wire them. The components offered at present are:

 Temperature sensor: This is a sensor which provides sensor values at a fixed

interval and can be turned on or off.

 Simple actuator: This actuator receives a value at its input which it will forward

to the output after a fixed delay. This actuator can be turned on or off.

The sequence of actions carried out by the test application are as follows:

1. Register the test application with eds-base.

2. Request for a temperature sensor.

3. Request for a simple actuator.

4. Turn on the temperature sensor and fix the reporting interval to 5 seconds.

5. Turn on the simple actuator and fix the reporting delay to 3 seconds.

6. Wire the output of the temperature sensor to the input of the simple actuator.

Wire the simple actuator output to the test application.

7. Run this loop for 60 seconds. After this terminate the application with a success.

4.5.2.4.5 ElasTest Instrumentation Manager (EIM)

The ElasTest Instrumentation Manager (EIM) has been implemented in Java, as a JAX-RS

RESTful API Service [47] using a MySQL database to store data (MongoDB is also

supported). JUnit 4 [33] has been chosen as testing framework for the component. Tests

suite is automatically executed by the ElasTest CI server [36], the tests are based on

several topics in order to cover these topics:

 Data storage layer.

 Data model layer.

 REST API performance.

4.5.2.4.6 ElasTest Monitoring Platform (EMP)

The ElasTest Monitoring Platform (EMP) is written in Java using Spring framework [18]

as a RESTful service. The unit tests are written as Junit 4 [33] tests and Cobertura [34]

reports are used to assess the code coverage. The EMP uses Maven [35] as its build

D6.1: ElasTest Continuous Integration and Validation System v1

48

environment and tests can be executed locally as well as on the ElasTest CI server [36].

The unit tests in EMP cover various capabilities for correctness including (but not limited

to) the following areas:

 Database interactions

 Time series data manipulations

 Kafka communications and topic management

 Controller functionalities

 API service

 Health check functionalities

 In memory cache behaviour

4.5.2.4.7 ElasTest Monitoring Service (EMS)

In order to test the ElasTest Monitoring Service (EMS) into the ElasTest Jenkins, a Jenkins

file has been provided [26].

The test starts launching an instance of ElasTest and its URL retrieved in order to access

the different functionalities exposed by the EMS. The test flow is specified in a bash

script [28] and it realizes the following actions:

1. An EMS instance is started using the ESM REST API.

2. Once the EMS is up and running, its URL is retrieved through the ESP API.

3. An empty project then is created also the ESM REST API.

4. A SuT is created inside the project from the previous step. This SuT runs a

dummy Docker [29] listing all the processes running on the container.

5. A TJob is created in the project and linked to the dummy SuT using also the ETM

REST API. The T-job is defined as a metricbeat Docker Image [30], configured to

send beats to the EMS whose URL was fetched in step 2.

6. The TJob is executed using the ETM REST API.

7. The EMS health-check is continuously queried to retrieve the amount of evens

processed. When this number differs from 0, the test finishes successfully. If 125

seconds have passed and EMS still hasn’t processed any events, the test finishes

with FAILURE.

4.5.2.4.8 ElasTest Orchestrator Engine (EOE)

The ElasTest Orchestrator Engine is still on first stages of design and development, so

component end-to-end tests doesn’t apply.

4.5.2.4.9 ElasTest Platform Manager (EPM)

The ElasTest Platform Manage doesn’t have direct interaction with the user. Its

behaviour is tested on every one of the other components’ tests. So, no specific tests

are needed for the EPM.

D6.1: ElasTest Continuous Integration and Validation System v1

49

4.5.2.4.10 ElasTest Recommendation Engine (ERE).

The ElasTest Recommendation Engine is mainly used through the ElasTest GUI. This first

set of tests are avoided, focusing all the effort in the GUI end-to-end tests – See section

4.5.2.5.10 –.

4.5.2.4.11 ElasTest Security Service (ESS)

The ESS end-to-end test is implemented in Python using the request libraries and can be

found in the ESS GitHub repository [31]. These tests have been automated in an ElasTest

Jenkins job following the recommendations [32].

The test does the following actions in order to check the validity of the ESS functionality:

1. Start the ElasTest Platform.

2. Call the ETM API for getting the status of the running services to check it the

ElasTest platform is accessible.

3. Launches an instance of ESS by calling the ETM API for launching a service.

4. A new project called “E2E test ESS” is created, also through the ETM API.

5. A new TJob (“E2E TJob”) is created under the “E2E tests ESS” project. This TJob

is based on the Docker image dockernash/ess-e2e [66] that has a python script

which makes http request via the 8080 port of a configurable IP address. This IP

address is set, as an argument, at run-time. In the test we setup the IP address

to be the ESS Man-in-the-middle proxy service running at port 8080.

6. The newly created TJob is run by calling the corresponding ETM API, and it would

validate whether the HTTP connection information is produced as output by the

ESS.

Steps 5 and 6 tests whether the man in the middle proxy service of ESS is working

properly and can be used by TJobs. Step 6 validates also whether the ESS can access

the connection information which is necessary for conducting further analysis.

4.5.2.4.12 ElasTest Service Manager (ESM)

The ElasTest Service Manager isn’t shown in the ElasTest GUI currently. But it has a

health check endpoint that is being considered to be used on the ElasTest platform to

inform the user of the current status of the component. Until this approach is further

studied no end-to-end test will be provided.

4.5.2.4.13 ElasTest Tests Manager (ETM)

The ElasTest Tests Manager (ETM) is a web application implemented with Java 8 [51]

and Angular 4 [52] as main technologies and build as a Spring Boot application [14]. To

test the ElasTest backend, JUnit 5 [15] is used as testing framework and the currently

D6.1: ElasTest Continuous Integration and Validation System v1

50

existing tests are available on the ETM GitHub repository [53]. These tests are focused

on check the ElasTest operation and for that make use the ETM’s API. The functionalities

covered by these tests are:

 Project Management

 TJobs Management

 TJobs Execution Management

 SUTs Management

These tests are executed by Jenkins [36] and together with the unit tests, after each

code integration, allow us to get to know that ElasTest is still working.

4.5.2.4.14 ElasTest User impersonation Service (EUS)

Regarding the end-to-end tests, two different tests have been implemented:

 SeleniumE2ETest [19]. This test starts a standalone instance of EUS, and it is used

to feed a Selenium’s RemoteWebDriver object. Two different types of browsers

(Chrome and Firefox) are used to navigate to a test SUT, in this case Wikipedia.

All in all, this test aims to verify that the basic operation of EUS (i.e. the capability

of providing browsers following a SaaS approach) is working properly.

 TimeOutTest [20]. The EUS, internally implements a timeout for browser

sessions. This timeout is reached when no interactions with the session is

performed in a given time (60 seconds by default). This test is aimed to verify

this feature. To do that, first the timeout is reduced to 5 seconds. Then, test

forces to wait longer than that timeout, in this case 10 seconds, verifying that

the proper exception (WebDriverException) is thrown by EUS.

These tests, together with the unit and integration ones, are executed by the ElasTest

Jenkins server. Concretely, these tests are launched when any new patch is committed

to the EUS GitHub repository. The job is labelled as “eus” in Jenkins [36].

 Integrated UI end-to-end tests

ElasTest is a set of components that should be tested as whole and following user paths

through the API. For these tests we have designed 3 steps that should be covered for a

complete validation of ElasTest itself:

 End-to-end component tests on a whole ElasTest (Nightly ElasTest). Each of the

teams should test its component but from the user point of view i.e. accessing

the functionality of the component through the web UI. This step would produce

a set of jobs, where each of these jobs would focus in a specific component.

 End-to-end user flows (Nightly ElasTest). Main use cases of the ElasTest

platform as a whole should be developed and tested. This would produce a set

of tests that would model use cases, which implies more than one component,

so integration issues can be found.

D6.1: ElasTest Continuous Integration and Validation System v1

51

 ElasTest tests ElasTest. One instance stable Instance of ElasTest would make use

of the tests and jobs produced on the previous stages and would be run over a

SuT that is a newer version of ElasTest.

We have reached maturity in the first step where most of the components have

provided a set of Jenkins jobs that test each component integrated in a common ElasTest

instance. But there is still work to be done in order to improve the already developed

tests and to add new tests that would increase the quality of the ElasTest platform as a

whole.

4.5.2.5.1 ElasTest Big Data Service (EBS)

EBS is tested using the ElasTest GUI, using Selenium [43] via Python. This test will create

a TJob, utilizing the UI controls of ElasTest platform. The purpose is to prove that EBS

can be fully managed via the graphical elements of ElasTest.

The TJob will behave as the not UI end-to-end TJob described for the EBS:

1. Git clone a demo Spark application from ElasTest demo projects [41].

2. Build the application using maven.

3. Download a big text file [42] from the internet and save it to HDFS (EDM).

4. Submit the application to the cluster. This is a word-count application that will

return the number of occurrences of every word on the specified file and save

the results back in HDFS.

5. Pull the result file back out from HDFS.

6. Perform a printout on the result file.

The tests will check if the results of the TJob are the expected ones.

4.5.2.5.2 ElasTest Cost Engine (ECE)

ECE has been integrated with the ElasTest dashboard, Jenkins job ece-e2e-test [39]

performs the end-to-end test to test the correctness of the integration between the

overall ElasTest dashboard and the cost engine. The tests have been developed using

JUnit 4 [33] and the web integration has been tested using Selenium drivers. The

following describes the structure of the test:

 invokeEce: This test verifies whether the ECE UI element is available within an

iframe of the main ElasTest. The test in the setup phase activates the Test-

Engines link from the main navigation panel in the dashboard. It then checks if

the ECE engine is present in the list of engines, and then starts the engine by

pressing the ‘Start Engine’ button. The test then verifies that specific HTML DIV

element in the ECE view is present or not. Presence confirms that the ECE UI is

integrated and working as expected in ElasTest dashboard. The JUnit assertion

tests whether a known ECE UI element has been displayed or not.

D6.1: ElasTest Continuous Integration and Validation System v1

52

The ECE future development with include ability to do actual cost calculations for all

valid executions for the selected TJob. The end-to-end test with the ElasTest GUI will be

evolved to test additional visual elements which will be incorporated in the ECE UI.

4.5.2.5.3 ElasTest Data Manager (EDM)

EDM components that can be specifically tested via the platform GUI are described here.

4.5.2.5.3.1 Cerebro/Elasticsearch/Kibana

Cerebro is a web admin tool for Elasticsearch. By performing a UI test of Cerebro,

Elasticsearch functionality can also be tested. Unfortunately, Cerebro is not yet

accessible from ElasTest dashboard, so end-to-end test cannot be applied yet. The same

applies for Kibana.

4.5.2.5.3.2 Cloud Commander

Cloud commander (cloudcmd) is a web-based file manager for managing files stored in

HDFS. It is tested via EBS E2E UI test – See 4.5.2.5.1 –, since that test also produces data

inside HDFS.

4.5.2.5.4 ElasTest Device Emulator Service (EDS)

The goal of EDS end-to-end tests is to invoke the TSS EDS via ETM, use the facilities

offered by EDS in particular the facilities offered by service eds-base to initiate sensors

and actuators. Furthermore, the initiated sensors and actuators can be wired at the

application level where the end-to-end test is written.

The EDS Integrated and UI Test [46] uses Selenium framework using the Chrome web

driver [43] to interact with the ElasTest dashboard in a typical way how user can initiate

and run tests. This test is carried out using the Selenium framework using the Chrome

web driver in the headless mode.

1. Open ElasTest nightly using a HTTP request with authentication with

authentication parameters that is available on the machine running Jenkins.

2. Click the main menu button, followed by "New Project" button. Fill in the project

name as "EDSE2E_UI" and press save button.

3. Click on "New TJob" button. In here fill the name of the TJob as "sampletjob". In

the field image name, fill in "elastest/eds-base". In the field of SUT, select “None”

and press save. Fill in the commands needed to execute the TJob. In the options

containing required TSS for the TJob, cross mark the TSS EDS and press save

button.

4. Press on the start button of the execution of the TJob.

5. Monitor the dashboard status, for the word "Finished". Until it's obtained keep

looping.

D6.1: ElasTest Continuous Integration and Validation System v1

53

6. Once the TJob has completed execution, check the dashboard status again. If

SUCCESS is in the dashboard, then TJob exited with a result success else it was a

failure.

A complete description of the application that has been used to test the EDS on this test

has been provided in section 4.5.2.4.4.1 Test Application for the EDS tests.

4.5.2.5.5 ElasTest Instrumentation Manager (EIM)

EIM is also tested using the ElasTest dashboard, a web application. To test it, a Jenkins

job [48] has been created in the ElasTest CI Server [36]. This job runs automatically EIM

end-to-end tests that are implemented using JUNIT 4 [33] and Selenium [43].

 ObservabilityTest: this test verifies if a new SuT is correctly monitored by EIM.

To achieve this goal, the test follows these steps:

o Create new project

o Create SuT outside ElasTest platform based on EIM SuT image [49]

o Create new SuT in the created project. The SuT have these details:

 IP address

 user

 private key for the user

 Deployed outside ElasTest option selected

 Instrumented by ElasTest option selected

 Log paths: destinations that are monitored by EIM, in order that

if any file of these folders changes, a notification is sent.

o Create new TJob associated to the created SuT, with these details:

 Associate the TJob to the created SuT

 Environment Docker image [50]

 Commands: download a git repository and launch tests of the

project.
 git clone https://github.com/elastest/demo-

projects

 cd demo-projects/unit-java-test
 mvn -B test

 Uncheck All-in-one chart check in Metrics and logs section

o Launch the TJob:

 When execution starts, click on Open Monitoring Config. button

and check SuT node on metrics sections in order that monitoring

data appears on screen.

 The monitoring data appears in the several graphics of the screen:

https://github.com/elastest/demo-projects
https://github.com/elastest/demo-projects

D6.1: ElasTest Continuous Integration and Validation System v1

54

Figure 22. Graphics of EIM execution

 Test is marked as successful when graphics appears on the screen

4.5.2.5.6 ElasTest Monitoring Platform (EMP)

EMP has been integrated with the ElasTest GUI and the e2e-test [67] is the principal

mode to test the correctness of the UI integration. In the ElasTest CI server, Components

e2e -> elastest-platform-monitoring -> emp-e2e-test performs this integration test. It

uses JUnit together with Selenium [43] to invoke various elements of the GUI to assess

availability of known web-elements to assert whether the EMP + ElasTest GUI

integration still remains valid at that point in time or not. The workflow implemented as

part of this test is briefly described next:

 EMP End2End Tests: This test is divided into 3 parts, setup, “invokeEmp”, and

clean-up phases. Once the latest ElasTest platform is ready, the Selenium driver

via the latest Chrome image, accesses the web UI, and simulates a click the

sidebar element to switch to the EMP view. As the UI is accessed for the first

time after fresh creation by this end-to-end test, the EMP view will show the

login screen of Grafana which is the visualization framework used by EMP. The

test validates the login process and relies on the well-known behaviour for this

particular version of Grafana used in the EMP setup. The test proceeds to check

the login by inserting the username / password in appropriate fields and

checking the error popup in case the login fails. This workflow if succeeds

confirms the availability of Grafana view in ElasTest GUI and thus confirming the

integration with EMP UI elements.

This test is executed by the ElasTest CI server [36].

In future, it is planned to make the EMP administration UI also available on the ElasTest

GUI, once this integration is achieved, the EMP end-to-end tests will also be expanded

to include elements from the administration UI such as creation of new monitoring

spaces, series, health-checks, etc.

D6.1: ElasTest Continuous Integration and Validation System v1

55

4.5.2.5.7 ElasTest Monitoring Service (EMS)

ElasTest Monitoring Service has yet to develop the tests using the UI of ElasTest. But it

has been already planned 2 main tests for the integrated end-to-end.

EMS dummy SuT:

It would follow steps described in 4.5.2.4.7 where main functionality of the EMS is

tested, without minimum user personalization.

EMS events subscription:

The idea for this test is using the newest EMS capabilities to get feedback to the TJob

and define test actions accordingly to this feedback. The general layout for the test will

be the following:

1. Create a project with a SuT which runs a custom Docker image (e.g.

“imdeasoftware/ems-e2e_0-sut”). This SuT would emit events to the EMS.

2. Create a TJob for this SuT which will subscribe to interesting events. These

interesting events would be configurable dependant on the interest of the TJob

or SuT.

3. The EMS will be able to guide the behaviour of the SuT resembling the expected

layout of a real use case.

We believe that a well-thought-out testing using these tools will leverage the failure

discoveries of certain kinds of bugs which are usually hard to unveil (e.g. race

conditions).

4.5.2.5.8 ElasTest Orchestrator Engine (EOE)

The ElasTest Orchestrator Engine is still on first stages of design and development, so

component end-to-end tests doesn’t apply.

4.5.2.5.9 ElasTest Platform Manager (EPM)

The ElasTest Platform Manage doesn’t have direct interaction with the user. Its

behaviour is tested on every one of the other components’ tests. So, no specific tests

are needed for the EPM.

4.5.2.5.10 ElasTest Recommendation Engine (ERE)

ElasTest Recommendation Engine implemented 2 main tests that will cover the full

functionality of the component.

Test 1. Asking recommender about suitable tests for reuse.

Prerequisite: Sample model available for queries. This does not need to be performed as

a part of the test – sample model is available for the user once Docker container is

started.

D6.1: ElasTest Continuous Integration and Validation System v1

56

1. Open the ElasTest dashboard UI.

2. Switch to Test Engines Dashboard.

3. Start ERE container.

4. Log into ERE.

5. Open ‘New Recommendation’ wizard.

6. Type in query in natural language and specify confidence threshold.

7. Run the query.

8. Verify the returned result.

Test 2. Pre-processing user data.

Prerequisite: (a) Platform is running in experimental mode. EDM component

operational. (b) Sample data loaded to Alluxio. This is performed as a pre-test action,

using Alluxio REST API.

1. Open the ElasTest dashboard UI.

2. Switch to Test Engines Dashboard.

3. Start ERE container.

4. Log into ERE.

5. Open Admin Dashboard.

6. Open Pre-process tab.

7. Select Alluxio option.

8. Launch pre-processing action.

9. Verify that the action completed with no errors.

4.5.2.5.11 ElasTest Security Service (ESS)

The current integration of the ESS on the ElasTest UI is scheduled to be changed so end-

to-end tests using the GUI haven’t been developed yet, but they will be implemented

using a Jenkins job that does the following:

1. Download ElasTest, launches the ElasTest Platform and gets the IP address of the

ElasTest platform (hereinafter referred to as ELASTEST_IP).

2. Starts the container for the end-to-end test and executes a python program that

contains the end to end tests. During the execution of this program, the

value ELASTEST_IP is passed as an argument to it.

This program does the following tests:

Test 1: To test whether the ElasTest GUI loads correctly, the program does the

following

Opens a Firefox web browser, visits http://ELASTEST_IP:37000 (ElasTest GUI) and waits

until the GUI loads completely.

Test 2: To check whether a new project and a TJob can be created using the ElasTest

GUI

1. Click on the "Projects" option in the side panel of the ElasTest dashboard.

D6.1: ElasTest Continuous Integration and Validation System v1

57

2. Click on the "New Project" icon that appears, enter the value "ESS e2e test

project" in the input field with placeholder value "Project Name" and click the

"Save" button.

3. Click on the <div> with value "ESS e2e test project" to load the project-specific

page.

4. Click on the "New TJob" button.

5. Enter the TJob name for the field with placeholder "TJob name", select the value

"None" from the drop-down list to select the SuT, provide the value

"dockernash/test-TJob-ess" [68] to the input field with place holder

value” Environment Docker image", tick the checkbox corresponding to "ESS"

and click the "Save" button. In this way a new TJob is created. This TJob contains

a python script that makes HTTP requests to the domain google.com through the

ESS man in the middle proxy. This python script refers to the ESS man in the

middle proxy through the ESS environment variable provided by ETM.

Test 3: To test whether a TJob can be analysed by ESS

1. Click on the "Run TJob" button corresponding to the newly created TJob.

2. Wait until the status of the TJob execution changes to "Success" or "Fail" or

"Error".

3. If it was "Success", then check whether a new iframe with the ESS GUI has been

loaded.

4. Wait until the ESS GUI displays the text "Results".

5. Check whether "google.com" is displayed under the list "Insecure http

connections" in the ESS GUI. This indicates that the TJob was able to make

connections via ESS and ESS was able to correctly identify the insecure http

connection made to the domain google.com.

This end-to-end test will test a unique path that corresponds to the successful execution

of a TJob via the ESS. Further tests can be added to test the behaviour during erroneous

situations.

4.5.2.5.12 ElasTest Service Manager (ESM)

The ElasTest Service Manager isn’t shown in the ElasTest GUI currently. But it has a

health check endpoint that is being considered to be used on the ElasTest platform to

inform the user of the current status of the component. Until this approach is further

studied no end-to-end test will be provided.

4.5.2.5.13 ElasTest Tests Manager (ETM)

The ETM provides ElasTest with a graphical user interface (GUI) and also the ETM must

be tested from this. For that purpose, JUnit 5 [15] and Selenium [43] are the selected

technologies to implement the tests. As we mentioned above, JUnit 5 is the used as a

testing framework and Selenium provides the capability to control a browser from the

tests.

http://google.com/
http://google.com/
http://google.com/

D6.1: ElasTest Continuous Integration and Validation System v1

58

The Test Manager end-to-end tests implemented for ElasTest are in the ETM GitHub [54]

repository and are described below:

 EtmUnitTestE2eTest. This test uses the ElasTest GUI to create the test basic

infrastructure (project + TJob) and configures the TJob to execute a simple jUnit

test without SUT.

 EtmRestApiE2eTest. This test uses the ElasTest GUI to create the test basic

infrastructure (project + TJob + SuT) and configures the TJob to use the created

SuT and test its API.

 EtmWebappE2eTest. This test uses the ElasTest GUI to create the test basic

infrastructure (project + TJob + SuT + EUS) and configures the TJob to use the

created SuT and test it using its GUI.

 EtmOpenViduWebRTCE2eTest. This test uses the ElasTest GUI to create the test

basic infrastructure (project + TJob + SuT + EUS) and configures the TJob to use

the created SuT and test it using its GUI. This test check correct operating of the

media transmission using the browsers provided by the EUS TSS.

 EtmTestLinkE2eTest. This test uses the ElasTest GUI to check the status of a

TestLink test created previously on ElasTest and below executes this test on

ElasTest and verify that these have finished correctly.

4.5.2.5.14 ElasTest User impersonation Service (EUS)

EUS is also tested using the ElasTest GUI (web application). To that aim, the project “e2e-

test” located in the EUS GitHub repository has been created. This project contains two

JUnit 5 [15] tests using Selenium by means of the JUnit 5’s extension Selenium-jupiter

[22]:

 EusSupportServiceE2eTest [23]. This test uses EUS as a Test Support Service

through the ElasTest GUI.

 EusTJobE2eTest [24]. This test uses EUS in a TJob through the ElasTest GUI. The

configuration of the TJob is done automatically by the test using an existing test

repository in GitHub [25].

Both tests are executed by the ElasTest Jenkins when a new patch in the EUS source

code is committed.

4.6 Releasing

For the releasing phase we have designed some procedures, as well as a set of rules that

developers and publishers should follow.

D6.1: ElasTest Continuous Integration and Validation System v1

59

4.6.1 Maven/Gradle Artifacts.

 Basic rules and best practices

 All public artifacts (snapshots and releases) will be available for everybody

(consortium and outside the consortium).

 Private artifacts (snapshots and releases) will be only available for people from

the consortium, under nominal users linked with GitHub login.

 All the artifacts public and private must follow the requirements for Central

publishing (even if they are not to be published in Central).

 It is mandatory to use stable versions of Maven 3 since other versions of Apache

Maven including all versions of Maven 2 and Maven 1 have reached their end of

life therefore they are no longer supported.

 Procedure

For public artifacts these procedures are MUSTs, as artifacts that not satisfy Central

requirements won’t be synchronized and won’t be accessed. For private artifacts these

procedures are recommendations.

 Javadoc and Sources

Projects with packaging other than pom have to supply JAR files that contain

Javadoc and sources. This allows the consumers of your components to

automatic access to Javadoc and sources for browsing as well as for display

and navigation e.g. in their IDE.

The naming convention for these files following the Maven repository

format uses the classifiers javadoc and sources and assembles the names

with artifactId and version with packaging jar.

 Sign Files with GPG/PGP

All files deployed need to be signed with GPG/PGP and an .asc file

containing the signature must be included for each file.

 Sufficient Metadata

o Correct Coordinates

The project coordinates, also known as GAV, coordinates determine the

location of your project in the repository. The values are:

 groupId: io.elastest.<subgroup> (if applies)

 artifactId: the unique name of the component

 version: <semantic versioning[12]> <-SNAPSHOT> (when applies

-this won’t be released to Central-)

D6.1: ElasTest Continuous Integration and Validation System v1

60

o Project Name, Description and URL

For some human readable information about the project and a pointer

to the ElasTest website:

 name: ${project.groupId}:${project.artifactId}

 Description: description of the artifact.

 URL: GitHub URL or if more descriptive web page has been made

for the module/component.

o License Information

The license definition by default as specified during the early stages of

the project public components should follow Apache License 2.0 [10].

o Developer Information

The developers section will provide developers information. When

specific developer information isn’t relevant or partners don’t want to

provide personal information, it can be set as follows:

<developers>

 <developer>

 <id>elastest.io</id>

 <name>-elastest.io Community</name>

 <organization>Elastest.io</organization>

 <organizationUrl>http://elastest.io</organizationUrl>

 </developer>

</developers>

o SCM Information

The connection to the GitHub. This part can be skipped by private

artifacts.

<scm>

 <connection>

 scm:git:git://github.com/elastest/<repo>.git

 </connection>

 <developerConnection>

 scm:git:ssh://github.com:elastest/<repo>.git

 </developerConnection>

 <url>

 http://github.com/elastest/<repo>/tree/master

 </url>

</scm>

 Specific ElasTest artifact Requirements

As it has been explained all public artifacts must meet the previous

requirements. In the case of the private ones these are recommended,

obviously -sources.jar and scm specification should be left out.

In addition to the previous indication the following rules should be

considered as best practices, and recommended for all the artifacts:

D6.1: ElasTest Continuous Integration and Validation System v1

61

o groupId:

 For artifacts belonging to a specific architecture component

use: io.elastest.<architecture-component-identificator>

 Other artifacts can make their own group as long as it doesn’t

interfere with the architecture groups.

o artifactId: use identifiable names.

o Use Nexus Staging Maven plugin for both public and private

repositories are Sonatype Nexus software.

o Define version of plugins and dependencies as properties.

 Configuration for consuming private Maven artifacts.

Private Maven artifacts are released onto our own Nexus Artifact repository. In order to

consume them it is important to have a strict policy so they aren’t distributed outside

the consortium.

Therefore, we have configured the Nexus to be accessed only under nominal user-

names linked with the GitHub accounts. As this feature isn’t built on the repository itself

it is delegated to the Private User Registry – see 4.1.5.5 –.

Developers would use the credentials provided by the Private User Registry on their

maven settings.xml.

In order to being able to use it in the development environment, the user should modify

its maven settings.xml to provide the definition of the server:

<servers>

 <server>

 <id>nexus-private-releases</id>

 <username>github-user</username>

 <password>provided-password</password>

 </server>

<server>

 <id>nexus-private-snapshots</id>

 <username>github-user</username>

 <password>provided-password</password>

 </server>

</servers>

And then configure the project’s pom so it makes use of that repository:

<repository>

 <id>nexus-private-releases</id>

 <name>Elastest Private Maven</name>

 <url>http://ci.elastest.io/nexus/repository/maven-snapshots/</url>

 <layout>default</layout>

 <releases>

 <enabled>true</enabled>

 <updatePolicy>never</updatePolicy>

 </releases>

 <snapshots>

 <enabled>false</enabled>

 </snapshots>

D6.1: ElasTest Continuous Integration and Validation System v1

62

</repository>

<repository>

 <id>nexus-private-snapshots</id>

 <name>Elastest Private Maven</name>

 <url>http://ci.elastest.io/nexus/repository/maven-releases/</url>

 <layout>default</layout>

 <releases>

 <enabled>true</enabled>

 <updatePolicy>never</updatePolicy>

 </releases>

 <snapshots>

 <enabled>false</enabled>

 </snapshots>

</repository>

4.6.2 Docker Images.

We have some different kind of Docker images within the ElasTest project:

o Public ElasTest components images: These are the public components of

ElasTest prepared to be launched and executed by the ElasTest platform

(ElasTest ToolBox).

o Private ElasTest components images: These are the private components of

ElasTest prepared to be launched and executed by the ElasTest platform

(ElasTest ToolBox) if they are available in the system.

o Environmental images: These images are used by many of the Jenkins jobs to

provide the necessary environment for the job to execute the steps needed to

reach its goal.

 How to create component images

The images will be pushed by a Jenkins job created with pipeline plugin1.

 Previous actions:

Check the repository you want to push into is already created, if it isn't contact

the administrators at elastest@naevatec.com

Name the image with the naming convention (<repository>/<image-

name>:<tag>) taking into account that for public images the repository is

“elastest” and for the private images the repository has this format:

“<amazonId>.dkr.ecr.eu-west-1.amazonaws.com/elastest”

 Jenkins job:

Inside the job it is necessary to login into the “elastestci” DockerHub account or

the AWS ECR. The credentials are registered inside the Jenkins Server.

We can push the image by: <image>.push

Example:

1 The Docker plugin won’t work outside the pipelines with the current configuration of Jenkins slaves

mailto:elastest@naevatec.com

D6.1: ElasTest Continuous Integration and Validation System v1

63

def myimage = docker.build "<reposistory>/<image-name>:<tag>”
withCredentials([[$class: 'UsernamePasswordMultiBinding',

 credentialsId: <credentials_id>,

usernameVariable: 'USERNAME',

passwordVariable: 'PASSWORD']]){

 sh 'Docker login -u "$USERNAME" -p "$PASSWORD"'

 myimage.push()

}

 Confirmation:

If the job result is SUCCESS, check the <repository>/<image-name>:<tag> and

you should see the Last Updated row as seconds ago.

Try from any place to pull the image and run it. It is as simple as execute Docker

pull elastest/<component-acronym>:<tag> in any machine with Docker installed

and configured. Log for the private repositories with the nominative credentials

provided by the Private User Registry, no login is necessary for pulling the public

images.

 How to create Environmental Images

Images used in CI are considered as “global” because can be used in the jobs of any

component. For that reason, they are managed by Jenkins admins. There is a GitHub

repository that have Dockerfiles (and other needed files) to create such images. That

repository is https://github.com/elastest/ci-images. In order to create a new CI Image

please follow the procedure:

1. Create a new pull request that contains a new folder named after the image.

2. Provide inside the folder all the necessary files for building the image and a

README.md.

3. Contact the Jenkins admin (elastest@naevatec.com) to generate the DockerHub

repository and configure the autobuild from DockerHub.

4. To do some modification to the image, just create a new PR with the changes.

4.6.3 Documentation.

All the public SW released should have enough documentation associated to guide the

user through its usage. Also, it should point clearly to the ElasTest’s GitHub repositories

and to the ElasTest Community page.

 Docker Images descriptions

4.6.3.1.1 Short Description

 100 characters maximum

 Short descriptions should provide a general idea of the image.

o For component main images: The full name of the component should be

used.

 Example:

https://github.com/elastest/ci-images
mailto:elastest@naevatec.com

D6.1: ElasTest Continuous Integration and Validation System v1

64

eus: ElasTest User Emulator Service provides browsers for manual

and automated interaction.

o For services or subcomponents:

 Full name of the service or subcomponent should be used or

commercial name.

 Full name of the parent component, if max characters limit is

reached, component acronym can be used instead.

 Example:

eus-novnc: Alpine X11 server and HTML5 VNC client with

autofocus for the ElasTest User Emulator Service.

4.6.3.1.2 Long Description

 25.000 character maximum

 Should be provided as a file *.md on where the Dockerfile is placed (GitHub

repository). The file can be called readme.md, DockerDescription.md or

<Docker-ComponentAcronym>.md and can be placed in the same folder where

the Dockerfile is placed or in a specific folder.

 The document should contain these sections:

o Badges

o ElasTest Header

o Name of the Image

o What is this? Description of the image

o Quick Reference

o Where to get help.

o Where to file issues.

o Maintained by.

o Published image artifact details: (image metadata, transfer size, etc.).

o Source of this description:

o Supported Docker versions.

o What’s on this image (not always necessary dependent on the content of

the image)

o How to use the image

 A template for the *.md document can be found in.

4.7 Maintenance.

The maintenance for the whole hosted CI environment has been developed and

documented, in order to be carried regularly.

Maintenance action will follow these steps:

D6.1: ElasTest Continuous Integration and Validation System v1

65

4.7.1 Request to admin.

When any CI environment user detects any SW malfunctioning, is aware of security

updates or finds a new tool or SW to be added to the environment; should notify the CI

environment admins (elastest@naevatec.com) with the issue describing:

 Tool or tools affected.

 Reason: Security / malfunction

 Action to be taken (if known).

 Priority:

o Critical: to be solved as soon as possible.

o Important: can’t wait for the next maintenance window.

o Normal: to be solved with the next maintenance window.

o Low: good to have. But otherwise not blocking, not necessary.

CI environment admin would attend to all the requests, confirming its priority and when

more information is required, they would contact the user for clarification.

4.7.2 Plan and document the maintenance.

The CI environment admins will evaluate the impact of the actions to be held, fill the

Maintenance Window Template (See A4. Maintenance Window Procedure Template)

and schedule the intervention of the CI environment.

4.7.3 Execution.

On the scheduled time window, the procedure will be executed following all the

instructions filled in the maintenance window document. A standard maintenance

window will consist in the following steps:

 Start of the procedure & communication:

 Back Up

 Upgrade

 Test and confirmation

 Rollback

 Communication of results

5 References

[1] Jenkins – Build great thinks at any scale- https://jenkins.io

[2] DockerHub - Dev-test pipeline automation, 100,000+ free apps, public and

private registries - https://hub.docker.com/

[3] OSSRH – The Central Repository: Serving Open Source Components Since 2002 -

http://central.sonatype.org/

[4] Nexus Repository Manager OSS - The world's only repository manager with FREE

support for popular formats. - https://www.sonatype.com/nexus-repository-oss

[5] Private User Registry - Manage the creation of user access to private resource -

https://ci.elastest.io/user-registry/

mailto:elastest@naevatec.com
https://jenkins.io/
https://hub.docker.com/
http://central.sonatype.org/
https://www.sonatype.com/nexus-repository-oss
https://ci.elastest.io/user-registry/

D6.1: ElasTest Continuous Integration and Validation System v1

66

[6] ElasTest - An elastic platform to ease end to end testing – https://elastest.io

[7] Amazon ECR - Amazon Elastic Container Registry -

https://aws.amazon.com/ecr/?nc1=h_ls

[8] GitHub - development platform inspired by the way you work. -

https://github.com/

[9] CodeCov.io - Enhancing development workflows and improving code quality. -

https://codecov.io/

[10] Apache 2.0 License - http://www.apache.org/licenses/LICENSE-2.0

[11] ElasTest AWS Deployment documentation -

http://elastest.io/docs/deploying/aws/

[12] Semantic Versioning - https://semver.org/

[13] AWS Client Installation guide -

http://docs.aws.amazon.com/cli/latest/userguide/installing.html

[14] Spring-Boot - https://projects.spring.io/spring-boot/

[15] JUnit 5 - http://junit.org/junit5/

[16] EUS GitHub repository - https://github.com/elastest/elastest-user-emulator-

service/tree/master/eus

[17] Mockito - http://site.mockito.org/

[18] Spring Framework - https://projects.spring.io/spring-framework/

[19] Selenium EUS E2E Test - https://github.com/elastest/elastest-user-emulator-

service/blob/master/eus/src/test/java/io/elastest/eus/test/e2e/SeleniumE2ETes

t.java

[20] TimeOutTest - https://github.com/elastest/elastest-user-emulator-

service/blob/master/eus/src/test/java/io/elastest/eus/test/e2e/TimeoutTest.jav

a

[21] EUS E2E GitHub repository - https://github.com/elastest/elastest-user-emulator-

service/tree/master/e2e-test

[22] Selenium-jupiter - https://bonigarcia.github.io/Selenium-jupiter/

[23] EusSupportServiceE2eTest - https://github.com/elastest/elastest-user-emulator-

service/blob/master/e2e-

test/src/test/java/io/elastest/eus/test/e2e/EusSupportServiceE2eTest.java

[24] EusTJobE2eTest - https://github.com/elastest/elastest-user-emulator-

service/blob/master/e2e-

test/src/test/java/io/elastest/eus/test/e2e/EusTJobE2eTest.java

[25] Test TJob for E2E test - https://github.com/elastest/elastest-user-emulator-

service/tree/master/TJob-test

[26] ElasTest E2E EUS job - https://ci.elastest.io/jenkins/job/elastest-user-emulator-

service/job/eus-e2e-test/

[27] EMS Jenkinsfile for e2e testing - https://github.com/elastest/elastest-

monitoring-service/blob/master/e2e-test/Jenkinsfile

[28] EMS tests bash script - https://github.com/elastest/elastest-monitoring-

service/blob/master/e2e-test/start-instance.sh

[29] Dummy Docker Image - https://hub.docker.com/r/williamyeh/dummy/

[30] Metricbeats Docker Image - http://docker.elastic.co/beats/metricbeat:5.4.0

https://elastest.io/
https://aws.amazon.com/ecr/?nc1=h_ls
https://github.com/
https://codecov.io/
http://www.apache.org/licenses/LICENSE-2.0
http://elastest.io/docs/deploying/aws/
https://semver.org/
http://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://projects.spring.io/spring-boot/
http://junit.org/junit5/
https://github.com/elastest/elastest-user-emulator-service/tree/master/eus
https://github.com/elastest/elastest-user-emulator-service/tree/master/eus
http://site.mockito.org/
https://projects.spring.io/spring-framework/
https://github.com/elastest/elastest-user-emulator-service/blob/master/eus/src/test/java/io/elastest/eus/test/e2e/SeleniumE2ETest.java
https://github.com/elastest/elastest-user-emulator-service/blob/master/eus/src/test/java/io/elastest/eus/test/e2e/SeleniumE2ETest.java
https://github.com/elastest/elastest-user-emulator-service/blob/master/eus/src/test/java/io/elastest/eus/test/e2e/SeleniumE2ETest.java
https://github.com/elastest/elastest-user-emulator-service/blob/master/eus/src/test/java/io/elastest/eus/test/e2e/TimeoutTest.java
https://github.com/elastest/elastest-user-emulator-service/blob/master/eus/src/test/java/io/elastest/eus/test/e2e/TimeoutTest.java
https://github.com/elastest/elastest-user-emulator-service/blob/master/eus/src/test/java/io/elastest/eus/test/e2e/TimeoutTest.java
https://github.com/elastest/elastest-user-emulator-service/tree/master/e2e-test
https://github.com/elastest/elastest-user-emulator-service/tree/master/e2e-test
https://bonigarcia.github.io/selenium-jupiter/
https://github.com/elastest/elastest-user-emulator-service/blob/master/e2e-test/src/test/java/io/elastest/eus/test/e2e/EusSupportServiceE2eTest.java
https://github.com/elastest/elastest-user-emulator-service/blob/master/e2e-test/src/test/java/io/elastest/eus/test/e2e/EusSupportServiceE2eTest.java
https://github.com/elastest/elastest-user-emulator-service/blob/master/e2e-test/src/test/java/io/elastest/eus/test/e2e/EusSupportServiceE2eTest.java
https://github.com/elastest/elastest-user-emulator-service/blob/master/e2e-test/src/test/java/io/elastest/eus/test/e2e/EusTJobE2eTest.java
https://github.com/elastest/elastest-user-emulator-service/blob/master/e2e-test/src/test/java/io/elastest/eus/test/e2e/EusTJobE2eTest.java
https://github.com/elastest/elastest-user-emulator-service/blob/master/e2e-test/src/test/java/io/elastest/eus/test/e2e/EusTJobE2eTest.java
https://github.com/elastest/elastest-user-emulator-service/tree/master/tjob-test
https://github.com/elastest/elastest-user-emulator-service/tree/master/tjob-test
https://ci.elastest.io/jenkins/job/elastest-user-emulator-service/job/eus-e2e-test/
https://ci.elastest.io/jenkins/job/elastest-user-emulator-service/job/eus-e2e-test/
https://github.com/elastest/elastest-monitoring-service/blob/master/e2e-test/Jenkinsfile
https://github.com/elastest/elastest-monitoring-service/blob/master/e2e-test/Jenkinsfile
https://github.com/elastest/elastest-monitoring-service/blob/master/e2e-test/start-instance.sh
https://github.com/elastest/elastest-monitoring-service/blob/master/e2e-test/start-instance.sh
https://hub.docker.com/r/williamyeh/dummy/
http://docker.elastic.co/beats/metricbeat:5.4.0

D6.1: ElasTest Continuous Integration and Validation System v1

67

[31] ESS e2e component test - https://github.com/elastest/elastest-security-

service/blob/master/e2e-test/e2etest.py

[32] ESS e2e component Jenkins file - https://github.com/elastest/elastest-security-

service/blob/master/e2e-test/Jenkinsfile

[33] JUnit 4 - https://junit.org/junit4/

[34] Cobertura - http://cobertura.github.io/cobertura/

[35] Maven - https://maven.apache.org/

[36] ElasTest CI Server - https://ci.elastest.io/jenkins/

[37] Spring-boot - https://projects.spring.io/spring-boot/

[38] Thymeleaf - https://www.thymeleaf.org/

[39] ECE e2e Jenkins job - https://ci.elastest.io/jenkins/view/Component-

e2e/job/elastest-cost-engine/job/ece-e2e-test/

[40] Apache Spark - https://spark.apache.orgç

[41] EBS ElasTest demo projects - https://github.com/elastest/demo-

projects/tree/master/ebs-test

[42] Project Gutenberg, “The Adventures of Sherlock Holmes” -

https://norvig.com/big.txt

[43] Selenium - http://www.seleniumhq.org/projects/webdriver/

[44] EDS Jenkins file - https://github.com/elastest/elastest-device-emulator-

service/blob/master/demo/e2e_tests/Jenkinsfile

[45] EDS API test - https://github.com/elastest/elastest-device-emulator-

service/blob/master/demo/e2e_tests/e2e_test_api.py

[46] EDS UI test - https://github.com/elastest/elastest-device-emulator-

service/blob/master/demo/e2e_tests/e2e_test_ui.py

[47] JAX-RS - https://github.com/jax-rs

[48] EIM e2e Job - https://ci.elastest.io/jenkins/job/elastest-instrumentation-

manager/job/eim-e2e/

[49] ElasTest EIM SuT image - https://hub.docker.com/r/elastest/eim-sut/

[50] ElasTest ETM alpine git java image - https://hub.docker.com/r/elastest/test-etm-

alpinegitjava/

[51] Java8 - http://www.oracle.com/technetwork/java/javase/overview/index.html

[52] Angular 4 - https://angular.io/

[53] ETM GitHub Repository - https://github.com/elastest/elastest-

torm/tree/master/elastest-torm

[54] Torm E2E tests GitHub - https://github.com/elastest/elastest-

torm/tree/master/e2e-test

[55] Atlassian Bamboo - https://www.atlassian.com/software/bamboo

[56] CruiseControl - http://cruisecontrol.sourceforge.net/

[57] Team Foundation Server - https://www.visualstudio.com/tfs/

[58] Travis CI - https://travis-ci.org/

[59] ElasTest Jenkins Library - https://github.com/elastest/ci-elastest-jenkins-lib

[60] ElasTest Toolbox Github - https://github.com/elastest/elastest-

toolbox/tree/master/

[61] About code coverage - https://docs.codecov.io/docs/about-code-coverage

[62] SonarCloud - https://about.sonarcloud.io/

https://github.com/elastest/elastest-security-service/blob/master/e2e-test/e2etest.py
https://github.com/elastest/elastest-security-service/blob/master/e2e-test/e2etest.py
https://github.com/elastest/elastest-security-service/blob/master/e2e-test/Jenkinsfile
https://github.com/elastest/elastest-security-service/blob/master/e2e-test/Jenkinsfile
https://junit.org/junit4/
http://cobertura.github.io/cobertura/
https://maven.apache.org/
https://ci.elastest.io/jenkins/
https://projects.spring.io/spring-boot/
https://www.thymeleaf.org/
https://ci.elastest.io/jenkins/view/Component-e2e/job/elastest-cost-engine/job/ece-e2e-test/
https://ci.elastest.io/jenkins/view/Component-e2e/job/elastest-cost-engine/job/ece-e2e-test/
https://spark.apache.orgç/
https://github.com/elastest/demo-projects/tree/master/ebs-test
https://github.com/elastest/demo-projects/tree/master/ebs-test
https://norvig.com/big.txt
http://www.seleniumhq.org/projects/webdriver/
https://github.com/elastest/elastest-device-emulator-service/blob/master/demo/e2e_tests/Jenkinsfile
https://github.com/elastest/elastest-device-emulator-service/blob/master/demo/e2e_tests/Jenkinsfile
https://github.com/elastest/elastest-device-emulator-service/blob/master/demo/e2e_tests/e2e_test_ui.py
https://github.com/elastest/elastest-device-emulator-service/blob/master/demo/e2e_tests/e2e_test_ui.py
https://github.com/elastest/elastest-device-emulator-service/blob/master/demo/e2e_tests/e2e_test_ui.py
https://github.com/elastest/elastest-device-emulator-service/blob/master/demo/e2e_tests/e2e_test_ui.py
https://github.com/jax-rs
https://ci.elastest.io/jenkins/job/elastest-instrumentation-manager/job/eim-e2e/
https://ci.elastest.io/jenkins/job/elastest-instrumentation-manager/job/eim-e2e/
https://hub.docker.com/r/elastest/eim-sut/
https://hub.docker.com/r/elastest/test-etm-alpinegitjava/
https://hub.docker.com/r/elastest/test-etm-alpinegitjava/
http://www.oracle.com/technetwork/java/javase/overview/index.html
https://angular.io/
https://github.com/elastest/elastest-torm/tree/master/elastest-torm
https://github.com/elastest/elastest-torm/tree/master/elastest-torm
https://github.com/elastest/elastest-torm/tree/master/e2e-test
https://github.com/elastest/elastest-torm/tree/master/e2e-test
https://www.atlassian.com/software/bamboo
http://cruisecontrol.sourceforge.net/
https://www.visualstudio.com/tfs/
https://travis-ci.org/
https://github.com/elastest/ci-elastest-jenkins-lib
https://github.com/elastest/elastest-toolbox/tree/master/
https://github.com/elastest/elastest-toolbox/tree/master/
https://docs.codecov.io/docs/about-code-coverage
https://about.sonarcloud.io/

D6.1: ElasTest Continuous Integration and Validation System v1

68

[63] SonarQube - https://www.sonarqube.org/

[64] SonarLint - https://www.sonarlint.org/

[65] SonarSource - https://www.sonarsource.com/

[66] ESS end-to-end test image - https://hub.docker.com/r/dockernash/ess-e2e/

[67] ElasTest EMP E2E job - https://ci.elastest.io/jenkins/view/Component-

e2e/job/elastest-platform-monitoring/job/emp-e2e-test/

[68] ESS TJob Docker image - https://hub.docker.com/r/dockernash/test-TJob-ess/

https://www.sonarqube.org/
https://www.sonarlint.org/
https://www.sonarsource.com/
https://hub.docker.com/r/dockernash/ess-e2e/
https://ci.elastest.io/jenkins/view/Component-e2e/job/elastest-platform-monitoring/job/emp-e2e-test/
https://ci.elastest.io/jenkins/view/Component-e2e/job/elastest-platform-monitoring/job/emp-e2e-test/
https://hub.docker.com/r/dockernash/test-tjob-ess/

D6.1: ElasTest Continuous Integration and Validation System v1

69

ANNEXES

A1. GitHub Readme.md Template.

[![License badge](https://img.shields.io/badge/license-Apache2-

orange.svg)](http://www.apache.org/licenses/LICENSE-2.0)

[![Documentation badge](https://img.shields.io/badge/docs-latest-

brightgreen.svg)](http://elastest.io/docs/)

[![][ElasTest Logo]][ElasTest]

Copyright © 2017-2019 [<member>]. Licensed under

[Apache 2.0 License].

<repository_name>

=================

<repository_description>

What is ElasTest?

This repository is part of [ElasTest], which is a flexible open source

testing platform aimed to simplify the end-to-end testing processes for

different types of applications, including web and mobile, among others.

The objective of ElasTest is to provide advance testing capabilities aimed

to increase the scalability, robustness, security and quality of

experience of large distributed systems. All in all, ElasTest will make

any software development team capable of delivering software faster and

with fewer defects.

Documentation

The ElasTest project provides detailed [documentation][ElasTest Doc]

including tutorials, installation and development guide.

Source

Source code for other ElasTest projects can be found in the [GitHub

ElasTest Group].

News

Check the [ElasTest Blog] and follow us on Twitter [@elastestio][ElasTest

Twitter].

Issue tracker

Issues and bug reports should be posted to the [GitHub ElasTest

Bugtracker].

Licensing and distribution

D6.1: ElasTest Continuous Integration and Validation System v1

70

Licensed under the Apache License, Version 2.0 (the "License"); you may

not use this file except in compliance with the License. You may obtain a

copy of the License at http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS, WITHOUT

WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the

License for the specific language governing permissions and limitations

under the License.

Contribution policy

You can contribute to the ElasTest community through bug-reports, bug-

fixes, new code or new documentation. For contributing to the ElasTest

community, you can use GitHub, providing full information about your

contribution and its value. In your contributions, you must comply with

the following guidelines

* You must specify the specific contents of your contribution either

through a detailed bug description, through a pull-request or through a

patch.

* You must specify the licensing restrictions of the code you contribute.

* For newly created code to be incorporated in the ElasTest code-base, you

must accept ElasTest to own the code copyright, so that its open source

nature is guaranteed.

* You must justify appropriately the need and value of your contribution.

The ElasTest project has no obligations in relation to accepting

contributions from third parties.

* The ElasTest project leaders have the right of asking for further

explanations, tests or validations of any code contributed to the

community before it being incorporated into the ElasTest code-base. You

must be ready to addressing all these kind of concerns before having your

code approved.

Support

The ElasTest project provides community support through the [ElasTest

Public

Mailing List] and through [StackOverflow] using the tag *elastest*.

<p align="center">

 <img src="http://elastest.io/images/logos_elastest/ue_logo-

small.png">

 Funded by the European Union

</p>

[Apache 2.0 License]: http://www.apache.org/licenses/LICENSE-2.0

[ElasTest]: http://elastest.io/

[ElasTest Blog]: http://elastest.io/blog/

[ElasTest Doc]: http://elastest.io/docs/

[ElasTest Logo]: http://elastest.io/images/logos_elastest/elastest-logo-

gray-small.png

[ElasTest Public Mailing List]:

https://groups.google.com/forum/#!forum/elastest-users

[ElasTest Twitter]: https://twitter.com/elastestio

[GitHub ElasTest Group]: https://github.com/elastest

[GitHub ElasTest Bugtracker]: https://github.com/elastest/bugtracker

http://www.apache.org/licenses/LICENSE-2.0

D6.1: ElasTest Continuous Integration and Validation System v1

71

[StackOverflow]: http://stackoverflow.com/questions/tagged/elastest

[<member>]: <member_url>

A2. Docker Image long description template

<!--

ELASTEST - Template for Docker Images README

** -

->

<!-- badges -->

[![License badge](https://img.shields.io/badge/license-Apache2-

orange.svg)](http://www.apache.org/licenses/LICENSE-2.0)

[![Docker

badge](https://img.shields.io/docker/pulls/elastest/etm.svg)](https://hub.

docker.com/r/elastests/etm/)

<!-- Elastest logo -->

[![][ElasTest Logo]][ElasTest]

Copyright © 2017-2019 [ElasTest]. Licensed under [Apache 2.0 License].

elastest/\<image\>

==============================

What is this? (TITLE of the image and short description)

===============================

Supported tags and respective `Dockerfile` links

- [`1.0`, `1.1`, `1`

(*1.0/Dockerfile*)](https://github.com/elastest/environments)

- [`2.0`, `2.1`, `2.2`, `2`

(*2.0/Dockerfile*)](https://github.com/elastest/environments)

Quick reference

- **Where to get help**:

 [the ElastTest mailing list](), [the Elastest Slack](), or [Stack

Overflow]()

- **Where to file issues**:

 Issues and bug reports should be posted to the [GitHub ElasTest

Bugtracker].

- **Maintained by**:

 [the ElasTest community](https://github.com/elastest)

- **Published image artifact details**:

 (image metadata, transfer size, etc).

D6.1: ElasTest Continuous Integration and Validation System v1

72

- **Source of this description**:

 [docs repo's `template/` directory](https://github.com/elastest/ci-

images/edit/master/doc-templates/template.md)

([history](https://github.com/elastest/ci-images/commits/master/doc-

templates))

- **Supported Docker versions**:

 [the latest

release](https://github.com/docker/docker/releases/latest) (down to

17.03.1 on a best-effort basis)

What's on this image?

<!-- tools and purpouse -->

How to use this image

Dependencies (other containers or tools)

Integration with other containers or tools)

[Apache 2.0 License]: http://www.apache.org/licenses/LICENSE-2.0

[ElasTest]: http://elastest.io/

[ElasTest Logo]: http://elastest.io/images/logos_elastest/elastest-logo-

gray-small.png

[ElasTest Twitter]: https://twitter.com/elastestio

[GitHub ElasTest Group]: https://github.com/elastest

[GitHub ElasTest Bugtracker]: https://github.com/elastest/bugtracker

A3. Cobertura Reports and CodeCov.io integration procedure.

A3.1. Integration

Codecov can be integrated in the Jenkins Jobs. There are two example jobs in the

ElasTest Jenkins to show how to use it with maven:

 Hello-world-Docker-pipeline:

node('Docker'){

 stage "Container Prep"

 echo("the node is up")

 def mycontainer = docker.image('elastest/docker-

siblings:latest')

 mycontainer.pull() // make sure we have the latest available

 // from Docker Hub

 mycontainer.inside {

 git 'https://github.com/elastest/mvn-hello-world.git'

 stage "Tests"

 echo ("Starting maven tests")

 sh 'mvn clean test'

 step([$class: 'JUnitResultArchiver', testResults:

'**/target/surefire-reports/TEST-*.xml'])

 stage "Package"

D6.1: ElasTest Continuous Integration and Validation System v1

73

 echo ("Packaging")

 sh 'mvn package -DskipTests'

 stage "Cobertura"

 sh 'mvn cobertura:cobertura'

 sh('cd src && git rev-parse HEAD > GIT_COMMIT')

 git_commit=readFile('src/GIT_COMMIT')

 sh 'export GIT_COMMIT=$git_commit'

 sh 'export GIT_BRANCH=master'

 def codecovArgs = "-v -t $COB_MVN_HELLO_WORLD"

 echo "$codecovArgs"

 def exitCode = sh(

 returnStatus: true,

 script: "curl -s

https://raw.githubusercontent.com/codecov/codecov-bash/master/codecov

| bash -s - $codecovArgs")

 //script: " pip install --user codecov && codecov

-v -t $COB_MVN_HELLO_WORLD")

 if (exitCode != 0) {

 echo(exitCode +': Failed to upload code

coverage to codecov')

 }

 }

 stage "Archive artifacts"

 archiveArtifacts artifacts: 'target/*.jar'

}

 mvn–hello-world:

Figure 23. Test coverage job configuration

D6.1: ElasTest Continuous Integration and Validation System v1

74

For other kind of projects there is more information at

https://docs.codecov.io/docs/supported-languages and ElasTest environment are

available to solve any doubts or problems.

In order to upload to Cobertura reports to codecov.io from Jenkins is necessary to use a

unique token for project (GitHub repo). All the tokens have been already registered in

Jenkins.

The tokens have the following Name Structure:

COB_<component_Acronym>_TOKEN

For example:

COB_EUS_TOKEN

These tokens can be used just as any environment variable:

$ curl -s https://codecov.io/bash | bash -s - -t $COB_EUS_TOKEN

A3.2. Other Useful integration

A3.2.1. Badges:

[![codecov](https://codecov.io/gh/elastest/elastest-user-emulator-

service/branch/master/graph/badge.svg)](https://codecov.io/gh/elastest

/elastest-user-emulator-service)

This badge can be retrieved from the https://codecov.io/gh/elastest/<component-

repo>/settings/badge. In this page you can retrieve the badge markdown for GitHub.

Only repositories that haven't upload any report to codecov.io will show the unknown

status.

A4. Maintenance Window Procedure Template

A4.1. General Information

 Affected tools / SW

Template to be filled on each Maintenance Window one row per tool.

SW to be

upgraded
Old

version
New

version
Documentation Location

https://docs.codecov.io/docs/supported-languages
http://codecov.io/
https://codecov.io/bash
https://codecov.io/gh/elastest/elastest-user-emulator-service/branch/master/graph/badge.svg)%5D(https:/codecov.io/gh/elastest/elastest-user-emulator-service
https://codecov.io/gh/elastest/elastest-user-emulator-service/branch/master/graph/badge.svg)%5D(https:/codecov.io/gh/elastest/elastest-user-emulator-service
https://codecov.io/gh/elastest/elastest-user-emulator-service/branch/master/graph/badge.svg)%5D(https:/codecov.io/gh/elastest/elastest-user-emulator-service

D6.1: ElasTest Continuous Integration and Validation System v1

75

<name of the tool>

Currently

installed

tool

Proposed

version

Link to the official

documentation of

the proposed

version

host /

container in

host / image

Motivation

[Scheduled maintenance window]

[Critical request]

o ¿Who has requested it?

o ¿Why has been defined as critical?

Risks

 [Docker] The images that use the host Docker could fail until their own Docker is

upgraded.

 [Jenkins] Some Jobs may need to be reconfigured to work.

 ...

Contact information.

 Partner
User

(Name)
Email

Requester

Upgrade responsible NaevaTec

Notify to
ALL WP6 elastest-wp6@googlegroups.com

Upgrade Plan

 Date and Time Duration*

Start {_DATE_} 07:15 am 2 h

Init communication {_DATE_} 07:15 am 5 min

Back Up {_DATE_} 07:20 am 15 min

Upgrade {_DATE_}07:35 am 1 h

Test and confirmation {_DATE_} 08:35 am 25 min

Rollback {_DATE_} 09:00 am 10 min

Communication of results {_DATE_} 09:15 am 5 min

End of the Upgrade {_DATE_} 09:15 am

mailto:elastest-wp6@googlegroups.com

D6.1: ElasTest Continuous Integration and Validation System v1

76

A4.2. Procedure

A4.2.1. Notification

WP6 users will be notified through the mailing list at the beginning of the upgrade

procedure. Expected maintenance time will be reminded in this email.

A4.2.2. System shutdown.

A4.2.2.a Main Instance.

The administrators will check the CI environment is available for the upgrade.

 No jobs are being executed

 No user processes are executing.

If there are slaves up, they will be stopped.

The security group will disable public http access to the instance only access from

NaevaTec will be accepted. ()

A4.2.2.b Slaves.

 No actions required

A4.2.2.c ElasTest Nightly.

The security group will disable public http access to the instance only access from

NaevaTec will be accepted. (Figure 24. AWS disable inbound rules)

Figure 24. AWS disable inbound rules

A4.2.3. Back Up

A4.2.3.a Main Instance.

[1] Push user Registry Image:

$ $(aws ecr get-login --no-include-email)

$ cd ci-containersEnviroment/private-user-registry

$ docker ps #get the id of the private-user-registry container

D6.1: ElasTest Continuous Integration and Validation System v1

77

$ docker commit <private-user-registry_id> 842800759158.dkr.ecr.eu-west-

1.amazonaws.com/elastest/private-user-registry:AAAAMMDD

$ Docker push 842800759158.dkr.ecr.eu-west-

1.amazonaws.com/elastest/private-user-registry:AAAAMMDD

[2] Create Snapshot (Figure 25. AWS EC2. Create Image)

 Select instance: elastest-ci

 AMI Backup -> Image / Create Image. (Figure 26. AWS EC2. Configuration

of the Image)

 name: elastestci_AAAAMMDD

 description: AAAAMMDD_Maintenance_Window

[3] Wait until Image status is: available. (Figure 27. AWS EC2. Available Image)

A4.2.3.b Slaves.

 No actions required

A4.2.3.c ElasTest Nightly.

[1] Create Snapshot: (Figure 25. AWS EC2. Create Image)

 Select instance: Secure-ElastestStack-v001

 AMI Backup -> Image / Create Image. (Figure 26. AWS EC2. Configuration

of the Image)

 name: nigthly_AAAAMMDD

 description: AAAAMMDD_Maintenance_Window

Wait until Image status is: available. (Figure 27. AWS EC2. Available Image)

Figure 25. AWS EC2. Create Image

D6.1: ElasTest Continuous Integration and Validation System v1

78

Figure 26. AWS EC2. Configuration of the Image

Figure 27. AWS EC2. Available Image

A4.2.4. Upgrade

A4.2.4.a Main Instance.

 Kernel (5min):

o Update and upgrade

$ sudo apt update

$ sudo apt upgrade

o If unused packages:

$ sudo apt autoremove

o Reboot

$ sudo reboot

 Docker:

o All the containers will be stopped.

$ Docker stop $(Docker ps -a -q)

o Docker Images will be cleared.

$ Docker rmi -f $(Docker images -q)

o Docker will be upgraded in the host with:

$ sudo add-apt-repository “deb [arch=amd64]

https://download.docker.com/linux/ubuntu $(lsb_release -cs) stable"

$ sudo apt update

$ sudo apt-get install docker-ce=<DOCKER_NEW_VERSION>

 Docker Compose:

o Run this command to download the latest version of Docker Compose:

D6.1: ElasTest Continuous Integration and Validation System v1

79

$ sudo curl -L

https://github.com/docker/compose/releases/download/<docker-

compose_NEW_VERSION>/docker-compose-`uname -s`-`uname -m` -o

/usr/local/bin/Docker-compose

o Apply executable permissions to the binary:

$ sudo chmod +x /usr/local/bin/Docker-compose

o Test the installation.

$ Docker-compose --version

 AWS cli

o uninstall old version

$ sudo apt-get remove awscli

o install new version

$ sudo curl "https://s3.amazonaws.com/aws-cli/awscli-bundle.zip" -o

"awscli-bundle.zip" && sudo unzip awscli-bundle.zip

&& sudo ./awscli-bundle/install -i /var/lib/aws -b /usr/bin/aws

 User-Registry

o Log in in aws ecr:

$ $(aws ecr get-login --no-include-email)

o Modify docker-compose.yml to retrieve backup instead of clean image.

o Start container:

$ Docker-compose up -d

 Jenkins: <JENKINS_NEW_VERSION>

o Retrieve Dockerfile and setup from GitHub

$ git pull

o remove related containers that could be stuck

$ Docker-compose rm

o Start and build containers:

$. ./env/generate_docker_env.sh

$ Docker-compose up --build -d

o Plugins and jobs will be upgraded (after nginx start).

 Nexus

o remove related containers that could be stuck

$ Docker-compose rm

o The nexus Image will be built and started

$ Docker-compose up --build -d

 Nginx:

o remove related containers that could be stuck

$ Docker-compose rm

D6.1: ElasTest Continuous Integration and Validation System v1

80

o Nginx Image will be upgraded to <NGINX_NEW_VERSION> and the

container rebuilt and restarted

 Jenkins plugins and jobs

o Update all Jenkins plugins

A4.2.4.b Slaves.

 Launch Slaves AMI:

o Select launch instance: elastest-slave-basic-AMI

o Apply the steps 2- 5 into the instance

 Kernel (5min):

o Update and upgrade

$ sudo apt update

$ sudo apt upgrade

o If unused packages:

$ sudo apt autoremove

o Reboot

$ sudo reboot

 Docker:

o All the containers will be stopped.

$ Docker stop $(Docker ps -a -q)

o Docker Images will be cleared.

$ Docker rmi -f $(Docker images -q)

o Docker will be upgraded in the host with:

$ sudo add-apt-repository “deb [arch=amd64]

https://download.docker.com/linux/ubuntu $(lsb_release -cs) stable"

$ sudo apt update

$ sudo apt-get install docker-ce=<DOCKER_NEW_VERSION>

 Docker Compose:

o Run this command to download the latest version of Docker Compose:

$ sudo curl -L

https://github.com/docker/compose/releases/download/<docker-

compose_NEW_VERSION>/docker-compose-`uname -s`-`uname -m` -o

/usr/local/bin/Docker-compose

o Apply executable permissions to the binary:

$ sudo chmod +x /usr/local/bin/Docker-compose

o Test the installation.

$ Docker-compose --version

 AWS cli

o uninstall old version

D6.1: ElasTest Continuous Integration and Validation System v1

81

$ sudo apt-get remove awscli

o install new version

$ sudo curl "https://s3.amazonaws.com/aws-cli/awscli-bundle.zip" -o

"awscli-bundle.zip" && sudo unzip awscli-bundle.zip

&& sudo ./awscli-bundle/install -i /var/lib/aws -b /usr/bin/aws

 AMI creation:

o Select instance: elastest-slave-basic-AMI : (Figure 25. AWS EC2. Create

Image)

o Image / Create Image. (Figure 26. AWS EC2. Configuration of the Image)

 name: elastest-slave-basic-AMI-v<new_version>

 description: AAAAMMDD_Maintenance_Window

 Jenkins

o In the Jenkins substitute old AMI with new AMI

A4.2.4.c ElasTest Nightly.

 Kernel (5min):

o Update and upgrade

$ sudo apt update

$ sudo apt upgrade

o If unused packages:

$ sudo apt autoremove

o Reboot

$ sudo reboot

 Docker:

o All the containers will be stopped.

$ Docker stop $(Docker ps -a -q)

o Docker Images will be cleared.

$ Docker rmi -f $(Docker images -q)

o Docker will be upgraded in the host with:

$ sudo add-apt-repository “deb [arch=amd64]

https://download.docker.com/linux/ubuntu $(lsb_release -cs)

stable"

$ sudo apt update

$ sudo apt-get install docker-ce=<DOCKER_NEW_VERSION>

 Docker Compose:

o Run this command to download the latest version of Docker Compose:

$ sudo curl -L

https://github.com/docker/compose/releases/download/<docker-

compose_NEW_VERSION>/docker-compose-`uname -s`-`uname -m` -o

/usr/local/bin/Docker-compose

o Apply executable permissions to the binary:

D6.1: ElasTest Continuous Integration and Validation System v1

82

$ sudo chmod +x /usr/local/bin/Docker-compose

o Test the installation.

$ Docker-compose --version

 AWS cli

o uninstall old version

$ sudo apt-get remove awscli

o install new version

$ sudo curl "https://s3.amazonaws.com/aws-cli/awscli-

bundle.zip" -o "awscli-bundle.zip" && sudo unzip awscli-

bundle.zip && sudo ./awscli-bundle/install -i /var/lib/aws

-b /usr/bin/aws

A4.2.5. Test and Confirmation

[Test-Jenkins-01] Login in Jenkins

[Test-Jenkins-02] Run basic jobs.

[Test-Jenkins-02-01] Run job hello-world/mvn-hello-world

[Test-Jenkins-02-02] Run job hello-world/hello-world-Docker-image-pipeline

[Test-Jenkins-03] Plugins?

[Test-Nexus-01] Web interface (Login and query)

[Test-Nexus-02] Publish artifact: run Jenkins job: hello-world/private-mvn-release

[Test-Nexus-03] Retrieve artifact.

[Test-UserRegistry-01] Log In

[Test-UserRegistry-02] Regenerate access.

[Test-DockerSibling-01] Run job hello-world/hello-world-Docker-image-pipeline.

[Test-DockerSibling-02] Run job hello-world/pipeline-Docker-privateRegistry

[Test-AMI-01] After AMI update test reboot and Docker TCP ports (if not check Docker

tcp procedure)

A4.2.6. Roll Back

A4.2.6.a Main Instance.

o The instance of the AWS EC2 will be switched off. (elastest-ci)

o A new instance of the AWS EC2 will be launched with the backed-up AMI

with the same configuration and IP as the old one.

o Elastic IP will be assigned to the rolled back instance.

o The Docker Images will be rolled back (the Dockerfile recovered and the

images recreated with the old values)

A4.2.6.b Slaves.

o New image wouldn’t be saved so no extra actions required

https://ci.elastest.io/jenkins/view/examples/job/hello-world/job/private-mvn-release/

D6.1: ElasTest Continuous Integration and Validation System v1

83

A4.2.6.c ElasTest Nightly:

o The instance of the AWS EC2 will be switched off. (Secure-ElastestStack-

v001)

o A new instance of the AWS EC2 will be launched with the backed-up AMI

with the same configuration and IP as the old one.

o Elastic IP will be assigned to the rolled back instance.

A4.2.7. Open System and Result Notification.

o The instances will be configured to accept external requests

Figure 28. AWS enable inbound rules

A4.3. Results

A4.3.1. Table of results

Phase Result
Time and

duration

Back UP SUCCESS / FAILURE / WARN

Upgrade SUCCESS / FAILURE / WARN

Test and

Confirmation
SUCCESS / FAILURE / WARN

Rollback
NOT RUN / SUCCESS / FAILURE /

WARN

D6.1: ElasTest Continuous Integration and Validation System v1

84

A4.3.2. Actions to be executed after upgrade

A4.3.2.a Main Instance

A4.3.2.b Slaves

A4.3.2.c ElasTest Nightly

A4.4. Logs

<if applies>

A4.5. Issues

Any issue that is detected and is suspected to be related to the upgrade should be

registered here.

A5. ElasTest Jenkins Library API.

A5.1. Configuration methods:

setVerbose(boolean)

Overrides the Verbose configuration parameter value (false) of the Library

setVersion(String)

Overrides the Elastest Version configuration parameter value (“latest”) of the

Library

setERE(String)

To select if and which version of the ERE component will be deployed and used on

the running ElasTest instance

setContext(value)

Initializes the context that should be applied for the execution of certain steps and

commands.

setMode(String)

Initialization of the parameter Lite just for personalization, for normal execution

leave it empty. For lite execution initialize with ‘--lite’

setShared(boolean)

Overrides the ElasTest Shared configuration parameter value (false) of the Library

setAuthenticatedElastest(boolean)

D6.1: ElasTest Continuous Integration and Validation System v1

85

Overrides the default ElasTest Authentication parameter configuration parameter

value (false) of the Library. If true the launched ElasTest would be initialized with

basic authentication.

setTestLink(boolean)

Overrides the default ElasTest TestLink parameter configuration parameter value

(false) of the Library. The TestLink component will be launched on the new

instance.

A5.2. Support functionalities for end-to-end testing:

String getIp()

Executed after the ElasTest start returns the IP address where the main component

(ETM) is listening

String getPort()

Executed after the ElasTest start returns the port where the main component

(ETM) is listening

String getEtmUrl()

Executed after the ElasTest start returns the full http connection URL where the

ETM is listening (Example: http://172.0.18.10:8091)

Object getElastestMethods()

Returns an object that can execute the methods implemented by the library in the

user defined stages.

String getElasTestUser()

Returns the user for the ElasTest Basic Authentication if the ElasTest is

authenticated

String getElasTestPassword()

Returns the password for the ElasTest Basic Authentication if the ElasTest is

authenticated

A5.3. ElasTest management functionalities:

boolean startElastest()

Executes the ElasTest platform with the options configured in the library (version,

lite)

boolean elastestIsRunning()

Return (in the moment) while ElasTest is already running. Checking if elastest

Platform container is running and if ETM is running too.

D6.1: ElasTest Continuous Integration and Validation System v1

86

boolean waitElasTest()

Waits up to 900s to ElasTest to start up. Returns true if it has started, and false

otherwise.

boolean elastestIsStuck()

This is a variation of the waitElasTest that detects if any the platform component

has been launched but the rest of the platform hasn’t.

connect2ElastestNetwork()

After the ElasTest platform is launched as a Docker container, if this method is

executed inside another container the method adds it with the ElasTest network.

stopElastest()

Stop the ElasTest platform and all the components.

getApi()

After the ElasTest Platform is started, this method initializes the connection

information for the ElasTest

pullERE(optional version)

In case the ERE is expected to be launched the pullERE method will pull the defined

version of the component if selected and the latest if void.

pullERE(optional version)

In case the ERE is expected to be launched the pullERE method will pull the defined

version of the component if selected and the latest if void.

testRemoteElastest()

If the library is configured to connect with an external ElasTest (nightly mainly) the

library would try to connect with it instead of “startElastest”.

A5.4. Pipeline encapsulation:

pipeline(body)

This method receives as parameter the user defined stages of the pipeline and

encapsulates them between the necessary logic to select the kind of ElasTest

execution and the management logic of the ElasTest. Resulting in a more complete

pipeline with the start ElasTest and release ElasTest stages added to the user

defined stages.

	1 Executive summary
	2 Strategic context and objectives
	3 CI environment
	3.1 Self-hosted Services
	3.1.1 Main Instance.
	3.1.2 ElasTest Nightly Instance.
	3.1.3 ElasTest Stable Instance.

	3.2 Tools.
	3.2.1 Tool chain.
	3.2.1.1 GitHub
	3.2.1.2 CI Server: Jenkins
	3.2.1.2.1 Slaves
	3.2.1.2.2 Jobs
	3.2.1.2.3 ElasTest Plugin

	3.2.1.3 Sonatype OSSRH
	3.2.1.4 Nexus Repository Manager (OSS).
	3.2.1.5 DockerHub
	3.2.1.6 Amazon EC2 Container Registry
	3.2.1.7 Private User Registry
	3.2.1.8 ElasTest
	3.2.1.8.1 Nightly
	3.2.1.8.2 ElasTest Stable

	3.2.2 Add-ons and auxiliary tools.
	3.2.2.1 Codecov.
	3.2.2.1.1 What is code coverage?
	3.2.2.1.2 What does Codecov bring to the table?

	3.2.2.2 SonarCloud.
	3.2.2.3 ElasTest Jenkins Library.
	3.2.2.3.1 Configuration methods:
	3.2.2.3.2 Support functionalities for end-to-end testing:
	3.2.2.3.3 ElasTest management functionalities:
	3.2.2.3.4 Pipeline encapsulation:

	3.3 Security and User Access
	3.3.1 Security
	3.3.2 User Access

	3.4 Maintenance

	4 Methodology and Procedures
	4.1 Methodology and Procedures
	4.1.1 Basic Rules and Best practices.
	4.1.2 Jenkins: Login
	4.1.3 Jenkins: Tagging slaves and jobs
	4.1.3.1 Slaves
	4.1.3.2 Jobs

	4.1.4 Private User Registry: Login and Register
	4.1.5 Private User Registry: Manage User,
	4.1.5.1 Delete User.
	4.1.5.2 Edit User Information.
	4.1.5.3 Requesting access to Nexus Repository.
	4.1.5.4 Requesting access to ECR
	4.1.5.5 Refresh access to Nexus
	4.1.5.6 Refresh access to ECR
	4.1.5.7 Revoke access to Nexus
	4.1.5.8 Revoke access to AWS ECR

	4.2 Development environment configuration for AWS ECR
	4.3 Jenkins Jobs Naming
	4.4 Development
	4.5 Testing
	4.5.1 Unitary and integration (component)
	4.5.2 End-to-end tests.
	1. Component end-to-end: Components provide end-to-end tests that ensure the behaviour of the component and all the services that it makes use of. This kind of tests are usually held against the component API and can be launch against the component ru...
	2. Platform end-to-end, traditional tools: Most components have defined their own end-to-end tests that test their behaviour within the ElasTest platform through the GUI. These tests reproduce use cases that would make use of the component tested. The...
	3. Platform end-to-end, ElasTest: All the Jenkins jobs of the stage 2 are being converted on TJobs of for ElasTest. These TJobs would be run on a Stable ElasTest. This is a project milestone planned for the end of 2018.
	4.5.2.2 ElasTest-library
	4.5.2.2.1 Library initialization
	4.5.2.2.2 End-to-end stages

	4.5.2.3 Jenkins end-to-end tests job structure
	4.5.2.4 End-to-end tests per component
	4.5.2.4.1 ElasTest Big Data Service (EBS)
	4.5.2.4.2 ElasTest Cost Engine (ECE)
	4.5.2.4.3 ElasTest Data Manager (EDM)
	4.5.2.4.3.1 Hadoop/Alluxio

	4.5.2.4.4 ElasTest Device Emulator Service (EDS)
	4.5.2.4.4.1 Test Application for the EDS tests

	4.5.2.4.5 ElasTest Instrumentation Manager (EIM)
	4.5.2.4.6 ElasTest Monitoring Platform (EMP)
	4.5.2.4.7 ElasTest Monitoring Service (EMS)
	4.5.2.4.8 ElasTest Orchestrator Engine (EOE)
	4.5.2.4.9 ElasTest Platform Manager (EPM)
	4.5.2.4.10 ElasTest Recommendation Engine (ERE).
	4.5.2.4.11 ElasTest Security Service (ESS)
	4.5.2.4.12 ElasTest Service Manager (ESM)
	4.5.2.4.13 ElasTest Tests Manager (ETM)
	4.5.2.4.14 ElasTest User impersonation Service (EUS)

	4.5.2.5 Integrated UI end-to-end tests
	4.5.2.5.1 ElasTest Big Data Service (EBS)
	4.5.2.5.2 ElasTest Cost Engine (ECE)
	4.5.2.5.3 ElasTest Data Manager (EDM)
	4.5.2.5.3.1 Cerebro/Elasticsearch/Kibana
	4.5.2.5.3.2 Cloud Commander

	4.5.2.5.4 ElasTest Device Emulator Service (EDS)
	4.5.2.5.5 ElasTest Instrumentation Manager (EIM)
	4.5.2.5.6 ElasTest Monitoring Platform (EMP)
	4.5.2.5.7 ElasTest Monitoring Service (EMS)
	4.5.2.5.8 ElasTest Orchestrator Engine (EOE)
	4.5.2.5.9 ElasTest Platform Manager (EPM)
	4.5.2.5.10 ElasTest Recommendation Engine (ERE)
	4.5.2.5.11 ElasTest Security Service (ESS)
	4.5.2.5.12 ElasTest Service Manager (ESM)
	4.5.2.5.13 ElasTest Tests Manager (ETM)
	4.5.2.5.14 ElasTest User impersonation Service (EUS)

	4.6 Releasing
	4.6.1 Maven/Gradle Artifacts.
	4.6.1.1 Basic rules and best practices
	4.6.1.2 Procedure
	 Javadoc and Sources
	 Sign Files with GPG/PGP
	 Sufficient Metadata
	o Correct Coordinates
	o Project Name, Description and URL
	o License Information
	o Developer Information
	o SCM Information

	 Specific ElasTest artifact Requirements

	4.6.1.3 Configuration for consuming private Maven artifacts.

	4.6.2 Docker Images.
	4.6.2.1 How to create component images
	4.6.2.2 How to create Environmental Images

	4.6.3 Documentation.
	4.6.3.1 Docker Images descriptions
	4.6.3.1.1 Short Description
	4.6.3.1.2 Long Description

	4.7 Maintenance.
	4.7.1 Request to admin.
	4.7.2 Plan and document the maintenance.
	4.7.3 Execution.

	5 References
	ANNEXES
	A1. GitHub Readme.md Template.
	A2. Docker Image long description template
	A3. Cobertura Reports and CodeCov.io integration procedure.
	A3.1. Integration
	A3.2. Other Useful integration
	A3.2.1. Badges:

	A4. Maintenance Window Procedure Template
	A4.1. General Information
	Affected tools / SW
	Template to be filled on each Maintenance Window one row per tool.
	Motivation
	Risks
	Contact information.
	Upgrade Plan

	A4.2. Procedure
	A4.2.1. Notification
	A4.2.2. System shutdown.
	A4.2.2.a Main Instance.
	A4.2.2.b Slaves.
	A4.2.2.c ElasTest Nightly.

	A4.2.3. Back Up
	A4.2.3.a Main Instance.
	A4.2.3.b Slaves.
	A4.2.3.c ElasTest Nightly.

	A4.2.4. Upgrade
	A4.2.4.a Main Instance.
	A4.2.4.b Slaves.
	A4.2.4.c ElasTest Nightly.

	A4.2.5. Test and Confirmation
	A4.2.6. Roll Back
	A4.2.6.a Main Instance.
	A4.2.6.b Slaves.
	A4.2.6.c ElasTest Nightly:

	A4.2.7. Open System and Result Notification.

	A4.3. Results
	A4.3.1. Table of results
	A4.3.2. Actions to be executed after upgrade
	A4.3.2.a Main Instance
	A4.3.2.b Slaves
	A4.3.2.c ElasTest Nightly

	A4.4. Logs
	A4.5. Issues

	A5. ElasTest Jenkins Library API.
	A5.1. Configuration methods:
	A5.2. Support functionalities for end-to-end testing:
	A5.3. ElasTest management functionalities:
	A5.4. Pipeline encapsulation:

