Version 1.0

Author

NAEVATEC

Dissemination PU

Date

27-06-2018

Elas

Status

FINAL

D6.1: ElasTest Continuous Integration and

Project title

Validation System v1

ElasTest: an elastic platform for testing complex distributed
large software systems

Project duration

01-01-2017 to 31-12-2019

Project type H2020-ICT-2016-1. Software Technologies
Project reference 731535

Project website http://elastest.eu/

Work package WP6

WP leader Guiomar Tufidn de Hita

Deliverable nature

PUBLIC

Lead editor Guiomar Tufién de Hita
Planned delivery date = 30-06-2108
Actual delivery date 27-06-2018

Keywords

Open source software, cloud computing, continuous
integration, continuous validation,

Funded by the European Union

http://elastest.eu/

D6.1: ElasTest Continuous Integration and Validation System v1 C’) ElaS

License

This is a public deliverable that is provided to the community under a Creative Commons
Attribution-ShareAlike 4.0 International License:

http://creativecommons.org/licenses/by-sa/4.0/

You are free to:
Share — copy and redistribute the material in any medium or format.

Adapt — remix, transform, and build upon the material for any purpose, even
commercially.

The licensor cannot revoke these freedoms as long as you follow the license
terms.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and
indicate if changes were made. You may do so in any reasonable manner, but not
in any way that suggests the licensor endorses you or your use.

ShareAlike — If you remix, transform, or build upon the material, you must
distribute your contributions under the same license as the original.

No additional restrictions — You may not apply legal terms or technological
measures that legally restrict others from doing anything the license permits.

Notices:

You do not have to comply with the license for elements of the material in the
public domain or where your use is permitted by an applicable exception or
limitation.

No warranties are given. The license may not give you all of the permissions
necessary for your intended use. For example, other rights such as publicity,
privacy, or moral rights may limit how you use the material.

For a full description of the license legal terms, please refer to:

http://creativecommons.org/licenses/by-sa/4.0/legalcode

@O0

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/legalcode

D6.1: ElasTest Continuous Integration and Validation System v1 (> ElaS

Contributors

Guiomar Tufidn NAEVATEC

Francisco Ramén Diaz URJC

Gordon Doyle IBM

Piyush Harsh ZHAW

Felipe Gorostiaga IMDEA

Varun Gowtham TUB

David Rojo ATOS

Nikolaos Gavalas REL

Francisco Gorostiaga URIJC

Micael Gallego URIC

Version history

0.1 11/12/2017 Guiomar Tufién Initial version (DRAFT)

0.2 30/01/2018 Guiomar Tufidon Contribution from partners for e2e
tests.

0.3 20/04/2018 Guiomar Tufidn 2" round of contributions from
partners for e2e tests.

0.4 26/04/2018 Guiomar Tufidn 3" round of contributions from
partners for e2e tests.

0.5 11/06/2018 Enric Pages Quality Review Process

0.6 21/06/2018 Guiomar Tufidon Quality Review Process, apply
changes.

0.7 22/06/2018 Guiomar Tufidn Added Index of tables and figures

0.8 24/06/2018 Micael Gallego Review alignment with architecture

terminology

D6.1: ElasTest Continuous Integration and Validation System v1 C’) ElaS

Table of contents

1 EXECULIVE SUMMAIY ..cicuiiiiuiiiiiniiiiniiiieeisienessimssisisssimasssiessssrssssissssssssssssssssssasssses 9
2 Strategic context and objectives.........cccivveiiiiiiiniiiiiiiniiini e 10
T O 11 1 V7o T Ty 0 1= 4| oS 10
31 Y=] L Yo R d=Te I =Y oV o] TSR 11
3.1, MQAIN INSEANCE. ...ttt ettt ettt e e e e ettt e e e e e s s sssssaneeeeeessassenee 11
3.1.2 ElaSTest Nightly INSEANCE.eueeeecveeeeeeeeeeeeeee et e e tee e e s tea e e s caaeaessaesaessseeaeas 12
3.1.3 ElaSTeSt StADIE INSEANCE.ccoccueeeeeeeieieeeiiieeeeiieeeectte e et eestee e e s saeeesssseeesssseeeeas 13
3.2 e T £ R URR 13
2 R e To) ol oI 1 K 13
3.2.1.1 GIEHUD e e e e et e e e e tte e e s bt e e e e eta e e e estaeeearaeean 14
3.2.1.2 ClSEIVEI: JENKINS 1uvveiiieeiieeeie sttt sae e sbe e st e e st e e ssbeesabeesnbeesabeesseesnnes 14
3.2.1.3 SONALYPE OSSRH ..t e e e e e e e e e s e e e e e e e narraees 16
3.2.1.4 Nexus Repository Manager (OSS). ..cccuviiiieeeciieeeesiee e eeite e e sree e e ste e e eetree e sareeeeearaeeeenns 17
3.2.15 D To Yol =14 5 LV « RPN PURURRRRRIRt 18
3.2.16 Amazon EC2 Container REGISTIY ..ccocviiiiiiieiiiiiieeet ettt s 18
3.2.1.7 Private USer REEISTIY...uuiiiiieieiiiiiee ettt e e e eee s 19
3.2.18 o T =T RSP PURRUP PSPPIt 20
3.2.2 Add-ons and QUXIlIGrY tOOIS............cccuueieeeiieieesiiiieeciieeesieeeesteaesscteseesstereessseea e 21
3221 (6o o [=Tolo 1V OO PP P PO UTTOPPRUPRON 21
3.2.2.2 SONAICIOUD. ...ttt ettt e sae e s bt e s bt e st e e bt e e beeeaeeeanee 22
3.223 ElasTest JENKINS LiDrary. ..ooceee ittt e e e e s e e e s eaeeeeaes 22

3.3 SECUNITY @NT USEI ACCESS......uuviiiiieeeeeeeiiitireeee e e e e eiettteeeeeeeessabaareeeeassessnastsreeeeassesasnssnnnees 25
LTS 20 ALY - ol 4) /S 25
3.3.2 USEI ACCESS oottt ettt ettt e e e 26
3.4 IMAINTENANCE ...ttt e e e e e et e e e e e e s e nnnreeeeee e e eeannne 28
4 Methodology and Procedurescieeeeereeneereencerencerenncrennerenseeseascesensessaseesenne 30
4.1 Methodology and ProCEAUIES..........cuuei ittt etae e e aee e e e aae e e e 30
4.1.1 Basic Rules and Best PraClICES.cuuueeeueeeeeiiiiaeeiiiiseeiiieeeesiseseesisesessssesassisssaeas 30
B N 111] (] LI Mo e 1 OSSR 30
4.1.3 Jenkins: Tagging SIAVES AN jODS............cccueeeeeciviieeiiiiieesiiieeeccieeeescieeeescveaaessaeea e 31
4.1.3.1 SlAVES ettt e et st e e e s et e e et te e e s bt eeeeabaeesnntaeesaaraeenn 31
4.1.3.2 JODIS ettt e e e bt e e s ebae e e s bbe e e e nabaeesearaes 31
4.1.4 Private User Registry: LOgin aNd REGISLENcceeceuvereeiiiireesiiireeiiieeessiisereesiseeaans 32
4.1.5 Private User Reqistry: MANQQeE USEr,uuuuuuuuuueinnnnsnnnnnsnnnnnnnnnnnnnnnnnnns 34
415.1 DEIELE USEI. weiiueieiiiieitee ettt ettt ettt ettt et e ettt et e s bt e sbe e s b et e ae e et et e st e e be e e naaeesateesateenneees 34
4.15.2 Edit User INfOrmation.oocieiiiiiieeieeeeee et st s 35
4,153 Requesting access to NeXUS REPOSITONY.....cocivuiiiiiiiiiiiiiiiiieer e eesiiee e e e e eesiree e e e s e e 35
4.1.5.4 Requesting acCesS 1O ECR......coiiiiiieiiii ettt e e s e e 36
4,1.5.5 Refresh aCCeSS 10 NEXUS.......uiiiiiiiieieiie ettt ettt e e s ibe e e s s baeeeeans 36
4.1.5.6 REfresh @CCESS 10 ECRiiiiiiieiiiieeeeiet ettt sttt e et e e sabe e e s sbaeeenans 37
4,157 REVOKE QCCESS 10 NEXUS .eeeeiiieeiiiiee ettt ette ettt e e sttt setre e s bee e e s sbee e s sseaeesnbeeessabeeesnans 37
4,158 REVOKE 2CCESS 10 AWS ECR ...ooiiniiiieiiiit ettt ettt e st e e s siee e e sabee e s sbaeeenans 37

4.2 Development environment configuration for AWS ECR.......cccociieiiiiiii i, 37
4.3 Y1 ST TS o] o N V= 1 11 o =PSRRI 37
4.4 [DTAVZ=Y [o] o 2 0= o) PSR 38
4.5 TS N e 41
4.5.1 Unitary and integration (COMPONENT)............ccccueereecieereeiieeeeeiiieeeeiiieseesiseseesisenaens 41

4

D6.1: ElasTest Continuous Integration and Validation System v1 C’) ElaS

I A 1 1o B o =T 0 1o I =Xy & TS 42
4522 ElaSTEST-lOrary. ..o et 42
4523 Jenkins end-to-end tests Job StruCtUreccoiviiiiiiiiiie e 44
4524 End-to-end tests per COMPONENT.......cciiiiiiiiiiiieeie e 45
45.25 Integrated Ul end-10-eNnd tESESc.ceiiiiiiiiiiiiiieeee e 50

4.6 REIBASING ...ttt et e e et e e e e et e e e e et e e e e e abaee e e eabae e e e e baneeeenrteeeenarees 58

4.6.1 MaVven/Gradle ArtifUCES.ccueeeceeeeeeeeeeeeeeeee et eeteeeeteeeseeeseeeesreesreeeeeseeass 59
4.6.1.1 Basic rules and DeSt PraCtiCesuiiviiriiiirieriieiree ettt s s 59
4.6.1.2 PrOCEAUIE .ttt ettt ettt e sbe e s b et e btesabe e e s bt e ebeeesateesateesaeeenneees 59
4.6.1.3 Configuration for consuming private Maven artifacts........cccecceeviierveeniinniie e 61

VN 0 Jo ol (=1 g [0l [=X TSRS 62
4.6.2.1 How to create COmMpPONENTt IMAGES.uuiieiiiiiiiiieee et e e e e e e s ee e e e e 62
4.6.2.2 How to create Environmental IMagescevvvvivrieriiiinieniie et esre e sae e s 63

4.6.3 DOCUMENLALION.uvueeeee s sssasasssasssannssnsnnsnnnnnnns 63
4.6.3.1 Docker IMages deSCriptioNseiiuierieiirie ettt 63

4.7 MaINEENANCE. .o 64

4.7.1 REQUEST L0 QUIMUN. c.....oeeeeeeeeeeeeeee et e et e et e e et e e et a e e st aasstseaessssenanas 65

4.7.2 Plan and document the maintenanCe.cccueeeeeuveeeeccvereesiiireesiieeessiieseesiseneens 65

V4G TN =5 (-) [1 [0) ¢ N 65

I (1 = =T 4 ol YU 65
ANNEXES. ...t rce et tce et tecestastacastassacastossasastassesastassasastassasnssanans 69
Al. GitHub Readme.md Template.cccciiiimiiiiiiiiiiiricirrrcreneerene e seanesenns 69
A2, Docker Image long description template.....ccccoieiirieiiiiiiiiiciiieicireccreeeenee, 71
A3. Cobertura Reports and CodeCov.io integration procedure.ccceceuereennennen. 72
JAN 20 N [0} {=T=4 1 i [o DO PO PP URPRPPPPPN 72
A3.2. Other Useful INTEGratioNcccuiiii it e ettt e e e e e e 74

2 B = 1o To [0 -2 3 USSR 74

A4, Maintenance Window Procedure Template.....ccccceeererreeereenccreencreenecrennnenenns 74
A4.1. General INformMatioN.......oo i s 74

ASFECLEA LOOIS / SV ...ttt ettt e e e e et e e et sesseeeetteensaseasesenneen 74

Template to be filled on each Maintenance Window one row per tool.................cccueeeeun.... 74

11 Lo X4 1Y o [0 o O PP PPPPPPPPPPPPPPPRE 75

L USSRt 75

(@oYa1ae [or il 17 {o T4 4L [o] £ KO USSR 75

(oo To Lo L= o Lo T TSRS 75

F VB N o Yol Yo [¥ USRS 76

AV 380 R |\l 11 ol [4 (o] F OSSR 76

A4.2.2. SYSEEM SAULAOWN..........eeeeeeee ettt e e ettt e e e e e et sttt e e e e e e s ssnsaeaaes 76
A4.2.2.2 MAIN INSEANCE. ...eeiiiiiiiee ettt e e e sttt e e e s e ettt e e e e e s e s nbbbeeeeeeesaannnreeeaeeesan 76
AA.2.2.0 SIAVES. ..ttt st et e st b e e e be e s be e e bee s beesabee s beesareena 76
A4.2.2.CEIaSTESt NISNTIY. cuveiieiiiiie i sttt st e sabe e sbeesareesas 76

WAV 2 T - 1o Tol G U |« B S 76
A4.2.3.2 MAIN INSTANCE. ..ottt ettt e e e s e st e et e e e e s e s nbabeeeaeeesaansnreeeeeeenan 76
AL.2.3.0 SIAVES. ..ttt st e e ettt e s et te e e s abe e e e e bae e e eataeesaabeeeeabaeeeaans 77
A4.2.3.CEIaSTESt NISNTIY. cueeiiiieeiii ettt st esabe e sbeesareenas 77

A4.2.4. (o o Lo L= USSRt 78
A4.2.4.2 MAIN INSTANCE. ...eeiiiiiieeiiet ettt e e e s ettt e e e s e st e et e e e e e e s nbabeeeeeeesaansnreeeeeeeaan 78

5

D6.1: ElasTest Continuous Integration and Validation System v1 Cf) ElaS

Y B o Y - 1P UPPPPRNE 80
A4.2.4.CEIaSTESt NIZNTIY. c..eeiiiiiiiii i st e e 81
A4.2.5. TeSt aNd CONFIrMALIONoeeveeeieeeeiiieeeeiie et esee e stee e staa s staa e e sstaaeesseeas 82

W B R 10 | > o Tl SO PSRRI 82
A4.2.6.2 MAIN INSEANCE. ..eeeiiiiiiieieeee et e e e s r e e e s e s er e e e e e e e samnnnneeeeeenan 82
AA.2.6.0 SIAVES. ..eeeeiiiiiiee ettt e s st s e e et e e st e e s ae e s be e e bee s beesabeesbaesbeenas 82
Ad4.2.6.CEIaSTESt NIGNtIY: . ..eiiiiiiiii ettt sbe e e e 83
A4.2.7. Open System and Result NOLIfiCQtioNn.ccocueeeeeveeeecciiieeeeiiie e eeciea e 83
A T Y=Y U] | U SURN 83
A4.3.1. TADIC OF FESUILS ..ottt e et e et e et e e e e tta e e e s raeaeesraeas 83
A4.3.2. Actions to be executed after UPGradecuueeeeeevivueererieeeieiiiiiireeeeeeisciiveenens 84
P - W |V - Y 0 1 1) = o [ol 84
AA.3.2.10 SIAVES ..ueieeiit ettt bbb e e e b e e st e e e be e s bae e bee s beesbeesbaesabeenas 84
Y T ol =T =Ty ol N =4] USSP 84
AL . LOBS ciiiiiiiiiii e a e e e e e e e e e e e e e e e aaaaeens 84
A S . S URS i e e e e e e e e e e e e e e e e e aaeaeens 84
AS5. ElasTest Jenkins Library APL.cc.ciieiiiiniiiieiinininieninieeieiineienenssesensssssssessnns 84
A5.1. Configuration MEthOUS:oiiiiiieie e et e e e are e e e erraeeeeans 84
A5.2. Support functionalities for end-to-end testing:ccccvrieeeeeeeiiiieee e 85
A5.3. ElasTest management functioNalities:ccuvevivciiiiiiiiiieecee e 85
A5.4. Pipeling @ncapsSUlatioNn:cuiiiiiiiiee et ettt e et e e e ara e e e erraeaeeans 86

D6.1: ElasTest Continuous Integration and Validation System v1 C’) ElaS

List of Figures

Figure 1. Self-hosted services architeCturecooovcuveeiiiiiiei e e 11
Figure 2. Jenkins jobs eXeCution SEQUENCEueeeiviuiieeeiiiieee ettt e e ssee e e eaaee e 12
Figure 3. ElIasTest JENKINS. .ocoiiiiieieiiie et e e e s e e s aaae e e e 15
Figure 4. Sonatype OSSRH. Public maven repository.....ccccviiiiveeeeniieeeeiniieeeeeiiee e 16
Figure 5. Nexus Repository Manager (OSS).....ccuieeeeieieeicieee e eeee e e e e e eivnee e 17
Figure 6. DockerHub ElasTest Dashboardcoocvviiviieiiiiiccee e, 18
Figure 7. Amazon ElasTest ECR....cciii ittt e e e erren e e e e e e e 19
Figure 8. Private User Registry - manage user access interface......ccccccoeveccvvivenenennienns 20
Figure 9. Authorization management: TEAMScccuvcviieeiriiiee e ree e 27
Figure 10. Jenkins USEr IOZIN......cciiiiiiiiiiiiie ettt e e e e e s aeaeeeenes 28
Figure 11. Authorize Jenkins GitHUDc.eoiiiiiiiiee e 30
Figure 12. Revoke Jenking GItHUDcccviiiiiiiiiie e 31
Figure 13. User Registration home...........ovviiieiii i 32
Figure 14. User Registration. GitHub Authorization.......cccccoeeeccciiiiieeii e, 33
Figure 15. User Registration fOrmc.c..uviiiieiii i 33
Figure 16. User Registration. User Managementccccooeevveviiiiieieeieeeeciiccee e eeeeeeean 34
Figure 17. User Registration. User Information edition..........cccovvvveeeeeiieicciiiieeeeeeeeeees 35
Figure 18. User Registration. Access to Nexus activatedcccovvveeeeeieeicciinieeeeeeeeeennnn, 36
Figure 19. User Registration. Access to AWS ECR activatedcccceveeeeeicccirreeeeeeeeeennnn, 36
Figure 20. Example of README.Md..........oiiiiieiiiiiieee et e e e 40
Figure 21. Jenkins ElasTest-library. Pipelin.........ccccumiiiiieiiiiicccee e, 44
Figure 22. Graphics of EIIM @XECULION.........uiiiiiiiiiccciiieee et e e e 54
Figure 23. Test coverage job configuration.........cccccviiiiieiii e, 73
Figure 24. AWS disable iNnboUNd FUIES........eeeeiiiiiieiiiiieeee e e 76
Figure 25. AWS EC2. Create IMageccovvuiiiieee ittt e et e e e e e e e e aan s 77
Figure 26. AWS EC2. Configuration of the IMage.......cccceveeieeieciiiieeeeeee e 78
Figure 27. AWS EC2. Available IMage......uvveveiiiiiiiiiiieeie et eeeeirreee e e e 78
Figure 28. AWS enable inbound ruUlesccoviiiiiiniiiiiiciec et 83
List of Tables

Table 1. Cl environment main tO0IS.ccceiviiiiierieeeee e e 14

7

D6.1: ElasTest Continuous Integration and Validation System v1 C’) ElaS

Table 2. Cl environment auxiliary tools and add-ons..........ccccvveeeeiiiiiicciieeeee e, 21

Table 3. Maintenance schedule

Table 4. Code Coverage. Date: 21-06-2018

Glossary of acronyms

APIs Application programming interfaces
AMI Amazon Machine Images

AWS Amazon Web Services

cl Continuous Integration

cv Continuous Validation

E2E End-to-end

ECR Elastic Container Registry

GUI Graphical User Interface

oS Operating System

SwW Software

Ul User Interface

QoE Quality of Experience

SuT Software under Test

SiL Systems in the Large

TiL Test in the Large

TSS Test support service

TORM Test Orchestration and Recommendation Manager
QoS Quality of Service

UAT User Acceptance Testing

IPR Intellectual Property Rights

D6.1: ElasTest Continuous Integration and Validation System v1 C’) ElaS

1 Executive summary

The present document describes the design, architecture and maintenance of the
ElasTest Continuous Integration (Cl) and Continuous Validation (CV) System used in the
project. This system has been designed and maintained in the context of the Work
Package 6 (WP6) “Continuous Integration & Validation”.

This document describes the design, architecture and maintenance of the ElasTest Cl
environment, including aspects such as the following:

- Description of the strategic objectives to be fulfilled.

- Description of the environment design and architecture.
- Description of the available tools in the environment.

- Description of the maintenance plan.

- Description of the Cl and CV methodology.

During the upcoming eighteen months the content of this document will be reviewed
and updated with any new tools that could be added to the environment, new or revised
procedures as well as new cloud instances that would be needed.

The initial environment devised for running CI/CV tasks for the project started with a
single instance that ran the main tools related to the software development process and
from the first release of the ElasTest platform it has grown having now four instances,
each one with a clear objective regarding the tasks that are meant to be executed over
them:

. Main Instance. Holds the main tools related to the software development
process — Cl server, repositories, credential generator, etc. —

[I. ElasTest Nightly Instance. Hosts the latest developed version of ElasTest (not
necessarily stable). This instance main objective is to provide an ElasTest
platform where latest changes on the code could be tested.

Ill. ElasTest Stable Instance. Host the latest stable version of ElasTest. This instance
will be used to test the ElasTest Nightly Instance with ElasTest, as specified in the
DoA.

In order to have a complete and intensive test suite for the whole ElasTest platform all
the components have contributed with specific test suits for their components, these
tests are continuously changing as the functionalities of the components expand and
mutate, so the suites cover this new or changed functionalities. In the deliverable these
suites are described as they are at the moment of writing, whereas these descriptions
could be outdated in a few weeks, as the platform is continuously improved.

In section 5 of the document we define the scheduled next steps into the Continuous
Validation and Integration System that covers tasks such as completion the validation of
ElasTest with ElasTest.

D6.1: ElasTest Continuous Integration and Validation System v1 C’) ElaS

2 Strategic context and objectives

The ElasTest Cl environment and methodology has been designed with the objective of
providing the project with a complete set of tools and procedures that must grant the
appropriate level of quality of each component and the right integration of all of them.

The CI methodology comprises all the tasks that assure:

e High quality of each of the components from development to release.
e High quality of integration between components.

e High quality of ElasTest as a whole.

e High quality of the CI methodology and Cl environment.

The Cl environment comprises all the tools that help to achieve and maintain the highest
levels of quality in all the steps of the development, testing and release.

The specific configuration of the consortium and the diverse licenses (public/Apache 2.2
and Proprietary) of the components are managed within the Cl tasks and tools to grant
the appropriate access and dissemination of each component.

The following sections contain the details of the Cl Environment [Section 3], and the ClI
and CV methodology [Section 4].

The current status of the Cl and CV system is aligned with the declared Milestones in the
DoA, where MS4 scheduled for month 16, where it was required from the ElasTest CI
system to be fully qualified and in production to enable the delivery and testing of all
ElasTest components. As this document demonstrates this objective is completed. For
month 24 it is defined MS5 where it is expected to have a mature implementation of
ElasTest validated in laboratory through the ElasTest Cl system and tests. Here we
include to have ElasTest tested by ElasTest. Actually the Cl / CV system includes an
ElasTest instance with the objective of being used with this purpose and as soon as the
ElasTest platform is mature enough it will be used on for validating newer versions of
ElasTest.

3 Cl environment

The Cl environment is composed by a set of tools managed by NaevaTec and available
to the consortium partners.

The Cl environment has two kinds of applications/tools: self-hosted services and
provided services. Self-hosted services are those that have been deployed on our own
managed servers. Those are fully managed by NaevaTec. This requires the CI
administrator (NaevaTec) to manage security, access policy, system stability and
maintenance (corrective and upgrades). On the other hand, provided services are those
that hosted on the providers premises or clouds and serve the technologies and services
mainly through an accessible web URL.

10

D6.1: ElasTest Continuous Integration and Validation System v1 (> Elas

3.1 Self-hosted Services

3.1.1 Main Instance.

The core of the environment is a cloud (AWS) hosted instance that runs the self-hosted
tools. All the applications hosted in this instance are containerized for 3 main reasons:

e Simplicity of maintenance: having a well-maintained environment where times
without service are rare and short is a very much valued property for any service.

e Simplicity of recovery: if somehow the system is unstable, breaks, or its security
is compromised, the application configuration and data can be recovered easily
and the risks of data loss are reduced considerably.

e Simplicity for replication: This environment can be easily reproduced and
customized to be used in other projects.

| Publiclo:80/ienkins => Jenkins:8080 | m
Q\

<]
"
) Listen 80
4 Jenkins Listen 443

-

Publiclp:80/user-registry => user-registry:8080 |

T Publiclp:80/archiva => nexus:8081 ‘

Listen 8080

Listen 8081

Figure 1. Self-hosted services architecture

The Cl Server (Jenkins) should run different jobs for compiling, testing [**! and delivering
(48] the ElasTest components. In order to maintain the core instance clean, secure and
available without interference of the running jobs, we have designed a system of volatile
slaves. Those slaves are launched on demand for the jobs into the (AWS) cloud, they are
managed by the Cl server and they are inaccessible from outside the environment.

11

D6.1: ElasTest Continuous Integration and Validation System v1 () ElaS

JENKINS

launch Job

find suitable node
[] Start node

transfer job execution

componet release
mail notification

other publisher actions
Persit results

return execution
result notification

S

X

kill node

X

Figure 2. Jenkins jobs execution sequence

The last entity in our environment of self-hosted tools is an ElasTest Instance running in
a (AWS) cloud instance. This ElasTest instance is accessible from everywhere but
protected by basic authentication -currently the only one that is available in ElasTest-.
This instance is isolated from the rest of the environment, it can be accessed by volatile
nodes and the core instance but the other way is closed.

3.1.2 ElasTest Nightly Instance.

The ElasTest Nightly Instance is an AWS EC2 instance has been commissioned with the
objective of having a full operative ElasTest platform running so the partners can test
the functionality. It has been created with the Amazon CloudFormation template that
can be found as a part of the elastest-toolbox repository [60].

This instance is exclusively devised with the objective of hosting an ElasTest platform.
This ElasTest platform is automatically daily refreshed, so it is always running the last
developed version of the platform.

12

D6.1: ElasTest Continuous Integration and Validation System v1 C’) ElaS

As the platform has evolved the type of instance needed for a correct behaviour of the
system has also changed. AWS EC2 instances allows us to adapt the instance running to

the real requirements of the ElasTest platform.

3.1.3 ElasTest Stable Instance.

The ElasTest Stable Instance is the last addition to the ElasTest CI/CV system. It is nearly
a copy of the ElasTest Nightly Instance which main difference is that on the ElasTest
Stable Instance, there isn’t an automatic update of the ElasTest platform, but the update
of the ElasTest platform is done manually wherever a new stable version is released.

3.2 Tools.

3.2.1 Tool chain.

GitHub is a Web-

based Git version

control repository hosting
service. It is mostly used

Source
GitHub[8] code Proprietar No Public for computer code. It offers
. P y all of the distributed version
repository
control and source code
management (SCM)
functionality of Git as well as
adding its own features.
Jenkins is a self-contained,
open source automation
Consort .
. . server which can be used to
Jenkins[1] Cl Server 0SS (MIT) Yes ium
onl automate all sorts of tasks
y such as building, testing, and
deploying software.
The Docker Hub Registry is
free to use for public
Docker repositories. Plans with
DockerHub N
image Proprietary No Public private repositories are
[2]) : L .
repository available in different sizes.
All plans allow collaboration
with unlimited people.
Sonatype OSSRH (0SS
Repository Hosting)
Maven and
uses Sonatype Nexus
Gradle 0SS . .
OSSRHI[3] . . No Public Repository Manager to
artifact (Eclipse) . . .
. provide repository hosting
repository

service for open source
project binaries.

13

http://links.sonatype.com/products/nexus/pro/home
http://links.sonatype.com/products/nexus/pro/home

D6.1: ElasTest Continuous Integration and Validation System v1 C’) ElaS

Nexus Repository OSS is a

Nexus Maven and Consort universal repositor
Repository Gradle 0SS] .p Y
. . Yes ium manager with support for all
Manager artifact (Eclipse) onl major package formats and
0ss[4] repository y jorp &
types.
Private User Registry is a
service developed by
. NaevaTec to manage the
Private Custom Consort .
. . access to private Nexus
User user access Proprietary Yes ium .
. Repository and Amazon ECR,
Registry[5] manager only N
providing access to only
Consortium members to the
resources published there.
0SS Consort An elastic platform to ease
ElasTest[6] - Yes ium P]
(Apache) end to end testing.
only
Amazon Elastic Container
Registry (ECR) is a fully-
Docker Consort managed Docker container
Amazon
ECR[7] image Proprietary No ium registry that makes it easy
repository only for developers to store,

manage, and deploy Docker
container images.

Table 1. Cl environment main tools.

3.2.1.1 GitHub

All the public repositories regarding ElasTest components, documentation, webpages,
etc. are hosted in GitHub.

Also, GitHub is the main tool used for managing access to the different tools and
contents related to the ElasTest project. This way teams for each partner and
component are managed trough GitHub Teams (See 3.2.2.1 User Access).

3.2.1.2 C(Cl Server: Jenkins

Jenkins [1] will serve as Cl server. We have chosen Jenkins over other alternatives
(Atlassian Bamboo [55], CruiseControl [56], Team Foundation Server [57], Travis Cl [58],
etc.) because of the characteristics described in the original proposal:

e |t must be a FOSS Cl tool so that the ElasTest FOSS strategy is strengthened by
this integration.
e [t must be a very popular Cl tool having a strong community spread worldwide.
e The tool must provide an APl enabling the creation of extensions and plugins into
it.
Travis Cl and Jenkins both comply with the project requirements. Being both suitable we
chose Jenkins because among the open source alternatives, Jenkins is the one with the
biggest market share, with a strong community and a lot of plugins and the knowledge

14

https://aws.amazon.com/docker/

D6.1: ElasTest Continuous Integration and Validation System v1 () ElaS

and expertise we already have on lJenkins configuration, usage and plugins
development.

&7 elstest TR © v (s

) New Iter

People

Figure 3. ElasTest Jenkins.

The partners would be using Jenkins in order to validate and integrate their work. Also,
Jenkins will provide a safe environment for each of the partners where only authorized
people will run partners’ defined jobs.

Users within the ElasTest Organization in GitHub that are members of any of the
partner’s teams would be granted access. Anybody inside the ElasTest Organization that
isn’t member at least of one of the partners’ team won’t be able to access.

Each user will have permissions over the different folders. By default, there will be a
folder for each team in the GitHub organization and each user will have permission over
the jobs inside the folders of all the groups he/she belongs to.

All users that need to be granted additional permissions such as administrative
permissions or permissions to other jobs outside his/her groups, can request them filling
a row in the Jenkins sheet of the User Registration spreadsheet.

3.2.1.2.1 Slaves

Jenkins supports the "master/slave" mode, where the workload of building projects is
delegated to multiple "slave" nodes, allowing a single Jenkins installation to host a large
number of projects, or to provide different environments needed for builds/tests.

A Jenkins slave can be seen as an external provider of executors for running jobs.

The Jenkins master can’t be used for any user jobs, all the user jobs by default will be
launched on an Amazon EC2 Instance that will act as Jenkins Slave. This slave will be
launch on demand as a job is programmed to be run. If the slave is already available and
has free executors it will be launch at the moment but if the slave isn’t up or no
executors are available the job will wait to the slave to be launched (automatically) or
an executor is released.

15

D6.1: ElasTest Continuous Integration and Validation System v1 C’) ElaS

3.2.1.2.2 Jobs

All users will be allowed to create jobs inside the folders that belongs to the teams that
he/she belongs to.

Users are encouraged to containerize their builds and tests.

Procedures and/or recommendations will be explained in section 4.1 -Methodology and
Procedures- for different kinds of jobs. Also, there are shared folders with some jobs
examples inside the Jenkins.

3.2.1.2.3 ElasTest Plugin

The ElasTest Jenkins plugin developed in the context of the WP6 Task 6.4 and described
in D6.2 ElasTest platform toolbox and integrations v1 isn’t currently available in the
ElasTest Cl server. It will be added in future maintenances.

3.2.1.3 Sonatype OSSRH

As ElasTest is an Open Source project, all the public artifacts can be hosted on Sonatype
OSSRH (0SS Repository Hosting) [3]. This repository hosting allows ElasTest to maintain
a public release repository that will be published to Central automatically, and also a
public snapshot repository.

We have been granted with the io.elastest groupld inside the central maven repository.
So, all the artifacts developed in the context of ElasTest should be within the io.elastest

group.

Full documentation on how to publish ElasTest artifacts have been provided to all the
partners. And the procedure description can be found in section 4.6 Releasing.

Any user (consortium member or not) will have access to the artifacts here deployed
(releases and snapshots).

Ol Rme@d

elastestior
Nesws Repository Manager 2.14.8-01

Sonatype™ «||[welcome Repositories

“ZReftesh | User Managed Repositoies -

Artifact Search | || Repositary + Type 1Q Policy Vioiations Health Check Format Policy Reposiory Status
o | Averuse Repositories

Advanced Search AppFuse With Staging

roup
roup
roup

central-staging

Views/Repositories -

Central Statistics ‘Snapshots
Repositories

Build Promation =
staging Profiles

staging Repositories
staging Ruleset

staging Upload

Help -

Figure 4. Sonatype OSSRH. Public maven repository

16

D6.1: ElasTest Continuous Integration and Validation System v1 C’) ElaS

3.2.1.4 Nexus Repository Manager (OSS).

As described in D8.3 the IPR (Intellectual property rights) of most components are
licensed under Apache 2.0 or MIT 2, so they are open source but there is one component
at the moment that has one proprietary license (belonging to IBM). This forces the CI
environment to provide private repositories for that component’s artifacts and images.

All the artifacts that shouldn’t be shared with the public but are necessary to collaborate
within the consortium will be deployed to our own hosted nexus repository [4].

Access to this repository will be nominative even for read-only purposes, this will grant
some control over the artifacts that are shared there. The access to the repository will
be solicited with the User-registry application that will automatically check the access
with the user GitHub account. Any user without a GitHub account or not member of the
ElasTest organization in Jenkins will not be allowed to access to the repositories.

Full documentation on how to publish ElasTest private maven artifacts have been
provided to all the partners. And the procedure description can be found in section 4.6
Releasing.

W Nexus Repository Manac X

re | https://oss.sonatype.org

= Nexus Repository Manager

Sonatype™ «| ||| welcome Staging Repositorie:
“Z Refresh [Close . % Drop
Artifact Search - Repository « Profile Status | Updated Description 1 Policy Violations
o |V & centralbundies-13421 Central Bundles open 2018-Jun-13 17:0025 Implicitly created (auto staging) 1o 1Q Server data recorded -
Advanced Search J central_bundies-13424 Central Bundles open 2018-Jun-14 07:22:34 Implicitly ereated (aute staging). Ho 101 Server data recorded
Views/Repositories S central_bundles-13432 Central Bundles open 2018-Jun-14 16:56:47 Implicitly created (auto staging) 1o 1Q Server data recorded
Central Statistics J central_bundies-13445 Central Bundles open 2013-Jun-15 15:33:22 Implicitly ereated (aute staging) Ho 101 Server data recorded
Repositories “
central_bundies-13453 Central Bundles closed 2018-Jun-16 20:57.54 com github.timo_reymann spring-boa... Mo IQ Server data recorded
Build Promotion = ceniral_bundles-13454 Central Bundles open 2018-Jun-16 20:55-19 com github fimo_reymann spring-boa... Mo 10 Server data recorded
Staging Profiles central_bundies-13458 Central Bundles open 2018-Jun-18 00:54:32 Implicitly created (auto staging) Ho IQ Server data recorded
Staging Repositories “
Staging Ruleset J central_bundles.13451 Central Bundles open 2013-Jun-18 11:11.08 Implicitly ereated (aute staging) Ho 101 Server data recorded
Staging Upload i R e R . o . . -
Help +| | £ central_bundles-13421
Summary | Activity | Content

Repository central_bundles-13421 (Central Bundles)

Created Wednesday, June 13, 2018 16:50:45 CEST (GMT+0200)

Updated Wednesday, June 13, 2018 17:00:-25 CEST (GMT+0200) 4
Activity (@ Last operation completed successfully open
Owiner typhond (75.126.118.185)

User-Agent Apache-HtipClient/4 5 (Javar1 8.0_51)
Description

Implicitly created (auto staging).

Figure 5. Nexus Repository Manager (OSS)

Both Sonatype OSSHR and Nexus Repository Manager OSS are the same tool and have
exactly the same Graphic User Interface (GUI) —See Figure 4. Sonatype OSSRH. Public
maven repository and Figure 5. Nexus Repository Manager (0SS)-. The main difference
is that Sonatype OSSHR is a provided service and it is hosted on the Sonatype premises
—or cloud- so it is maintained by them; whereas the Nexus Repository Manager (OSS) is
self-hosted and it is deployed on our Main Instance —See Figure 1. Self-hosted services
architecture —.

17

D6.1: ElasTest Continuous Integration and Validation System v1 Cf) ElaS

3.2.1.5 DockerHub

DockerHub [2] is public Docker Registry with possibility to host public and private
Images. For public Images it is completely free of charges.

This Registry is widespread within the community of developers, and many well-known
0SS projects have there their official images some examples are: nginx, ubuntu, Apache
Tomcat... DockerHub is really easy to work with as it is the predefined Registry while
working with Docker. This will provide a good way to share the public images with the
community.

All the images published here will be public and any user will be able to pull it but images
would be only pushed from Jenkins jobs (See 4.6 Releasing).

@ Secure | https://hub.docker.com/u/elaste ashboard/

Dashboard Explore Organizations ~ Create

& Repositories

Repositories

C&) public _.:‘ - ;i‘i 3:_5

STARS

Cy_‘) public _.1 - !i‘: 3:._ =

STARS

Cy_‘) public ,:‘ S :1_:‘_‘: ::.,s

STARS

C&) public ,:‘ S :1_:‘_{_; :3.,5

STARS

Figure 6. DockerHub ElasTest Dashboard

3.2.1.6 Amazon EC2 Container Registry

As explained in section 3.2.1.4 Nexus Repository Manager (0SS). There is one
component that is licensed under a proprietary license, but it should be available for the
consortium. With this objective the Amazon EC2 Container Registry [7] has been chosen.

The access to the repository is completely private and it will be nominative even for
read-only purposes, this will grant some control over the Docker images that are shared
there. The access to the repository will be solicited with the User-registry application
that will automatically check the access with the user GitHub account. Any user without
a GitHub account or not member of the ElasTest organization in Jenkins will not be
allowed to access to the repositories.

Amazon EC2 Container Registry transfers images over HTTPS and automatically encrypts
your images at rest.

18

D6.1: ElasTest Continuous Integration and Validation System v1 C’) ElaS

Full documentation on how to publish ElasTest private Docker Images have been
provided to all the partners. And the procedure description can be found in section 4.6
Releasing.

> O 5l e B

& Secure | hitps//eu-west-1.console.aws.amazon.com/ec

Services v Resource Groups v 3 .[:\ Developers/gtunon@naevatec. . ~ Treland ~ Support v

Clusters « Repositories
Task Definitions o
Repositories 17 > Pagesize 100 w

Repository name
elastest/elastestrecommendation-engine-wlp
elastest/elastestrecommendation-engine
elastest/hello-world

elastest/test-ibm

elastest/docker-sibling-env
elastest/private-user-registry

elastest/docker-slave-mvn

Repository URI
842800759158.dkr.ecr.eu-west-1.amazonaws.c
842800759158.dkr.ecr.eu-west-1.amazonaws.c
842800759158.dkr.ecr.eu-west-1.amazonaws.c
842800759158.dkr.ecr.eu-west-1.amazonaws.c
842800759158.dkr.ecr.eu-west-1.amazonaws.c
842800759158.dkr.ecr.eu-west-1.amazonaws.c

842800759158.dkr.ecr.eu-west-1.amazonaws.c

Created at

2017-09-27 08:44:32 +0200
2017-06-16 12:17:41 +0200
2017-03-30 16:53:09 +0200
2017-06-16 07:49:17 +0200
2017-06-09 11:06:29 +0200
2017-06-19 16:26:56 +0200

2017-04-11 10:47:26 +0200

@ Feedback (@ English (US)

c. or its affiliates. All right ed. PrivacyPolicy Terms of Use

Figure 7. Amazon ElasTest ECR

3.2.1.7 Private User Registry

Some of the tools included in the environment don’t provide GitHub Oauth2 integration
(e.g. AWS ECR and Nexus Repository Manager 0OSS). In order to make the access unique,
nominal and easy to manage and monitor, NaevaTec has developed a small application
that manages the authorization of those tools. This application aims to ease the
management of credentials for the private repositories, this way manual intervention
isn’t needed.

The Private User Registry is an application developed by NaevaTec, in the context of the
ElasTest Project in order to enable developers from the consortium a way to consume
private maven/gradle artifacts and private Docker images.

The application will verify the user GitHub account for checking his/her involvement in
the project and his/her membership to one of the partners of the consortium. Once the
user is validated she/he will be able to request credentials to access ElasTest private
repositories.

The credentials provided by the application will only allow the user to read information
from these repositories, as the publication of images and artifacts is done exclusively
from the Cl server (Jenkins). These credentials will enable developers to work in a local
environment, for example to test the integration between components.

The application relays in the GitHub login, so any user who want to get credentials
should be registered in GitHub.

19

D6.1: ElasTest Continuous Integration and Validation System v1 C’) ElaS

ElasTest Cl user registration Tools About

Manage User
gtunon (NAEVATEC)

User Information

Name:
Last Name:
ién d

Contact Email:

Amazon EC2 Container Registry (ECR)

Figure 8. Private User Registry - manage user access interface
Once registered the user will be able to manage his/her credentials (activate, deactivate,
refresh) or edit/delete the user.

The information provided by the user is kept in a NaevaTec Database according to the
following objectives:

e To keep track of the credentials used to access the repository.
e Toenablethe userto create, revoke and refresh credentials associated to his/her
user name.

The database is completely private, only NaevaTec administrators related to the ElasTest
project will have access to the database.

3.2.1.8 ElasTest

ElasTest is the tool developed within this project context, and it is used in two contexts
on the Cl / CV System:

e As object of the tests, the platform that should be tested before it can be
released.
e As part of the tools for testing the SW, the platform that is used for testing.

Because we use this tools in two different contexts we have deploy the ElasTest platform
twice, and we have aliased them as Nightly and Stable.
3.2.1.8.1 Nightly

ElasTest Nightly is a nightly updated live ElasTest instance, running with the aim of
providing the latest ElasTest version of every component so end-to-end integrated tests
can be run.

This ElasTest instance aims to provide all partners a place to test their own components
on a production-like environment. Partners can access the ElasTest Nightly Ul to do

20

D6.1: ElasTest Continuous Integration and Validation System v1 C’) ElaS

manual testing, check the look and feel, and of course run automated tests with Jenkins
jobs.

ElasTest Nightly has been deployed on AWS following the specification shared in the
ElasTest Community Web [11] validating in this way the correctness of the
documentation.

3.2.1.8.2 ElasTest Stable

Since March 2018 we have also a stable version of ElasTest running that is being used
for testing the ElasTest Nightly with ElasTest. This is a milestone — MS5 — set out in the
DoA by end 2018, and the tasks to reach this milestone is in progress.

3.2.2 Add-ons and auxiliary tools.

Codecov provides highly
integrated tools to group,
merge, archive and compare

Codecov Cobertura 0SS coverage reports. Whether your
[9] reports (Apache No Public team is comparing changes in a
analyser 2.2) pull request or reviewing a
single commit, Codecov will
improve the code review
workflow and quality.
Analyse the quality of your
Code 0SS source code to detect bugs,
SonarClo . . -
ud [62] review (LGPL- No Public vulnerabilities
tool 3.0) and code smells throughout the
development process.
Developed groovy library to be
ElasTest Jenkins used within Jenkins to help to
Jenkins library for 0SS 3 public launch ElasTest and manage
Library manage (Eclipse) ElasTest nodes. Developed in
[59] ElasTest the context of the ElasTest

project.

Table 2. Cl environment auxiliary tools and add-ons.

3.2.2.1 Codecov.

3.2.2.1.1 Whatis code coverage?

Code coverage [61] is a measurement used to express which lines of code were executed
by a test suite. We use three primary terms to describe each line executed:

e hitindicates that the source code was executed by the test suite.

e partial indicates that the source code was not fully executed by the test suite;
there are remaining branches that were not executed.

e miss indicates that the source code was not executed by the test suite.

21

D6.1: ElasTest Continuous Integration and Validation System v1 C’) ElaS

Coverage is the ratio of hits / (sum of hit + partial + miss).

Phrased simply, code coverage provides a visual measurement of what source code is
being executed by a test suite. This information indicates to the software developer
where they should write new tests in the effort to achieve higher coverage.

Testing source code helps to prevent bugs and syntax errors by executing each line with
a known variable and cross-checking it with an expected output.

3.2.2.1.2 What does Codecov bring to the table?

Code coverage tools incentivize developers to write tests and increase coverage. During
the process of writing tests, the developer may discover new bugs or syntax issues in
the source code that are important to resolve before distributing the application.

Codecov [9] takes coverage to the next level. Unlike open source and paid products,
Codecov focuses on integration and promoting healthy pull requests. Codecov delivers
-or "injects"- coverage metrics directly into the modern workflow to promote more code
coverage, especially in pull requests where new features and bug fixes commonly occur.

3.2.2.2 SonarCloud.

SonarCloud [62] is a service operated by SonarSource [65], the company that develops
and promotes open-source code quality products SonarQube [63] and SonarlLint [64].

SonarQube provides the capability to not only show health of an application but also to
highlight issues newly introduced. With a Quality Gate in place, you can fix the leak and
therefore improve code quality systematically.

Sonarlint gives you feedback on new bugs and quality issues injected into your code.

At the moment just, some components use SonarCloud to assure its quality and a proper
procedure is expected to be designed so more of ElasTest can make use of the features
it provides.

3.2.2.3 ElasTest Jenkins Library.

The ElasTest-library has been developed by NaevaTec in order to ease the integrated
end-to-end tests of every component on Jenkins.

This library has 3 main objectives:

e Encapsulate all the main stages related to the ElasTest platform lifecycle
management such as commissioning and decommissioning of ElasTest.

e Configure the type of ElasTest instance that should be run (authentication,
mode, exclusive or shared instance, etc.) Making the jobs agnostic to the details.
It is very useful on the current stage of the project as the ElasTest platform is still
changing quite regularly.

e Enable the jobs to be run against a clean exclusive ElasTest platform launched
for the specific job, and to run the same job against the nightly ElasTest or other

22

D6.1: ElasTest Continuous Integration and Validation System v1 C’) ElaS

ElasTest running on another server. This can be configured by the job itself but
also it can be forced by the Cl admin, without changing the job definition
(Jenkinsfile).

The library is in constant change, adapting itself to the changes of the ElasTest platform
and reducing the impact that those changes have on the components jobs. In addition,
it has the ability to grow-up to satisfy new requirements from the components. It has
been designed to be as backwards compatible as possible with previous versions of
ElasTest platform and with previous versions of the library itself.

The library is available as an open source resource on the ElasTest GitHub [59]. The
following methods are provided by the library in order to configure and customize the
ElasTest platform that would be used on the end-to-end tests.

3.2.2.3.1 Configuration methods:

Overrides the Verbose configuration parameter value (false) of the Library

Overrides the ElasTest Version configuration parameter value (“latest”) of the
Library

To select if and which version of the ERE component will be deployed and used on
the running ElasTest instance

Initializes the context that should be applied for the execution of certain steps and ‘

commands.

Initialization of the parameter Lite just for personalization, for normal execution
leave it empty. For lite execution initialize with ‘--lite’

’ Overrides the ElasTest Shared configuration parameter value (false) of the Library ‘

Overrides the default ElasTest Authentication parameter configuration parameter
value (false) of the Library. If true the launched ElasTest would be initialized with
basic authentication.

23

D6.1: ElasTest Continuous Integration and Validation System v1 C’) ElaS

Overrides the default ElasTest TestLink parameter configuration parameter value
(false) of the Library. The TestLink component will be launched on the new
instance.

3.2.2.3.2 Support functionalities for end-to-end testing:

Executed after the ElasTest start returns the IP address where the main component
(ETM) is listening

Executed after the ElasTest start returns the port where the main component
(ETM) is listening

Executed after the ElasTest start returns the full http connection URL where the
ETM is listening (Example: http://172.0.18.10:8091)

Returns an object that can execute the methods implemented by the library in the
user defined stages.

authenticated

Returns the user for the ElasTest Basic Authentication if the ElasTest is ‘

authenticated

Returns the password for the ElasTest Basic Authentication if the ElasTest is ‘

3.2.2.3.3 ElasTest management functionalities:

Executes the ElasTest platform with the options configured in the library (version, ‘
lite)

Return (in the moment) while ElasTest is already running. Checking if ElasTest
Platform container is running and if ETM is running too.

Waits up to 900s to ElasTest to start up. Returns true if it has started, and false
otherwise.

24

D6.1: ElasTest Continuous Integration and Validation System v1 C’) ElaS

This is a variation of the waitElasTest that detects if any the platform component
has been launched but the rest of the platform hasn’t.

After the ElasTest platform is launched as a Docker container, if this method is
executed inside another container the method adds it with the ElasTest network.

Stop the ElasTest platform and all the components.

After the ElasTest Platform is started, this method initializes the connection
information for the ElasTest

In case the ERE is expected to be launched the pullERE method will pull the defined
version of the component if selected and the latest if void.

In case the ERE is expected to be launched the pullERE method will pull the defined
version of the component if selected and the latest if void.

If the library is configured to connect with an external ElasTest (nightly mainly) the
library would try to connect with it instead of “startElastest”.

3.2.2.3.4 Pipeline encapsulation:

This method receives as parameter the user defined stages of the pipeline and
encapsulates them between the necessary logic to select the kind of ElasTest
execution and the management logic of the ElasTest. Resulting in a more complete
pipeline with the start ElasTest and release ElasTest stages added to the user
defined stages.

3.3 Security and User Access

3.3.1 Security

The Cl environment has been designed to grant a great level of security by applying the
following rules:

¢ Minimize doors to the environment:

25

D6.1: ElasTest Continuous Integration and Validation System v1 C’) ElaS

The accesses to the instances where the tools are running are only accessible
from NaevaTec VPN. By default, all the ports are closed for inbound connections,
and only SSH port is open for NaevaTec VPN and it is secured by SSH2 and private
key, with no user/password enabled. Ports 80 and 447 for the world. All the
connections through the port 80 (HTTP) are redirected to port 447 (HTTPS).

e Nominative access to resources:
All the not public resources are behind a log-in process. All the log-ins are
nominative. And the accesses to the resources are logged and can be audited in
case of secret revelations.

3.3.2 User Access

The Cl environment and procedures allows all the members of the consortium to access
the whole set of tools in a secured way with different access profiles, which depend on
the roles they have within the project.

We have designed a GitHub Oauth2 based centralized login for most of the tools access.
The groups of access are mainly maintained on the GitHub so the same access to the
code management is replicated to most of the Cl environment tools.

Each user will be probably assigned to more than one group, and that will enable
different scopes within the Cl environment.

Two groups for each Partner:

<Partner>-admin

e Users: Only selected users from the partner designed to admin Cl reserved

scope.
e (I functionalities: Full access to functionalities within the partner reserved
scope.
<Partner>

e Users: All the users from the partner that will be using the CI.
e (Il functionalities: <Partner>-admin will enable the features within its reserved
scope that these users can use.

Two groups for each Component:

<Component>-admin

e Users: Only selected users from the partners working on the component,
designed to admin Cl reserved scope. Most probably users from the partner who
is leading the WP or the related task.

e Cl functionalities: Full access to functionalities within URJC reserves scope.

<Component>

e Users: All the users from the group of partners working on this component that
will be using the CI.

26

D6.1: ElasTest Continuous Integration and Validation System v1 C’) ElaS

e Cl functionalities: <Component>-admin will enable the features within its
reserved scope that these users can use.

Component 1 Component 2 [ONON) Component 3
Team Admins Team Admins Team Admins
Environment Admins
Team Admins Team Admins Team Admins
Partner 1 Partner2 . . . Partner n

Figure 9. Authorization management: Teams

As presented in the Figure 9. We have defined Teams for each Partner and each
component.

e Any consortium user will be part of its company team and also part of any of the
teams where she/he is collaborating.

e Each organization can name any number of administrators of his/her group. And
they will have administrator rights over that team.

e Each component leader will be administrator of the component team they are
leading. And the leader can grant any user administrator rights over her/his
managed group.

e Then thereis a nominative group (with no associated team on GitHub) that have
administrative access to all the teams, and to the GitHub organization.

e |naddition to the GitHub Teams, some users would be selected as administrators
of selected tools with independence of the partner and components he/she
belongs to.

The rest of the applications in the environment will rely on the GitHub OAuth2 login and
retrieve the user teams to grant the appropriate access to the tool to each user. By
default, Partners teams are used for granting access to the tools and then components
to add the appropriate level of access to the user.

The user access configuration allows to open the contribution to the project to people
outside the consortium while maintaining the tools and the access to the sensitive tools
and applications restricted to the Consortium.

27

D6.1: ElasTest Continuous Integration and Validation System v1 (/b EIaSTe St

The following figure shows a diagram of a Jenkins user login.

9
e

Figure 10. Jenkins user login

The user would be required to give each of the linked applications read permissions over
his/her GitHub account. Those permissions can be revoked from her/his GitHub account
at any moment.

3.4 Maintenance

The Cl environment is regularly updated for maintaining the set of tools in a stable,
secure and updated state.

The maintenance has been scheduled to be carried every three months with a full
upgrade to the latest stable version of each of the hosted tools. Also, Exceptional
maintenances have been taken into account for critical or important bugs or security
issues. [See 4.7 Maintenance procedures]. Each of the actuations held on the
environment are documented and these documents are kept for future reference and
available for all the partners to read.

At the moment the following actuations have been run/ scheduled in the environment:

Date Name Cause Status Description

20170703 -
0S, Jenkins, Nginx and

03/07/2017 Maintenance Scheduled Done
. Docker updates.
Window
20171002 - 05. Jenkins. Nai
02/10/2017 Maintenance Scheduled Done » JENKINS, TEIX,
. Docker, Docker
Window

28

D6.1: ElasTest Continuous Integration and Validation System v1

7Y Elas

Compose, aws-cli

updates.
20171120 -
Maintenance
20/11/2017 . Security Done 0S, Jenkins updates.
Window -
Exceptional
20171222 -
Maint
22/12/2017 alh enance Security Done 0S, Jenkins updates.
Window -
Exceptional
kins, Ngi
20180116 - Done with OSD'oJce;ermI;'oclfler:X’
16/01/2018 Maintenance Scheduled) ’ .
. issues Compose, aws-cli
Window
updates.
20180226 -
Maintenance
26/02/2018) Security Done 0S, Jenkins updates.
Window -
Exceptional
kins, Ngi
20180402 - bocter, bocker
02/04/2018 Maintenance Scheduled Done ’ .
. Compose, aws-cli
Window
updates.
kins, Ngi
20180702 - bocker, bocker
02/07/2018 Maintenance Scheduled Delayed ’ .
. Compose, aws-cli
Window
updates.
0S, Jenkins, Nginx,
20181001 - Docker, Docker
01/10/2018 Maintenance Scheduled Scheduled ’ .
. Compose, aws-cli
Window
updates.
e
10/01/2019 Maintenance Scheduled Scheduled ’ .
. Compose, aws-cli
Window
updates.
e
01/04/2019 Maintenance Scheduled Scheduled ’ .
. Compose, aws-cli
Window
updates.
0S, Jenkins, Nginx,
20190701 - Docker, Docker
01/07/2019 Maintenance Scheduled Scheduled ’ .
. Compose, aws-cli
Window
updates.
0S, Jenkins, Nginx,
20191007 - Docker, Docker
07/10/2019 Maintenance Scheduled Scheduled ! .
. Compose, aws-cli
Window

updates.

Table 3. Maintenance schedule.

29

D6.1: ElasTest Continuous Integration and Validation System v1 () ElaS

4 Methodology and Procedures

The following section describes all the procedures defined to interact with the
environment and tools and maintaining them.

4.1 Methodology and Procedures

4.1.1 Basic Rules and Best practices.
The following rules apply to all the Cl environment users:

e Actively protect her/his access data to private repositories

e Not sharing his/her access data with any other person, especially with those
external to the consortium.

e Communicate to the administrators any suspicion of misbehaviour or data access
loss.

e Grant the SW published by Jenkins under her/his control to behave as expected.

e Not to publish any “dangerous” or “malicious” artifact.

4.1.2 Jenkins: Login

Users within the ElasTest Organization in GitHub that are members of any of the
partner’s teams would be granted access. Anybody inside the ElasTest Organization that
isn’t member at least of one of the partners’ team won’t be able to access.

1. Go to https://ci.elastest.io/jenkins
2. Authorize the application in your GitHub Account

0 Pull requests Issues Gist +~ !v

Authorize application @
Jenkins by @elastest would like

permission to access your account

Review permissions ;
Jenkins

& Personal user data v
Email addresses (read-only) ElasTestCl

Visit application’s website

Organizations and teams v

Read-only access s
@ Learn more about OAuth

Organization access

Organizations determine whether the application can access their
data.

elastest v

Figure 11. Authorize Jenkins GitHub

Users can revoke the authorization at any moment:

1. Go to https://github.com/settings/applications

30

https://ci.elastest.io/jenkins
https://github.com/settings/applications

D6.1: ElasTest Continuous Integration and Validation System v1 C’) ElaS

2. Select Jenkins and press revoke:

Authorized applications Revoke sl

You have granted 1 application access to your account. Sort~

&7y Jenkins

Revoke
LR | ast used within the last day - Owned by ElasTest

(@ Read more about connecting with third-party applications at GitHub Help.

Figure 12. Revoke Jenkins GitHub

4.1.3 Jenkins: Tagging slaves and jobs

Whenever a slave is registered Jenkins offers the possibility of setting a set of labels/tags
that defines the slave. So, jobs can restrict their execution to a specific slave or set of
slaves that provide them with the necessary environment.

As it is a good practice to use the tags “wisely”. The following rules are recommended
for tagging slaves and jobs.

4.1.3.1 Slaves

All the slaves should be tagged so they will be assigned jobs that they are capable of
executing. At least, there should be one tag for each of the following:

e 0S: general, distribution, distro+version (e.g.: Linux ubuntu14.04)
e Tools /SW: one tag for each tool/SW installed on the AMI with version if it
applies. (e.g.: java8, mvn3.3.9)

Also, when a slave is too sensitive or it is too specific for a job, it can be tagged with a
name or token and the jobs can configure the aforementioned tag so they will be
executed in that slave specifically.

4.1.3.2 Jobs

In order to launch the job on the correct Instance the Flag “Restrict where you can run
this project” should be checked. This will enable a field where tags can be used in logical
predicates to set the kind of instance this job needs to run.

The following rules apply to compose the predicate:

e Set the OS, as restrictive as it is necessary. Examples:
o Linux - no specific distribution is necessary
o ubuntul4.04 - this specific distribution is needed.
o Linux && lubuntu - this job needs a Linux but it cannot be Ubuntu, but all
other distributions will be valid...

31

D6.1: ElasTest Continuous Integration and Validation System v1 (b E |aS

e Set of tools needed. Examples
o (OS predicate) && (maven && java8)
e Specific label of a node.

As the predicate is written the user will see the number of slaves or cloud resources that
satisfies the predicate in that moment. If there isn’t any slaves or cloud resources that
satisfies the predicate and there isn’t any restriction that can be overseen system
administration will look for a solution — probably create and define a new type of
instance that would act as a Jenkins Slave —.

4.1.4 Private User Registry: Login and Register

In the main page the user should click on the Sign in with GitHub button located on the
top right corner.

ElasTest C] user registration

USER REGISTRATION
+

Marsage T CEIOON of wSe J000 10 DRIVIIE 1eR0UITes

Figure 13. User Registration home

Along the first attempt to access to this application, GitHub will request the user
permission to enable ElasTest User Registry application in order to gather the user data
from his GitHub account. The mechanism requests access to the user public information
and his membership within organizations and teams (read-only). If the user is member
of more than one organization she/he can chose only the ElasTest organization, as the
application won’t be reading other information.

32

D6.1: ElasTest Continuous Integration and Validation System v1 C’) ElaS

e O

Authorize epur

E epur by elastest
wants to access your gtunon account

n Oraanizations and teams v
Read-only access

Organization access
&7y elastest

tmp-test-for-jenkins Grant

A g will redirect to T
wpamenio
httpsi//ci.elastestio
Not owned or Created 2 days ago Less than 10
ys ag;
p b GitHub users

Learn more about OAuth

Figure 14. User Registration. GitHub Authorization

If the user is member of the ElasTest organization and belongs to at least one of the
Consortium Teams (ATOS, CNR, FOKUS, IBM, IMDEA, NaevaTec, REL, TUB 5G, TUB lloT,
URJC, ZHAW), he/she will be able to register and then generate his/her credentials.

The first time the user is logged in, a form will pop-up. Filling this form will grant the
administrators to gather the information needed to provide the user with the requested
credentials.

ElasTest Cl user registration Tesls At e [

Register User

gtunon

Figure 15. User Registration form

Retrieved from GitHub and it can’t be modified from this form.
Retrieved from GitHub and could be overwritten with a different email
address provided by the user. This information will be used to send the user
credentials.
This field is retrieved from GitHub and could be overwritten from
this form and should contain the user’s REAL first Name.
Not pre-initialized and must be filled by the user’s REAL last name.
To which partner does the user belongs to. (Can’t be changed once
submitted).

33

D6.1: ElasTest Continuous Integration and Validation System v1 C’) ElaS

To proceed with the registration

4.1.5 Private User Registry: Manage User,

Once registered, the user will be able to manage his/her information, and his/her
credentials. Also, the user will be able to delete him/her-self from the application

ElasTest Cl user registration Tools About @ ¢ iomar (@

Manage User
gtunon (NAEVATEC)

User Information

Name: Guiomar
Last Name: Tuiién de Hita
Contact Email: stunon@naevatec.com

Nexus Repository Manager

@ Activate access to Nexus

‘Amazon EC2 Container Registry (ECR)

@ Activate access to ECR

Figure 16. User Registration. User Management

4.1.5.1 Delete User.

Deleting a user will prompt a confirmation dialog. Once it is confirmed the following
actions will take place:

e [f the user has active credentials they will be revoked.
e The data kept in the application database will be deleted, no information will be
kept (except the logs of his/her activity within the tools).

34

D6.1: ElasTest Continuous Integration and Validation System v1 C’) ElaS

4.1.5.2 Edit User Information.

ElasTest Cl user registration Tools

Manage User
gtunon (NAEVATEC)

User Information

Name:

Last Name:
ién d

Contact Email:

Amazon EC2 Container Registry (ECR)

Figure 17. User Registration. User Information edition

The fields that can be edited are:

e Name
e Last Name
e Email.

4.1.5.3 Requesting access to Nexus Repository.

The nexus repository is used as a private software Artifact repository where those
components that shouldn’t be published outside the consortium should be published.

Activate the access to Nexus will create a user inside the nexus with the same username
as GitHub, and a secure password will be sent to the provided email.

Once the user has an active credential for the nexus the options to refresh and delete
the credentials will be enabled.

35

D6.1: ElasTest Continuous Integration and Validation System v1 C’) ElaS

ElasTest Cl user registration Tools About B ciiomar (@

Manage User
gtunon (NAEVATEC)

User Information

Nexus Repository Manager

~
K Refr

Amazon EC2 Container Registry (ECR)

Figure 18. User Registration. Access to Nexus activated

4.1.5.4 Requesting access to ECR

ECR is a private Docker container registry where those images that shouldn’t be
published outside the consortium should be published.

Activate the access to Nexus will create the credentials to access the Docker registry.
The credentials will be sent to the provided email. Once the user has an active credential
for the ECR the options to refresh and delete the credentials will be enabled.

ElasTest Cl user registration Tools About B iomer (@

Manage User
gtunon (NAEVATEC)

User Information

Name: Gui
Last Name:
Contact Email:

Nexus Repository Manager

Amazon EC2 Container Registry (ECR)

~
x Refre

Figure 19. User Registration. Access to AWS ECR activated

4.1.5.5 Refresh access to Nexus

Refreshing the access to Nexus will revoke the previous credentials and a new password
will be sent to the user.

36

D6.1: ElasTest Continuous Integration and Validation System v1 C’) ElaS

4.1.5.6 Refresh access to ECR

Refreshing the access to ECR will revoke the previous credentials and new credentials
will be sent to the user.

4.1.5.7 Revoke access to Nexus

The revocation of the access to Nexus will disable the user in the Nexus. But it won't
delete the user so we can keep track of the previous actions done by the user.

4.1.5.8 Revoke access to AWS ECR

The revocation of the access to ECR will disable the user in the ECR and the credentials
provided previously will be revoked. But it won’t delete the user so we can keep track
of the previous actions done by the user.

4.2 Development environment configuration for AWS ECR

The following procedure should be followed in order to access any of the Docker images
hosted in the private AWS ECR.

1. Register for an AWS ECR private registry account. (See section 4.1.4 Private User
Registry: Login and Register). Once you have registered for ECR you will receive
credentials by email

2. Install AWS CLI tools for your platform using the AWS CLI Installation guide
provided by Amazon.

3. Configure AWS by running aws configure with the following parameters:
e AWS Access Key ID - provided in the email received in step 2.
e AWS Secret Access Key - provided in the email received in step 2.
e Default region name - eu-west-1
e Default output format - json

4. Llogin to the private ECR registry by running $(aws ecr get-login --no-
include-email)

4.3 Jenkins Jobs Naming

As a component owner, you can have as many jobs in Jenkins as you want. There is a
Jenkins folder per each component. The more common jobs are the following:

e Compile jobs: These jobs are executed in every commit that lands to master
branch (directly or after a merge or rebase). They execute unitary and integration
tests and if there are no errors, it publishes development artifacts to binary
repositories. In the case of platform components, they create and publish the
main component image in DockerHub. The names of these jobs are simply the
acronym of the component. For example: EDM, EPM, ETM, among others.

e Endto end test jobs: These jobs execute end-to-end tests against Docker images
generated in the compile job. They are executed also in every commit, after the
compile jobs. In the future, if these tests spend too much time to execute (and

37

D6.1: ElasTest Continuous Integration and Validation System v1 C’) ElaS

use too much computing resources), it will be considered executing them once a
day, at night or even with fewer periodicity -every two days or even weekly-. The
names of these jobs are the acronym of the component followed by “e2e”. For
example: edm-e2e, epm-e2e, etm-e2e, etc.

e Docker images jobs: As complementary component images and test images
change less often than main component images, it is not necessary to recreate
them in every commit of the main repository. For that reason, it can be useful to
have Jenkins jobs tailored specifically to the creation of complementary
component images and test images. To reduce the number of jobs to maintain,
it is ok to have only one job per component that creates all complementary
component images and test images of that component. But it will be also
accepted to have a job per complementary in case more fine-grained control
over image creation is needed. Those jobs can be executed manually by the
component developer or can be executed on every commit that affects to files
on that image. A crucial aspect is to follow the name format for the jobs. If only
a job for all images exists, the name of that job is the acronym followed by “-
comp-images”. For example: edm-comp-images, epm-comp-images, etc.... In
other case each subcomponent job should be named according to the image
name, for example: eim-logstash, edm-mysq|, etc.

In summary, we will have the following Jenkins jobs in every component folder:

1. Compile job: <component_acronym>

2. Endto end job: <component_acronym>-e2e

3. Docker images job:
e Multiple images: <component_acronym>-comp-images
e Oneimage: <component_acronym>-<complement>

4.4 Development

e Source code management:

All the ElasTest repositories must be contained in the ElasTest GitHub organization:
https://github.com/elastest. Inside this organization, there are two types of
repositories:

e Internal repositories, i.e. repositories created directly in the ElasTest
organization.

e Forked repositories, i.e. repositories originally created in a different
organization, but forked inside the ElasTest GitHub organization.

Each of the repositories would be managed and administered by the component leader.
Leaders have the freedom of add people to the contributors and select the best
branching and merging directives that would fit better for the managed component.

As defined in the Grant Agreement document, the license of the public repositories
should be one of the following: LGPL, Apache 2, or MIT. For the sake of simplicity, we

38

https://github.com/elastest

D6.1: ElasTest Continuous Integration and Validation System v1 C’) ElaS

selected Apache 2.0 [10] license for every public software artifact of ElasTest, except
those that pertain to the background of a partner.

Each repository should contain a README file, written in Markdown format, in the root
with the default template (See [27]) defined for the project. At least the following
information should be present in each README file:

Badges

Header (ElasTest logo, copyright, license)
Name of repository and description

Brief description of ElasTest

License and distribution information
Contribution policy

Support

In addition to the README file each repository that belongs to an ElasTest component
should have a folder for the user documentation.

The badges expected to be found in each of the repositories are the following:

License.

Documentation.
Build Status.
Code Coverage.
Quality.

39

D6.1: ElasTest Continuous Integration and Validation System v1 b EIaSTe St

[gt] o oo | v o | o555

ElasTest

Copyright & 2017-2019 ElasTest. Licensed under Apache 2.0 License

elastest-platform-manager (EPM)

The ElasTest Platform Marsger (EPR) is the interface between the ElasTest testing components (=.g. TORM, Test Support
Services, etc)] and the cloud infrastructure where ElasTest is deplayed. Hence, this Flatform Manager must abstract the cloud
services 5o that ElasTest becomes fully agncstic to them and pravice this abstraction via Scftware Development Taolkits [SDE)
or REST AP|s ta the narthbound consumers {i.e. the TORM)L The ElasTest Platform Manager eniabling ElasTest to be ceplayed
ard o execute seamlessly in the farget doud infrastructune that the consotivm considers as appropriate (eg. OpenStack,
CloudStack, bant] AWS, etc)

The ElasTest Platform Marager companent is currently in development. If you want to contribute to the this project you need
to read the Development documentation.

What is ElasTest

This repository is part of ElasTest, which is an open source elastic platform aimed to simplify end-to-end testing. ElasTest
platform & based an three principles: i) Test archestration: Combining irteligently testing units for creating a mare comgplete
test suite following the “divide and conquer” principle. i) Instrumentation and monitering: Customizing the SuT (Subject
under Test] infrastrscture so that it reproduces real-woeld operational behavior and allowing to gather relevant information
durireg testing. i) Test recommencation: Using machine leaming and cognitive computing for recommending testing actions
ard providing testers with friendly interactive facilities for decision taking

Documentation

The ElasTest project prowides detsled dooumentation inchuding tutoriaks, installstion and development guide.
Source

Saurce code for other ElasTest projects can be found in the GitHub ElasTest Group

Mews

Follow us an Taitter 2EksTest Taitter.

Licensing and distribution

Licensed under the dpache License, Version 2.0 (the *License®); you may not use this file except in compliance with the
License. You may obtain a copy of the License at

hittpy e apache. orglicerses L CENSE-2.0

Unless required by applicable law or agresd ta in writing, software distributed under the Licerse is distributed an an “AS 157
BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIMD, pither express or implied. See the License for the specific
largguage governing permissare and Emitations under the License.

Contribution policy

¥ou can contribute to the EleTest community through bug-reparts, bug-fines, new code or new documsentation. For
contribiting to the ElasTest community, you can use the ssue support of GitHub providing full information about your
contribiwtian and its walue. In your contributions, yow must comply with the follawing guidefires

® You must specify the specific conterts of your condribution either throwgh a detailed bug description, throwgh a pul-
request or thrawgh a patch,

® ¥ou must specify the licensing restrictions of the code you contribute.

®* For newly created code to be incomporated i the ElasTest code-base, you must acoept ElasTest to oen the code
copyright. so that its apen source nature is guaranieed.

" ¥ou must justify apprapriately the need and value of your condribution. The ElasTest praject has no obligations in relation
to accepting contrbutians fram third parties.

= The ElasTest project lesders have the right of asking for further explanations, tests or validations of any code contributed
to the community before it being incorporated iro the ElasTest eode-base. ¥ou must be ready to addressing all these
kired af concems bedfone having youwr code approved.

Support

The ElasTest project prowides community support throwgh the ElasTest Public Mailing List and through StackCreerflos using
thee tag elostest.

Funded by the European Union

Figure 20. Example of README.md

40

D6.1: ElasTest Continuous Integration and Validation System v1 C’) ElaS

4.5 Testing

4.5.1 Unitary and integration (component)

All the components are expected to have a complete suite of unitary tests. The suite
should reach about a 70% test coverage for mature components whether those
components where research is more prominent are expected to have weaker test
coverage at this point.

Test coverage changes rapidly with the different iterations on the development process
but as an idea at the moment of writing this document the test coverage of each
component is the following:

elastest-torm 43,71%
elastest-user-emulator-service 73,74%
elastest-monitoring-service 95,45%
elastest-instrumentation-manager 7,21%

elastest-monitoring-platform 69,91%
elastest-cost-engine 79,70%
elastest-platform-manager 55,18%
elastest-data-manager 90,91%
elastest-service-manager 84,64%
elastest-bigdata-service 92,31%
elastest-device-emulator-service 34,31%

Table 4. Code Coverage. Date: 21-06-2018

To report the test coverage, we have selected CodeCov.io tool that provides a good
graphic interface for the public repositories of GitHub and provides a good insight of the
improvements made with each commit to the test coverage.

In order to publish the test coverage into CodeCov.io the following steps should be as
follow:

1) Generate the Cobertura reports in a Jenkins Job.

2) Use the provided Tokens (as Jenkins Constants) for the appropriate repository,
to upload the reports to CodeCov.io

3) Add badge for code Coverage in the GitHub documentation.

Jenkins jobs examples for the configuration of Cobertura reports and codecov.io
integration have been provided for the partners to follow. You can find more
information in A3. Cobertura Reports and CodeCov.io integration procedure.

41

D6.1: ElasTest Continuous Integration and Validation System v1 C’) ElaS

4.5.2 End-to-end tests.

We have devised an end-to-end test plan that have 3 main stages:

1. Component end-to-end: Components provide end-to-end tests that ensure the

behaviour of the component and all the services that it makes use of. This kind
of tests are usually held against the component APl and can be launch against
the component running as a part of the ElasTest platform, or against an isolated
instance of the component if applies. This kind of test aren’t applicable to all the
components, see section 4.5.2.4.

Platform end-to-end, traditional tools: Most components have defined their
own end-to-end tests that test their behaviour within the ElasTest platform
through the GUI. These tests reproduce use cases that would make use of the
component tested. The assertion clauses are focused on the component tested.
Only components that have no GUI are excluded from these end-to-end tests.
This way once run all the component end-to-end tests we have an idea of the
actual behaviour of the whole platform. These tests are run by Jenkins jobs
nightly.

Platform end-to-end, ElasTest: All the Jenkins jobs of the stage 2 are being
converted on TJobs of for ElasTest. These TJobs would be run on a Stable
ElasTest. This is a project milestone planned for the end of 2018.

4.5.2.2 ElasTest-library

In order to use the described library in section 3.2.2.3 a procedure have been created,
in order to simplify and unify the style of the end-to-end tests jobs that run over a full
ElasTest.

The code and basic documentation can be found in the following repository:
https://github.com/elastest/ci-elastest-jenkins-lib and can be used in Jenkins pipelines

with the following reference: @Library ('ciElastestConnect') _

The library has been developed with the basic functionality provided by the
elastest/platform component, but other common useful functionalities can be added at
any time.

The library can be configured to launch different configurations of the ElasTest:
Normal / experimental / experimental-lite

One per job / one shared for all the jobs...

Specific version of the ElasTest

4.5.2.2.1 Library initialization

First of all, the library should be instantiated. The name the library has been registered
with in the Jenkins is 'ciElastestConnect"

@Library('ciElastestConnect')

42

https://github.com/elastest/ci-elastest-jenkins-lib

D6.1: ElasTest Continuous Integration and Validation System v1 C’) ElaS

After the declaration of the library it should be configured to behave as we expect. We
have two kind of configuration parameters: mandatory and optional.

e Mandatory:
o Context:

//initialization of the context for the library
elastest lib.setContext (this)

e Optional:
o Mode
* Values: “normal” [default], "experimental”, "experimental-lite"
o Verbose

//uncomment this if you want to use a lite or augmented version of
elastest
//elastest lib.setMode (“experimental”)

o Version

//uncomment this if you want a more detailed log
//elastest lib.setVerbose (true)

o Shared
= The shared parameter is recommended to be used with the
default value.
More configuration options are described in section A5. ElasTest Jenkins Library API.

Lastly in the library set up we need to instantiate an ElasTest object to be able to execute
the methods provided by it within our stages.

//initialization of the runnable object to access elastest methods
//inside the pipeline
def elastest = elastest lib.getElastestMethods ()

4.5.2.2.2 End-to-end stages

In order to define our custom stages, it is important to notice that no node declaration
is accepted (the library will take care of it).

Once marked that, the stages should be declared inside of the
elastest lib.pipeline({...}) method. Example:

//definition of nodes is managed by the library. Just declare the
//steps of your pipeline inside the elastest lib.pipeline({...})
elastest lib.pipeline ({
stage ('Conf tests')
echo 'Test configuration’

stage (‘E2E tests')

43

D6.1: ElasTest Continuous Integration and Validation System v1 C’) ElaS

echo 'Here your tests'

H

This definition of stages will lead to a pipeline like this one:

Stage View
launch Conf tests E2E tests release
elastest elastest
12min 21s 16ms 13ms 565ms
Oct 19 .
! 12min 21s

Figure 21. Jenkins ElasTest-library. Pipeline

Stages “launch elastest” and “release elastest” are added by the library.
Inside the user defined stages, the following rules apply:

e Plugins and common stages:
o As the execution of the commands is done inside the library the context
is different, and some objects or stages are unavailable. The invoked
object or stage will fail with the next error:

java.lang.NullPointerException: Cannot invoke method image () on null object
at org.codehaus.groovy.runtime.NullObject.invokeMethod (NullObject.java:91)
at org.codehaus.groovy.runtime.callsite.PogoMetaClassSite.call (PogoMetaClassSite.java:48)
at org.codehaus.groovy.runtime.callsite.CallSiteArray.defaultCall (CallSiteArray.java:48)
at org.codehaus.groovy.runtime.callsite.NullCallSite.call (NullCallSite.java:35)
at org.codehaus.groovy.runtime.callsite.CallSiteArray.defaultCall (CallSiteArray.java:48)
at org.codehaus.groovy.runtime.callsite.AbstractCallSite.call (AbstractCallSite.java:113)

o This error can be solved by adding elastest.ctx to the object or the stage
for example:

docker.image ('..."') [/fails
elastest.ctx.docker.image ('...")//lworks

e Inside a custom container:
o When the job launches a custom container and when from inside that
container, the job tries to connect with the ElasTest in any way curl,
Selenium, etc. The launched ElasTest wouldn’t be reachable.
o The solution is to execute inside the container and before trying to
connect with the ElasTest, the following library method:

elastest.connect?2ElastestNetwork ()

4.5.2.3 Jenkins end-to-end tests job structure

In order to compare the jobs execution and have a “meta-job” that can run parallel end-
to-end test jobs and be able to compare stages the end-to-end job pipelines should be
similar. The proposed stages are the following:

44

D6.1: ElasTest Continuous Integration and Validation System v1 C’) ElaS

1. “Launch elastest”: Library Stage. It will launch the ElasTest instance or check the
nightly Instance.

2. “Configuration: User stage. Here the entire configuration previous to the tests
execution will take place. From launching a specific container and connecting it
to ElasTest, to load tests parameters.

3. “E2E tests”: User stage. Here only the execution of the test should take place.

“Results”: User stage. The results can be published here.

5. “Release elastest”: Library Stage. It will release and delete the ElasTest Instance
or doing nothing in case the shared library is used.

P

We recommend to add all the proposed stages and fit your steps in the proposed stages,
without any addition or deletion, in case one stage is empty it should be filled with an
echo step.

4.5.2.4 End-to-end tests per component

Each component can be tested as a black box, to assert the validation of the provided
APls, and expected behaviour. Each component can define its own method of validation
and test execution scheduled. These tests aren’t mandatory so they are a
recommendation, as a first step towards the Integrated Ul end-to-end tests.

4.5.2.4.1 ElasTest Big Data Service (EBS)

The ElasTest Big-Data Service consists of an Apache Spark [40] cluster, the necessary
connectors for persistence services (EDM) and a REST API to provide detailed health
information for the cluster.

The API tests are written in Python using the requests library and fully check the
functionality of the cluster. An abstract explanation of the steps is given below:

1. Create a TJob (described below).

2. Execute the Tlob

3. Probe for results.

4. Exit (successfully or unsuccessfully).

While the test performs a thorough check of ElasTest API functionality for interacting
with EBS, the specific TJob is specifically created to perform an end-to-end test on the
EBS service by going through the whole lifecycle of a Spark application. More specifically
the job will:

1. Git clone a demo Spark application from ElasTest demo projects [41].

2. Build the application using maven.

3. Download a big text file [42] from the internet and save it to HDFS (EDM).

4. Submit the application to the cluster. This is a word-count application that will
return the number of occurrences of every word on the specified file and save
the results back in HDFS.

Pull the result file back out from HDFS.

6. Perform a printout on the result file.

v

45

D6.1: ElasTest Continuous Integration and Validation System v1 C’) ElaS

4.5.2.4.2 ElasTest Cost Engine (ECE)

The ElasTest Cost Modelling Engine (ECE) has been implemented in Java, using Spring-
boot [37] and Thymeleaf [38] templating framework. The unit tests are written as Junit
4 [33] tests and code coverage are assessed using Cobertura [34] reports. The project
itself is developed as a Maven [35] project and the tests can be executed locally as well
as on the ElasTest Cl server [36]. The unit tests cover the following functionality in ECE:

e REST driver functions
e Controller functions which controls the Ul rendering of cost analysis requests

In the next iteration of ECE, online accounting and billing mode will be added, and JUnit
tests will be enhanced to cover the new features in order to maintain or increase the
code coverage of the module.

4.5.2.4.3 ElasTest Data Manager (EDM)

The ElasTest Data Manager (EDM) is a bundled set of persistence services in a single
component. All tests (with or without ElasTest GUI) must utilize other components in
order to test EDM functionality, as most parts of EDM are not APl nor GUI directly
accessible, only via other services. The only components that can be directly end-to-end
tested are cloudecmd (via ElasTest Platform Ul) and Kibana (via ElasTest Platform Ul).

4.5.2.4.3.1 Hadoop/Alluxio

Hadoop and Alluxio are tested via EBS end-to-end test 4.5.2.5.1 ElasTest Big Data Service
(EBS). The job functionality described in the relevant section is specifically designed to
perform different operations on Hadoop, in order to verify both components work.

4.5.2.4.4 ElasTest Device Emulator Service (EDS)

The goal of EDS end-to-end tests is to invoke the TSS EDS via ETM, use the facilities
offered by EDS in particular the facilities offered by service eds-base to initiate sensors
and actuators. Furthermore, the initiated sensors and actuators can be wired at the
application level where the end-to-end test is written.

The tests are executed in the ElasTest Cl server [36] and are defined by a Jenkinsfile [44].

The EDS provides a test [45] that uses the API facilities of the ETM to invoke and use eds-
base in the steps mentioned below:

1. Open ElasTest using a HTTP request with authentication parameters that is
available on the machine running Jenkins.
2. Create a new project with name EDSE2E via http request to ETM.
3. Send arequest to the ElasTest Platform to facilitate new TJob with the following
details:
a. Tlob name as demotjob.

46

D6.1: ElasTest Continuous Integration and Validation System v1 C’) ElaS

b. Commands required to run the end-to-end test.

c. ESM string to indicate initiation of required TSS. In this case only
component EDS.

4. Tlob execution process -

a. Wait until the TSS is available.

b. After TSS is made available from ETM, execute the Tlob until its
completion.

c. Asuccessful exit of the test indicates the TJob was successful in execution
else the TJob execution is marked as Fail.

4.5.2.4.4.1 Test Application for the EDS tests

The test application interacts with service eds-base offered by EDS to request
components and wire them. The components offered at present are:

e Temperature sensor: This is a sensor which provides sensor values at a fixed
interval and can be turned on or off.

e Simple actuator: This actuator receives a value at its input which it will forward
to the output after a fixed delay. This actuator can be turned on or off.

The sequence of actions carried out by the test application are as follows:

1. Register the test application with eds-base.

Request for a temperature sensor.

Request for a simple actuator.

Turn on the temperature sensor and fix the reporting interval to 5 seconds.
Turn on the simple actuator and fix the reporting delay to 3 seconds.

Wire the output of the temperature sensor to the input of the simple actuator.
Wire the simple actuator output to the test application.

7. Run this loop for 60 seconds. After this terminate the application with a success.

oV sEwWN

4.5.2.4.5 ElasTest Instrumentation Manager (EIM)

The ElasTest Instrumentation Manager (EIM) has been implemented in Java, as a JAX-RS
RESTful API Service [47] using a MySQL database to store data (MongoDB is also
supported). JUnit 4 [33] has been chosen as testing framework for the component. Tests
suite is automatically executed by the ElasTest Cl server [36], the tests are based on
several topics in order to cover these topics:

e Data storage layer.
e Data model layer.
e REST API performance.

4.5.2.4.6 ElasTest Monitoring Platform (EMP)

The ElasTest Monitoring Platform (EMP) is written in Java using Spring framework [18]
as a RESTful service. The unit tests are written as Junit 4 [33] tests and Cobertura [34]
reports are used to assess the code coverage. The EMP uses Maven [35] as its build

47

D6.1: ElasTest Continuous Integration and Validation System v1 C’) ElaS

environment and tests can be executed locally as well as on the ElasTest Cl server [36].
The unit tests in EMP cover various capabilities for correctness including (but not limited
to) the following areas:

e Database interactions

e Time series data manipulations

o Kafka communications and topic management
e Controller functionalities

e APl service

e Health check functionalities

e In memory cache behaviour

4.5.2.4.7 ElasTest Monitoring Service (EMS)

In order to test the ElasTest Monitoring Service (EMS) into the ElasTest Jenkins, a Jenkins
file has been provided [26].

The test starts launching an instance of ElasTest and its URL retrieved in order to access
the different functionalities exposed by the EMS. The test flow is specified in a bash
script [28] and it realizes the following actions:

1. An EMS instance is started using the ESM REST API.

2. Once the EMS is up and running, its URL is retrieved through the ESP API.

3. An empty project then is created also the ESM REST API.

4. A SuT is created inside the project from the previous step. This SuT runs a
dummy Docker [29] listing all the processes running on the container.

5. ATlob is created in the project and linked to the dummy SuT using also the ETM
REST API. The T-job is defined as a metricbeat Docker Image [30], configured to
send beats to the EMS whose URL was fetched in step 2.

6. The TJob is executed using the ETM REST API.

7. The EMS health-check is continuously queried to retrieve the amount of evens
processed. When this number differs from 0, the test finishes successfully. If 125
seconds have passed and EMS still hasn’t processed any events, the test finishes
with FAILURE.

4.5.2.4.8 ElasTest Orchestrator Engine (EOE)

The ElasTest Orchestrator Engine is still on first stages of design and development, so
component end-to-end tests doesn’t apply.

4.5.2.4.9 ElasTest Platform Manager (EPM)

The ElasTest Platform Manage doesn’t have direct interaction with the user. Its
behaviour is tested on every one of the other components’ tests. So, no specific tests
are needed for the EPM.

48

D6.1: ElasTest Continuous Integration and Validation System v1 C’) ElaS

4.5.2.4.10ElasTest Recommendation Engine (ERE).

The ElasTest Recommendation Engine is mainly used through the ElasTest GUI. This first
set of tests are avoided, focusing all the effort in the GUI end-to-end tests — See section
4.5.2.5.10 -

4.5.2.4.11 ElasTest Security Service (ESS)

The ESS end-to-end test is implemented in Python using the request libraries and can be
found in the ESS GitHub repository [31]. These tests have been automated in an ElasTest
Jenkins job following the recommendations [32].

The test does the following actions in order to check the validity of the ESS functionality:

1. Start the ElasTest Platform.

2. Call the ETM API for getting the status of the running services to check it the
ElasTest platform is accessible.

3. Launches an instance of ESS by calling the ETM API for launching a service.

4. A new project called “E2E test ESS” is created, also through the ETM API.

5. Anew Tlob (“E2E TJob”) is created under the “E2E tests ESS” project. This TJob
is based on the Docker image dockernash/ess-e2e [66] that has a python script
which makes http request via the 8080 port of a configurable IP address. This IP
address is set, as an argument, at run-time. In the test we setup the IP address
to be the ESS Man-in-the-middle proxy service running at port 8080.

6. The newly created TJob is run by calling the corresponding ETM API, and it would
validate whether the HTTP connection information is produced as output by the
ESS.

Steps 5 and 6 tests whether the man in the middle proxy service of ESS is working
properly and can be used by TJobs. Step 6 validates also whether the ESS can access
the connection information which is necessary for conducting further analysis.

4.5.2.4.12 ElasTest Service Manager (ESM)

The ElasTest Service Manager isn’t shown in the ElasTest GUI currently. But it has a
health check endpoint that is being considered to be used on the ElasTest platform to
inform the user of the current status of the component. Until this approach is further
studied no end-to-end test will be provided.

4.5.2.4.13 ElasTest Tests Manager (ETM)

The ElasTest Tests Manager (ETM) is a web application implemented with Java 8 [51]
and Angular 4 [52] as main technologies and build as a Spring Boot application [14]. To
test the ElasTest backend, JUnit 5 [15] is used as testing framework and the currently

49

D6.1: ElasTest Continuous Integration and Validation System v1 C’) ElaS

existing tests are available on the ETM GitHub repository [53]. These tests are focused
on check the ElasTest operation and for that make use the ETM’s API. The functionalities
covered by these tests are:

e Project Management

e Tlobs Management

e Tlobs Execution Management
e SUTs Management

These tests are executed by Jenkins [36] and together with the unit tests, after each
code integration, allow us to get to know that ElasTest is still working.

4.5.2.4.14 ElasTest User impersonation Service (EUS)
Regarding the end-to-end tests, two different tests have been implemented:

o SeleniumE2ETest [19]. This test starts a standalone instance of EUS, and it is used
to feed a Selenium’s RemoteWebDriver object. Two different types of browsers
(Chrome and Firefox) are used to navigate to a test SUT, in this case Wikipedia.
Allin all, this test aims to verify that the basic operation of EUS (i.e. the capability
of providing browsers following a SaaS approach) is working properly.

e TimeOutTest [20]. The EUS, internally implements a timeout for browser
sessions. This timeout is reached when no interactions with the session is
performed in a given time (60 seconds by default). This test is aimed to verify
this feature. To do that, first the timeout is reduced to 5 seconds. Then, test
forces to wait longer than that timeout, in this case 10 seconds, verifying that
the proper exception (WebDriverException) is thrown by EUS.

These tests, together with the unit and integration ones, are executed by the ElasTest
Jenkins server. Concretely, these tests are launched when any new patch is committed
to the EUS GitHub repository. The job is labelled as “eus” in Jenkins [36].

4.5.2.5 Integrated Ul end-to-end tests

ElasTest is a set of components that should be tested as whole and following user paths
through the API. For these tests we have designed 3 steps that should be covered for a
complete validation of ElasTest itself:

e End-to-end component tests on a whole ElasTest (Nightly ElasTest). Each of the
teams should test its component but from the user point of view i.e. accessing
the functionality of the component through the web Ul. This step would produce
a set of jobs, where each of these jobs would focus in a specific component.

e End-to-end user flows (Nightly ElasTest). Main use cases of the ElasTest
platform as a whole should be developed and tested. This would produce a set
of tests that would model use cases, which implies more than one component,
so integration issues can be found.

50

D6.1: ElasTest Continuous Integration and Validation System v1 C’) ElaS

e ElasTest tests ElasTest. One instance stable Instance of ElasTest would make use
of the tests and jobs produced on the previous stages and would be run over a
SuT that is a newer version of ElasTest.

We have reached maturity in the first step where most of the components have
provided a set of Jenkins jobs that test each component integrated in acommon ElasTest
instance. But there is still work to be done in order to improve the already developed
tests and to add new tests that would increase the quality of the ElasTest platform as a
whole.

4.5.2.5.1 ElasTest Big Data Service (EBS)

EBS is tested using the ElasTest GUI, using Selenium [43] via Python. This test will create
a Tlob, utilizing the Ul controls of ElasTest platform. The purpose is to prove that EBS
can be fully managed via the graphical elements of ElasTest.

The TJob will behave as the not Ul end-to-end TJob described for the EBS:

Git clone a demo Spark application from ElasTest demo projects [41].

Build the application using maven.

Download a big text file [42] from the internet and save it to HDFS (EDM).
Submit the application to the cluster. This is a word-count application that will
return the number of occurrences of every word on the specified file and save
the results back in HDFS.

5. Pull the result file back out from HDFS.

6. Perform a printout on the result file.

P wnNPR

The tests will check if the results of the TJob are the expected ones.

4.5.2.5.2 ElasTest Cost Engine (ECE)

ECE has been integrated with the ElasTest dashboard, Jenkins job ece-e2e-test [39]
performs the end-to-end test to test the correctness of the integration between the
overall ElasTest dashboard and the cost engine. The tests have been developed using
JUnit 4 [33] and the web integration has been tested using Selenium drivers. The
following describes the structure of the test:

e invokeEce: This test verifies whether the ECE Ul element is available within an
iframe of the main ElasTest. The test in the setup phase activates the Test-
Engines link from the main navigation panel in the dashboard. It then checks if
the ECE engine is present in the list of engines, and then starts the engine by
pressing the ‘Start Engine’ button. The test then verifies that specific HTML DIV
element in the ECE view is present or not. Presence confirms that the ECE Ul is
integrated and working as expected in ElasTest dashboard. The JUnit assertion
tests whether a known ECE Ul element has been displayed or not.

51

D6.1: ElasTest Continuous Integration and Validation System v1 C’) ElaS

The ECE future development with include ability to do actual cost calculations for all
valid executions for the selected TJob. The end-to-end test with the ElasTest GUI will be
evolved to test additional visual elements which will be incorporated in the ECE UI.

4.5.2.5.3 ElasTest Data Manager (EDM)

EDM components that can be specifically tested via the platform GUI are described here.

4.5.2.5.3.1 Cerebro/Elasticsearch/Kibana

Cerebro is a web admin tool for Elasticsearch. By performing a Ul test of Cerebro,
Elasticsearch functionality can also be tested. Unfortunately, Cerebro is not yet
accessible from ElasTest dashboard, so end-to-end test cannot be applied yet. The same
applies for Kibana.

4.5.2.5.3.2 Cloud Commander

Cloud commander (cloudcmd) is a web-based file manager for managing files stored in
HDFS. It is tested via EBS E2E Ul test — See 4.5.2.5.1 —, since that test also produces data
inside HDFS.

4.5.2.5.4 ElasTest Device Emulator Service (EDS)

The goal of EDS end-to-end tests is to invoke the TSS EDS via ETM, use the facilities
offered by EDS in particular the facilities offered by service eds-base to initiate sensors
and actuators. Furthermore, the initiated sensors and actuators can be wired at the
application level where the end-to-end test is written.

The EDS Integrated and Ul Test [46] uses Selenium framework using the Chrome web
driver [43] to interact with the ElasTest dashboard in a typical way how user can initiate
and run tests. This test is carried out using the Selenium framework using the Chrome
web driver in the headless mode.

1. Open ElasTest nightly using a HTTP request with authentication with
authentication parameters that is available on the machine running Jenkins.

2. Click the main menu button, followed by "New Project" button. Fill in the project
name as "EDSE2E_UI" and press save button.

3. Click on "New TJob" button. In here fill the name of the TJob as "sampletjob". In
the field image name, fill in "elastest/eds-base". In the field of SUT, select “None”
and press save. Fill in the commands needed to execute the TJob. In the options
containing required TSS for the TJob, cross mark the TSS EDS and press save
button.

4. Press on the start button of the execution of the TJob.

5. Monitor the dashboard status, for the word "Finished". Until it's obtained keep
looping.

52

D6.1: ElasTest Continuous Integration and Validation System v1 C’) ElaS

6. Once the TJob has completed execution, check the dashboard status again. If
SUCCESS is in the dashboard, then TJob exited with a result success else it was a
failure.

A complete description of the application that has been used to test the EDS on this test
has been provided in section 4.5.2.4.4.1 Test Application for the EDS tests.

4.5.2.5.5 ElasTest Instrumentation Manager (EIM)

EIM is also tested using the ElasTest dashboard, a web application. To test it, a Jenkins
job [48] has been created in the ElasTest Cl Server [36]. This job runs automatically EIM
end-to-end tests that are implemented using JUNIT 4 [33] and Selenium [43].
e ObservabilityTest: this test verifies if a new SuT is correctly monitored by EIM.
To achieve this goal, the test follows these steps:
o Create new project
o Create SuT outside ElasTest platform based on EIM SuT image [49]
o Create new SuT in the created project. The SuT have these details:
= |P address
= user
= private key for the user
= Deployed outside ElasTest option selected
= Instrumented by ElasTest option selected
* Log paths: destinations that are monitored by EIM, in order that
if any file of these folders changes, a notification is sent.
o Create new TJob associated to the created SuT, with these details:
= Associate the TJob to the created SuT
= Environment Docker image [50]
= Commands: download a git repository and launch tests of the
project.
= git clone https://github.com/elastest/demo-
projects
= cd demo-projects/unit-java-test
= mvn -B test
= Uncheck All-in-one chart check in Metrics and logs section
o Launch the TJob:
= When execution starts, click on Open Monitoring Config. button
and check SuT node on metrics sections in order that monitoring
data appears on screen.
= The monitoring data appears in the several graphics of the screen:

53

https://github.com/elastest/demo-projects
https://github.com/elastest/demo-projects

D6.1: ElasTest Continuous Integration and Validation System v1 C’) ElaS

sut et_metricbeat system_cpu system X sut et_metricbeat system_cpu user X

Legend A Legend
\ s

Figure 22. Graphics of EIM execution

= Testis marked as successful when graphics appears on the screen

4.5.2.5.6 ElasTest Monitoring Platform (EMP)

EMP has been integrated with the ElasTest GUI and the e2e-test [67] is the principal
mode to test the correctness of the Ul integration. In the ElasTest Cl server, Components
e2e -> elastest-platform-monitoring -> emp-e2e-test performs this integration test. It
uses JUnit together with Selenium [43] to invoke various elements of the GUI to assess
availability of known web-elements to assert whether the EMP + ElasTest GUI
integration still remains valid at that point in time or not. The workflow implemented as
part of this test is briefly described next:

e EMP End2End Tests: This test is divided into 3 parts, setup, “invokeEmp”, and
clean-up phases. Once the latest ElasTest platform is ready, the Selenium driver
via the latest Chrome image, accesses the web Ul, and simulates a click the
sidebar element to switch to the EMP view. As the Ul is accessed for the first
time after fresh creation by this end-to-end test, the EMP view will show the
login screen of Grafana which is the visualization framework used by EMP. The
test validates the login process and relies on the well-known behaviour for this
particular version of Grafana used in the EMP setup. The test proceeds to check
the login by inserting the username / password in appropriate fields and
checking the error popup in case the login fails. This workflow if succeeds
confirms the availability of Grafana view in ElasTest GUI and thus confirming the
integration with EMP Ul elements.

This test is executed by the ElasTest Cl server [36].

In future, it is planned to make the EMP administration Ul also available on the ElasTest
GUI, once this integration is achieved, the EMP end-to-end tests will also be expanded
to include elements from the administration Ul such as creation of new monitoring
spaces, series, health-checks, etc.

54

D6.1: ElasTest Continuous Integration and Validation System v1 C’) ElaS

4.5.2.5.7 ElasTest Monitoring Service (EMS)

ElasTest Monitoring Service has yet to develop the tests using the Ul of ElasTest. But it
has been already planned 2 main tests for the integrated end-to-end.

EMS dummy SuT:

It would follow steps described in 4.5.2.4.7 where main functionality of the EMS is
tested, without minimum user personalization.

EMS events subscription:

The idea for this test is using the newest EMS capabilities to get feedback to the TJob
and define test actions accordingly to this feedback. The general layout for the test will
be the following:

1. Create a project with a SuT which runs a custom Docker image (e.g.
“imdeasoftware/ems-e2e_0-sut”). This SuT would emit events to the EMS.

2. Create a TJob for this SuT which will subscribe to interesting events. These
interesting events would be configurable dependant on the interest of the TJob
or SuT.

3. The EMS will be able to guide the behaviour of the SuT resembling the expected
layout of a real use case.

We believe that a well-thought-out testing using these tools will leverage the failure
discoveries of certain kinds of bugs which are usually hard to unveil (e.g. race
conditions).

4.5.2.5.8 ElasTest Orchestrator Engine (EOE)

The ElasTest Orchestrator Engine is still on first stages of design and development, so
component end-to-end tests doesn’t apply.

4.5.2.5.9 ElasTest Platform Manager (EPM)

The ElasTest Platform Manage doesn’t have direct interaction with the user. Its
behaviour is tested on every one of the other components’ tests. So, no specific tests
are needed for the EPM.

4.5.2.5.10 ElasTest Recommendation Engine (ERE)

ElasTest Recommendation Engine implemented 2 main tests that will cover the full
functionality of the component.

Test 1. Asking recommender about suitable tests for reuse.

Prerequisite: Sample model available for queries. This does not need to be performed as
a part of the test — sample model is available for the user once Docker container is
started.

55

D6.1: ElasTest Continuous Integration and Validation System v1 C’) ElaS

Open the ElasTest dashboard Ul.

Switch to Test Engines Dashboard.

Start ERE container.

Log into ERE.

Open ‘New Recommendation’ wizard.

Type in query in natural language and specify confidence threshold.
Run the query.

8. Verify the returned result.

NoukwNeE

Test 2. Pre-processing user data.

Prerequisite: (a) Platform is running in experimental mode. EDM component
operational. (b) Sample data loaded to Alluxio. This is performed as a pre-test action,
using Alluxio REST API.

[EY

Open the ElasTest dashboard Ul.

Switch to Test Engines Dashboard.

Start ERE container.

Log into ERE.

Open Admin Dashboard.

Open Pre-process tab.

Select Alluxio option.

Launch pre-processing action.

Verify that the action completed with no errors.

WK NOU PR WN

4.5.2.5.11 ElasTest Security Service (ESS)

The current integration of the ESS on the ElasTest Ul is scheduled to be changed so end-
to-end tests using the GUI haven’t been developed yet, but they will be implemented
using a Jenkins job that does the following:

1. Download ElasTest, launches the ElasTest Platform and gets the IP address of the
ElasTest platform (hereinafter referred to as ELASTEST _IP).

2. Starts the container for the end-to-end test and executes a python program that
contains the end to end tests. During the execution of this program, the
value ELASTEST IP is passed as an argument to it.

This program does the following tests:

Test 1: To test whether the ElasTest GUI loads correctly, the program does the
following

Opens a Firefox web browser, visits http://ELASTEST_IP:37000 (ElasTest GUI) and waits
until the GUI loads completely.

Test 2: To check whether a new project and a Tlob can be created using the ElasTest
GUI

1. Click on the "Projects" option in the side panel of the ElasTest dashboard.

56

D6.1: ElasTest Continuous Integration and Validation System v1 C’) ElaS

2. Click on the "New Project" icon that appears, enter the value "ESS e2e test
project" in the input field with placeholder value "Project Name" and click the
"Save" button.

3. Click on the <div> with value "ESS e2e test project" to load the project-specific
page.

4. Click on the "New TJob" button.

5. Enter the TJob name for the field with placeholder "TJob name", select the value
"None" from the drop-down list to select the SuT, provide the value
"dockernash/test-TJob-ess" [68] to the input field with place holder
value” Environment Docker image", tick the checkbox corresponding to "ESS"
and click the "Save" button. In this way a new TJob is created. This TJob contains
a python script that makes HTTP requests to the domain google.com through the
ESS man in the middle proxy. This python script refers to the ESS man in the
middle proxy through the ESS environment variable provided by ETM.

Test 3: To test whether a Tlob can be analysed by ESS

1. Click on the "Run TJob" button corresponding to the newly created TJob.

2. Wait until the status of the TJob execution changes to "Success" or "Fail" or
"Error".

3. If it was "Success", then check whether a new iframe with the ESS GUI has been
loaded.

4. Wait until the ESS GUI displays the text "Results".

5. Check whether "google.com" is displayed under the list "Insecure http
connections" in the ESS GUI. This indicates that the Tlob was able to make
connections via ESS and ESS was able to correctly identify the insecure http
connection made to the domain google.com.

This end-to-end test will test a unique path that corresponds to the successful execution
of a TJob via the ESS. Further tests can be added to test the behaviour during erroneous
situations.

4.5.2.5.12 ElasTest Service Manager (ESM)

The ElasTest Service Manager isn’t shown in the ElasTest GUI currently. But it has a
health check endpoint that is being considered to be used on the ElasTest platform to
inform the user of the current status of the component. Until this approach is further
studied no end-to-end test will be provided.

4.5.2.5.13 ElasTest Tests Manager (ETM)

The ETM provides ElasTest with a graphical user interface (GUI) and also the ETM must
be tested from this. For that purpose, JUnit 5 [15] and Selenium [43] are the selected
technologies to implement the tests. As we mentioned above, JUnit 5 is the used as a
testing framework and Selenium provides the capability to control a browser from the
tests.

57

http://google.com/
http://google.com/
http://google.com/

D6.1: ElasTest Continuous Integration and Validation System v1 C’) ElaS

The Test Manager end-to-end tests implemented for ElasTest are in the ETM GitHub [54]
repository and are described below:

e EtmUnitTestE2eTest. This test uses the ElasTest GUI to create the test basic
infrastructure (project + TJob) and configures the TJob to execute a simple jUnit
test without SUT.

o EtmRestApiE2eTest. This test uses the ElasTest GUI to create the test basic
infrastructure (project + Tlob + SuT) and configures the TJob to use the created
SuT and test its API.

o EtmWebappE2eTest. This test uses the ElasTest GUI to create the test basic
infrastructure (project + Tlob + SuT + EUS) and configures the TJob to use the
created SuT and test it using its GUI.

e EtmOpenViduWebRTCE2eTest. This test uses the ElasTest GUI to create the test
basic infrastructure (project + TJob + SuT + EUS) and configures the TJob to use
the created SuT and test it using its GUI. This test check correct operating of the
media transmission using the browsers provided by the EUS TSS.

e EtmTestLinkE2eTest. This test uses the ElasTest GUI to check the status of a
TestLink test created previously on ElasTest and below executes this test on
ElasTest and verify that these have finished correctly.

4.5.2.5.14 ElasTest User impersonation Service (EUS)

EUS is also tested using the ElasTest GUI (web application). To that aim, the project “e2e-
test” located in the EUS GitHub repository has been created. This project contains two
JUnit 5 [15] tests using Selenium by means of the JUnit 5’s extension Selenium-jupiter
[22]:

e EusSupportServiceE2eTest [23]. This test uses EUS as a Test Support Service
through the ElasTest GUI.

e EusTJobE2eTest [24]. This test uses EUS in a TJob through the ElasTest GUI. The
configuration of the TJob is done automatically by the test using an existing test
repository in GitHub [25].

Both tests are executed by the ElasTest Jenkins when a new patch in the EUS source
code is committed.

4.6 Releasing

For the releasing phase we have designed some procedures, as well as a set of rules that
developers and publishers should follow.

58

D6.1: ElasTest Continuous Integration and Validation System v1 C’) ElaS

4.6.1 Maven/Gradle Artifacts.

4.6.1.1 Basic rules and best practices

e All public artifacts (snapshots and releases) will be available for everybody
(consortium and outside the consortium).

e Private artifacts (snapshots and releases) will be only available for people from
the consortium, under nominal users linked with GitHub login.

e All the artifacts public and private must follow the requirements for Central
publishing (even if they are not to be published in Central).

e Itis mandatory to use stable versions of Maven 3 since other versions of Apache
Maven including all versions of Maven 2 and Maven 1 have reached their end of
life therefore they are no longer supported.

4.6.1.2 Procedure

For public artifacts these procedures are MUSTs, as artifacts that not satisfy Central
requirements won’t be synchronized and won’t be accessed. For private artifacts these
procedures are recommendations.

e Javadoc and Sources

Projects with packaging other than pom have to supply JAR files that contain
Javadoc and sources. This allows the consumers of your components to
automatic access to Javadoc and sources for browsing as well as for display
and navigation e.g. in their IDE.

The naming convention for these files following the Maven repository
format uses the classifiers javadoc and sources and assembles the names
with artifactidand version with packaging jar.

e Sign Files with GPG/PGP

All files deployed need to be signed with GPG/PGP and an .asc file
containing the signature must be included for each file.

e Sufficient Metadata

o Correct Coordinates

The project coordinates, also known as GAV, coordinates determine the
location of your project in the repository. The values are:

* groupId: io.elastest.<subgroup> (if applies)

* artifactid:the unigue name of the component

* version: <semantic versioning[12]> <-snapsHOT> (when applies
-this won’t be released to Central-)

59

D6.1: ElasTest Continuous Integration and Validation System v1 C’) ElaS

o Project Name, Description and URL

For some human readable information about the project and a pointer
to the ElasTest website:

» name: ${project.groupld}:${project.artifactld}

* Description: description of the artifact.

= URL: GitHub URL or if more descriptive web page has been made
for the module/component.

o License Information

The license definition by default as specified during the early stages of
the project public components should follow Apache License 2.0 [10].

o Developer Information

The developers section will provide developers information. When
specific developer information isn’t relevant or partners don’t want to
provide personal information, it can be set as follows:

<developers>
<developer>
<id>elastest.io</id>
<name>-elastest.io Community</name>
<organization>Elastest.io</organization>
<organizationUrl>http://elastest.io</organizationUrl>
</developer>
</developers>

o SCM Information

The connection to the GitHub. This part can be skipped by private
artifacts.

<scm>
<connection>
scm:git:git://github.com/elastest/<repo>.git
</connection>
<developerConnection>
scm:git:ssh://github.com:elastest/<repo>.git
</developerConnection>
<url>
http://github.com/elastest/<repo>/tree/master
</url>
</scm>

o Specific ElasTest artifact Requirements

As it has been explained all public artifacts must meet the previous
requirements. In the case of the private ones these are recommended,
obviously -sources.jar and scm specification should be left out.

In addition to the previous indication the following rules should be
considered as best practices, and recommended for all the artifacts:

60

D6.1: ElasTest Continuous Integration and Validation System v1 C’) ElaS

o

groupld:

= For artifacts belonging to a specific architecture component

use: io.elastest.<architecture-component-identificator>

» Other artifacts can make their own group as long as it doesn’t

interfere with the architecture groups.
o artifactld: use identifiable names.

o Use Nexus Staging Maven plugin for both public and private

repositories are Sonatype Nexus software.
o Define version of plugins and dependencies as properties.

4.6.1.3 Configuration for consuming private Maven artifacts.

Private Maven artifacts are released onto our own Nexus Artifact repository. In order to
consume them it is important to have a strict policy so they aren’t distributed outside

the consortium.

Therefore, we have configured the Nexus to be accessed only under nominal user-
names linked with the GitHub accounts. As this feature isn’t built on the repository itself

it is delegated to the Private User Registry — see 4.1.5.5 —.

Developers would use the credentials provided by the Private User Registry on their

maven settings.xml.

In order to being able to use it in the development environment, the user should modify

its maven settings.xml to provide the definition of the server:

<servers>
<server>
<id>nexus-private-releases</id>
<username>github-user</username>
<password>provided-password</password>
</server>
<server>
<id>nexus-private-snapshots</id>
<username>github-user</username>
<password>provided-password</password>
</server>
</servers>

And then configure the project’s pom so it makes use of that repository:

<repository>
<id>nexus-private-releases</id>
<name>Elastest Private Maven</name>
<url>http://ci.elastest.io/nexus/repository/maven-snapshots/</url>
<layout>default</layout>
<releases>
<enabled>true</enabled>
<updatePolicy>never</updatePolicy>
</releases>
<snapshots>
<enabled>false</enabled>
</snapshots>

61

D6.1: ElasTest Continuous Integration and Validation System v1 C’) ElaS

</repository>
<repository>
<id>nexus-private-snapshots</id>
<name>Elastest Private Maven</name>
<url>http://ci.elastest.io/nexus/repository/maven-releases/</url>
<layout>default</layout>
<releases>
<enabled>true</enabled>
<updatePolicy>never</updatePolicy>
</releases>
<snapshots>
<enabled>false</enabled>
</snapshots>
</repository>

4.6.2 Docker Images.
We have some different kind of Docker images within the ElasTest project:

o Public ElasTest components images: These are the public components of
ElasTest prepared to be launched and executed by the ElasTest platform
(ElasTest ToolBox).

o Private ElasTest components images: These are the private components of
ElasTest prepared to be launched and executed by the ElasTest platform
(ElasTest ToolBox) if they are available in the system.

o Environmental images: These images are used by many of the Jenkins jobs to
provide the necessary environment for the job to execute the steps needed to
reach its goal.

4.6.2.1 How to create component images
The images will be pushed by a Jenkins job created with pipeline plugin?.
e Previous actions:

Check the repository you want to push into is already created, if it isn't contact
the administrators at elastest@naevatec.com

Name the image with the naming convention (<repository>/<image-
name>:<tag>) taking into account that for public images the repository is
“elastest” and for the private images the repository has this format:
“<amazonld>.dkr.ecr.eu-west-1.amazonaws.com/elastest”

e Jenkins job:

Inside the job it is necessary to login into the “elastestci” DockerHub account or
the AWS ECR. The credentials are registered inside the Jenkins Server.

We can push the image by: <image>.push

Example:

! The Docker plugin won’t work outside the pipelines with the current configuration of Jenkins slaves

62

mailto:elastest@naevatec.com

D6.1: ElasTest Continuous Integration and Validation System v1 C’) ElaS

def myimage = docker.build "<reposistory>/<image-name>:<tag>"
withCredentials ([[$class: 'UsernamePasswordMultiBinding',
credentialsId: <credentials id>,
usernameVariable: 'USERNAME',
passwordVariable: 'PASSWORD']]) {
sh 'Docker login -u "S$USERNAME" -p "$PASSWORD"'
myimage.push ()

e Confirmation:

If the job result is SUCCESS, check the <repository>/<image-name>:<tag> and
you should see the Last Updated row as seconds ago.

Try from any place to pull the image and run it. It is as simple as execute pocker
pull elastest/<component-acronym>:<tag> in any machine with Docker installed
and configured. Log for the private repositories with the nominative credentials
provided by the Private User Registry, no login is necessary for pulling the public
images.

4.6.2.2 How to create Environmental Images

III

Images used in Cl are considered as “global” because can be used in the jobs of any
component. For that reason, they are managed by Jenkins admins. There is a GitHub
repository that have Dockerfiles (and other needed files) to create such images. That
repository is https://github.com/elastest/ci-images. In order to create a new Cl Image
please follow the procedure:

1. Create a new pull request that contains a new folder named after the image.

2. Provide inside the folder all the necessary files for building the image and a
README.md.

3. Contact the Jenkins admin (elastest@naevatec.com) to generate the DockerHub
repository and configure the autobuild from DockerHub.

4. To do some modification to the image, just create a new PR with the changes.

4.6.3 Documentation.

All the public SW released should have enough documentation associated to guide the
user through its usage. Also, it should point clearly to the ElasTest’s GitHub repositories
and to the ElasTest Community page.

4.6.3.1 Docker Images descriptions

4.6.3.1.1 Short Description

e 100 characters maximum
e Short descriptions should provide a general idea of the image.
o For component main images: The full name of the component should be
used.
= Example:

63

https://github.com/elastest/ci-images
mailto:elastest@naevatec.com

D6.1: ElasTest Continuous Integration and Validation System v1 C’) ElaS

eus: ElasTest User Emulator Service provides browsers for manual
and automated interaction.
o For services or subcomponents:
= Full name of the service or subcomponent should be used or
commercial name.
= Full name of the parent component, if max characters limit is
reached, component acronym can be used instead.

= Example:
eus-novnc: Alpine X11 server and HTML5 VNC client with
autofocus for the ElasTest User Emulator Service.

4.6.3.1.2 Long Description

e 25.000 character maximum
e Should be provided as a file *.md on where the Dockerfile is placed (GitHub
repository). The file can be called readme.md, DockerDescription.md or
<Docker-ComponentAcronym>.md and can be placed in the same folder where
the Dockerfile is placed or in a specific folder.
e The document should contain these sections:
o Badges
o ElasTest Header
o Name of the Image
o What is this? Description of the image
Quick Reference
Where to get help.
Where to file issues.
Maintained by.
Published image artifact details: (image metadata, transfer size, etc.).
Source of this description:
Supported Docker versions.
o What’s on this image (not always necessary dependent on the content of

O O O O O

o

O

the image)
o How to use the image
e Atemplate for the *.md document can be found in.

4.7 Maintenance.

The maintenance for the whole hosted Cl environment has been developed and
documented, in order to be carried regularly.

Maintenance action will follow these steps:

64

D6.1: ElasTest Continuous Integration and Validation System v1 C’) ElaS

4.7.1 Request to admin.

When any Cl environment user detects any SW malfunctioning, is aware of security
updates or finds a new tool or SW to be added to the environment; should notify the Cl
environment admins (elastest@naevatec.com) with the issue describing:

e Tool or tools affected.
e Reason: Security / malfunction
e Action to be taken (if known).
e Priority:
o Critical: to be solved as soon as possible.
o Important: can’t wait for the next maintenance window.
o Normal: to be solved with the next maintenance window.
o Low: good to have. But otherwise not blocking, not necessary.

Cl environment admin would attend to all the requests, confirming its priority and when
more information is required, they would contact the user for clarification.

4.7.2 Plan and document the maintenance.

The Cl environment admins will evaluate the impact of the actions to be held, fill the
Maintenance Window Template (See A4. Maintenance Window Procedure Template)
and schedule the intervention of the Cl environment.

4.7.3 Execution.

On the scheduled time window, the procedure will be executed following all the
instructions filled in the maintenance window document. A standard maintenance
window will consist in the following steps:

e Start of the procedure & communication:

e BackUp
e Upgrade
e Test and confirmation
e Rollback

e Communication of results

5 References

[1] Jenkins — Build great thinks at any scale- https://jenkins.io

[2] DockerHub - Dev-test pipeline automation, 100,000+ free apps, public and
private registries - https://hub.docker.com/

[3] OSSRH —The Central Repository: Serving Open Source Components Since 2002 -
http://central.sonatype.org/

[4] Nexus Repository Manager OSS - The world's only repository manager with FREE
support for popular formats. - https://www.sonatype.com/nexus-repository-oss

[5] Private User Registry - Manage the creation of user access to private resource -
https://ci.elastest.io/user-registry/

65

mailto:elastest@naevatec.com
https://jenkins.io/
https://hub.docker.com/
http://central.sonatype.org/
https://www.sonatype.com/nexus-repository-oss
https://ci.elastest.io/user-registry/

D6.1: ElasTest Continuous Integration and Validation System v1 C’) ElaS

(6]
[7]

(8]

[9]

(10]
[11]

[12]
[13]

[14]
[15]
[16]
[17]

(18]
[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]
(30]

ElasTest - An elastic platform to ease end to end testing — https://elastest.io
Amazon ECR - Amazon Elastic Container Registry -
https://aws.amazon.com/ecr/?ncl=h_ls

GitHub - development platform inspired by the way you work. -
https://github.com/

CodeCov.io - Enhancing development workflows and improving code quality. -
https://codecov.io/

Apache 2.0 License - http://www.apache.org/licenses/LICENSE-2.0

ElasTest AWS Deployment documentation -
http://elastest.io/docs/deploying/aws/

Semantic Versioning - https://semver.org/

AWS Client Installation guide -
http://docs.aws.amazon.com/cli/latest/userguide/installing.html

Spring-Boot - https://projects.spring.io/spring-boot/

JUnit 5 - http://junit.org/junit5/

EUS GitHub repository - https://github.com/elastest/elastest-user-emulator-
service/tree/master/eus

Mockito - http://site.mockito.org/

Spring Framework - https://projects.spring.io/spring-framework/

Selenium EUS E2E Test - https://github.com/elastest/elastest-user-emulator-
service/blob/master/eus/src/test/java/io/elastest/eus/test/e2e/SeleniumE2ETes
t.java

TimeOutTest - https://github.com/elastest/elastest-user-emulator-
service/blob/master/eus/src/test/java/io/elastest/eus/test/e2e/TimeoutTest.jav
a

EUS E2E GitHub repository - https://github.com/elastest/elastest-user-emulator-
service/tree/master/e2e-test

Selenium-jupiter - https://bonigarcia.github.io/Selenium-jupiter/
EusSupportServiceE2eTest - https://github.com/elastest/elastest-user-emulator-
service/blob/master/e2e-
test/src/test/java/io/elastest/eus/test/e2e/EusSupportServiceE2eTest.java
EusTJobE2eTest - https://github.com/elastest/elastest-user-emulator-
service/blob/master/e2e-
test/src/test/java/io/elastest/eus/test/e2e/EusTIobE2eTest.java

Test TJob for E2E test - https://github.com/elastest/elastest-user-emulator-
service/tree/master/TJob-test

ElasTest E2E EUS job - https://ci.elastest.io/jenkins/job/elastest-user-emulator-
service/job/eus-e2e-test/

EMS Jenkinsfile for e2e testing - https://github.com/elastest/elastest-
monitoring-service/blob/master/e2e-test/Jenkinsfile

EMS tests bash script - https://github.com/elastest/elastest-monitoring-
service/blob/master/e2e-test/start-instance.sh

Dummy Docker Image - https://hub.docker.com/r/williamyeh/dummy/
Metricbeats Docker Image - http://docker.elastic.co/beats/metricbeat:5.4.0

66

https://elastest.io/
https://aws.amazon.com/ecr/?nc1=h_ls
https://github.com/
https://codecov.io/
http://www.apache.org/licenses/LICENSE-2.0
http://elastest.io/docs/deploying/aws/
https://semver.org/
http://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://projects.spring.io/spring-boot/
http://junit.org/junit5/
https://github.com/elastest/elastest-user-emulator-service/tree/master/eus
https://github.com/elastest/elastest-user-emulator-service/tree/master/eus
http://site.mockito.org/
https://projects.spring.io/spring-framework/
https://github.com/elastest/elastest-user-emulator-service/blob/master/eus/src/test/java/io/elastest/eus/test/e2e/SeleniumE2ETest.java
https://github.com/elastest/elastest-user-emulator-service/blob/master/eus/src/test/java/io/elastest/eus/test/e2e/SeleniumE2ETest.java
https://github.com/elastest/elastest-user-emulator-service/blob/master/eus/src/test/java/io/elastest/eus/test/e2e/SeleniumE2ETest.java
https://github.com/elastest/elastest-user-emulator-service/blob/master/eus/src/test/java/io/elastest/eus/test/e2e/TimeoutTest.java
https://github.com/elastest/elastest-user-emulator-service/blob/master/eus/src/test/java/io/elastest/eus/test/e2e/TimeoutTest.java
https://github.com/elastest/elastest-user-emulator-service/blob/master/eus/src/test/java/io/elastest/eus/test/e2e/TimeoutTest.java
https://github.com/elastest/elastest-user-emulator-service/tree/master/e2e-test
https://github.com/elastest/elastest-user-emulator-service/tree/master/e2e-test
https://bonigarcia.github.io/selenium-jupiter/
https://github.com/elastest/elastest-user-emulator-service/blob/master/e2e-test/src/test/java/io/elastest/eus/test/e2e/EusSupportServiceE2eTest.java
https://github.com/elastest/elastest-user-emulator-service/blob/master/e2e-test/src/test/java/io/elastest/eus/test/e2e/EusSupportServiceE2eTest.java
https://github.com/elastest/elastest-user-emulator-service/blob/master/e2e-test/src/test/java/io/elastest/eus/test/e2e/EusSupportServiceE2eTest.java
https://github.com/elastest/elastest-user-emulator-service/blob/master/e2e-test/src/test/java/io/elastest/eus/test/e2e/EusTJobE2eTest.java
https://github.com/elastest/elastest-user-emulator-service/blob/master/e2e-test/src/test/java/io/elastest/eus/test/e2e/EusTJobE2eTest.java
https://github.com/elastest/elastest-user-emulator-service/blob/master/e2e-test/src/test/java/io/elastest/eus/test/e2e/EusTJobE2eTest.java
https://github.com/elastest/elastest-user-emulator-service/tree/master/tjob-test
https://github.com/elastest/elastest-user-emulator-service/tree/master/tjob-test
https://ci.elastest.io/jenkins/job/elastest-user-emulator-service/job/eus-e2e-test/
https://ci.elastest.io/jenkins/job/elastest-user-emulator-service/job/eus-e2e-test/
https://github.com/elastest/elastest-monitoring-service/blob/master/e2e-test/Jenkinsfile
https://github.com/elastest/elastest-monitoring-service/blob/master/e2e-test/Jenkinsfile
https://github.com/elastest/elastest-monitoring-service/blob/master/e2e-test/start-instance.sh
https://github.com/elastest/elastest-monitoring-service/blob/master/e2e-test/start-instance.sh
https://hub.docker.com/r/williamyeh/dummy/
http://docker.elastic.co/beats/metricbeat:5.4.0

D6.1: ElasTest Continuous Integration and Validation System v1 C’) ElaS

(31]

(32]

[33]
[34]
(35]
(36]
(37]
(38]
[39]

[40]
[41]

[42]

[43]
[44]

[45]

[46]

[47]
[48]

[49]
(50]

[51]
[52]
(53]

[54]

[55]
[56]
[57]
(58]
[59]
[60]

[61]
[62]

ESS e2e component test - https://github.com/elastest/elastest-security-
service/blob/master/e2e-test/e2etest.py

ESS e2e component Jenkins file - https://github.com/elastest/elastest-security-
service/blob/master/e2e-test/Jenkinsfile

JUnit 4 - https://junit.org/junit4/

Cobertura - http://cobertura.github.io/cobertura/

Maven - https://maven.apache.org/

ElasTest Cl Server - https://ci.elastest.io/jenkins/

Spring-boot - https://projects.spring.io/spring-boot/

Thymeleaf - https://www.thymeleaf.org/

ECE e2e Jenkins job - https://ci.elastest.io/jenkins/view/Component-
e2e/job/elastest-cost-engine/job/ece-e2e-test/

Apache Spark - https://spark.apache.orgg

EBS ElasTest demo projects - https://github.com/elastest/demo-
projects/tree/master/ebs-test

Project Gutenberg, “The Adventures of Sherlock Holmes” -
https://norvig.com/big.txt

Selenium - http://www.seleniumhg.org/projects/webdriver/

EDS Jenkins file - https://github.com/elastest/elastest-device-emulator-
service/blob/master/demo/e2e_tests/Jenkinsfile

EDS API test - https://github.com/elastest/elastest-device-emulator-
service/blob/master/demo/e2e_tests/e2e_test_api.py

EDS Ul test - https://github.com/elastest/elastest-device-emulator-
service/blob/master/demo/e2e_tests/e2e_test_ui.py

JAX-RS - https://github.com/jax-rs

EIM e2e Job - https://ci.elastest.io/jenkins/job/elastest-instrumentation-
manager/job/eim-e2e/

ElasTest EIM SuT image - https://hub.docker.com/r/elastest/eim-sut/
ElasTest ETM alpine git java image - https://hub.docker.com/r/elastest/test-etm-
alpinegitjava/

Javas8 - http://www.oracle.com/technetwork/java/javase/overview/index.html
Angular 4 - https://angular.io/

ETM GitHub Repository - https://github.com/elastest/elastest-
torm/tree/master/elastest-torm

Torm E2E tests GitHub - https://github.com/elastest/elastest-
torm/tree/master/e2e-test

Atlassian Bamboo - https://www.atlassian.com/software/bamboo
CruiseControl - http://cruisecontrol.sourceforge.net/

Team Foundation Server - https://www.visualstudio.com/tfs/

Travis Cl - https://travis-ci.org/

ElasTest Jenkins Library - https://github.com/elastest/ci-elastest-jenkins-lib
ElasTest Toolbox Github - https://github.com/elastest/elastest-
toolbox/tree/master/

About code coverage - https://docs.codecov.io/docs/about-code-coverage
SonarCloud - https://about.sonarcloud.io/

67

https://github.com/elastest/elastest-security-service/blob/master/e2e-test/e2etest.py
https://github.com/elastest/elastest-security-service/blob/master/e2e-test/e2etest.py
https://github.com/elastest/elastest-security-service/blob/master/e2e-test/Jenkinsfile
https://github.com/elastest/elastest-security-service/blob/master/e2e-test/Jenkinsfile
https://junit.org/junit4/
http://cobertura.github.io/cobertura/
https://maven.apache.org/
https://ci.elastest.io/jenkins/
https://projects.spring.io/spring-boot/
https://www.thymeleaf.org/
https://ci.elastest.io/jenkins/view/Component-e2e/job/elastest-cost-engine/job/ece-e2e-test/
https://ci.elastest.io/jenkins/view/Component-e2e/job/elastest-cost-engine/job/ece-e2e-test/
https://spark.apache.orgç/
https://github.com/elastest/demo-projects/tree/master/ebs-test
https://github.com/elastest/demo-projects/tree/master/ebs-test
https://norvig.com/big.txt
http://www.seleniumhq.org/projects/webdriver/
https://github.com/elastest/elastest-device-emulator-service/blob/master/demo/e2e_tests/Jenkinsfile
https://github.com/elastest/elastest-device-emulator-service/blob/master/demo/e2e_tests/Jenkinsfile
https://github.com/elastest/elastest-device-emulator-service/blob/master/demo/e2e_tests/e2e_test_ui.py
https://github.com/elastest/elastest-device-emulator-service/blob/master/demo/e2e_tests/e2e_test_ui.py
https://github.com/elastest/elastest-device-emulator-service/blob/master/demo/e2e_tests/e2e_test_ui.py
https://github.com/elastest/elastest-device-emulator-service/blob/master/demo/e2e_tests/e2e_test_ui.py
https://github.com/jax-rs
https://ci.elastest.io/jenkins/job/elastest-instrumentation-manager/job/eim-e2e/
https://ci.elastest.io/jenkins/job/elastest-instrumentation-manager/job/eim-e2e/
https://hub.docker.com/r/elastest/eim-sut/
https://hub.docker.com/r/elastest/test-etm-alpinegitjava/
https://hub.docker.com/r/elastest/test-etm-alpinegitjava/
http://www.oracle.com/technetwork/java/javase/overview/index.html
https://angular.io/
https://github.com/elastest/elastest-torm/tree/master/elastest-torm
https://github.com/elastest/elastest-torm/tree/master/elastest-torm
https://github.com/elastest/elastest-torm/tree/master/e2e-test
https://github.com/elastest/elastest-torm/tree/master/e2e-test
https://www.atlassian.com/software/bamboo
http://cruisecontrol.sourceforge.net/
https://www.visualstudio.com/tfs/
https://travis-ci.org/
https://github.com/elastest/ci-elastest-jenkins-lib
https://github.com/elastest/elastest-toolbox/tree/master/
https://github.com/elastest/elastest-toolbox/tree/master/
https://docs.codecov.io/docs/about-code-coverage
https://about.sonarcloud.io/

D6.1: ElasTest Continuous Integration and Validation System v1 C’) ElaS

[63]
[64]
[65]
[66]
[67]

(68]

SonarQube - https://www.sonarqube.org/

SonarlLint - https://www.sonarlint.org/

SonarSource - https://www.sonarsource.com/

ESS end-to-end test image - https://hub.docker.com/r/dockernash/ess-e2e/
ElasTest EMP E2E job - https://ci.elastest.io/jenkins/view/Component-
e2e/job/elastest-platform-monitoring/job/emp-e2e-test/

ESS TJob Docker image - https://hub.docker.com/r/dockernash/test-TJob-ess/

68

https://www.sonarqube.org/
https://www.sonarlint.org/
https://www.sonarsource.com/
https://hub.docker.com/r/dockernash/ess-e2e/
https://ci.elastest.io/jenkins/view/Component-e2e/job/elastest-platform-monitoring/job/emp-e2e-test/
https://ci.elastest.io/jenkins/view/Component-e2e/job/elastest-platform-monitoring/job/emp-e2e-test/
https://hub.docker.com/r/dockernash/test-tjob-ess/

D6.1: ElasTest Continuous Integration and Validation System v1 () ElaS

ANNEXES

Al. GitHub Readme.md Template.

[! [License badge] (https://img.shields.io/badge/license-Apache2-
orange.svg)] (http://www.apache.org/licenses/LICENSE-2.0)

[! [Documentation badge] (https://img.shields.io/badge/docs-latest-
brightgreen.svg)] (http://elastest.io/docs/)

['[]1[ElasTest Logo]] [ElasTest]

Copyright © 2017-2019 [<member>]. Licensed under
[Apache 2.0 License].

<repository name>

<repository description>

What is ElasTest?

This repository is part of [ElasTest], which is a flexible open source
testing platform aimed to simplify the end-to-end testing processes for
different types of applications, including web and mobile, among others.

The objective of ElasTest is to provide advance testing capabilities aimed
to increase the scalability, robustness, security and quality of
experience of large distributed systems. All in all, ElasTest will make
any software development team capable of delivering software faster and
with fewer defects.

Documentation

The ElasTest project provides detailed [documentation] [ElasTest Doc]
including tutorials, installation and development guide.

Source

Source code for other ElasTest projects can be found in the [GitHub
ElasTest Group].

News

Check the [ElasTest Blog] and follow us on Twitter [@elastestio] [ElasTest
Twitter].

Issue tracker

Issues and bug reports should be posted to the [GitHub ElasTest
Bugtracker].

Licensing and distribution

69

D6.1: ElasTest Continuous Integration and Validation System v1 () ElaS

Licensed under the Apache License, Version 2.0 (the "License"); you may
not use this file except in compliance with the License. You may obtain a
copy of the License at http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations
under the License.

Contribution policy

You can contribute to the ElasTest community through bug-reports, bug-
fixes, new code or new documentation. For contributing to the ElasTest
community, you can use GitHub, providing full information about your
contribution and its value. In your contributions, you must comply with
the following guidelines

* You must specify the specific contents of your contribution either
through a detailed bug description, through a pull-request or through a
patch.

* You must specify the licensing restrictions of the code you contribute.
* For newly created code to be incorporated in the ElasTest code-base, you
must accept ElasTest to own the code copyright, so that its open source
nature is guaranteed.

* You must justify appropriately the need and value of your contribution.
The ElasTest project has no obligations in relation to accepting
contributions from third parties.

* The ElasTest project leaders have the right of asking for further
explanations, tests or validations of any code contributed to the
community before it being incorporated into the ElasTest code-base. You
must be ready to addressing all these kind of concerns before having your
code approved.

Support

The ElasTest project provides community support through the [ElasTest
Public
Mailing List] and through [StackOverflow] using the tag *elastest*.

<p align="center">

<img src="http://elastest.io/images/logos_elastest/ue_ logo-
small.png">

Funded by the European Union
</p>

[Apache 2.0 License]: http://www.apache.org/licenses/LICENSE-2.0
[ElasTest]: http://elastest.io/

[ElasTest Blog]: http://elastest.io/blog/

[ElasTest Doc]: http://elastest.io/docs/

[ElasTest Logo]: http://elastest.io/images/logos elastest/elastest-logo-
gray-small.png

[ElasTest Public Mailing List]:
https://groups.google.com/forum/#!forum/elastest-users

[ElasTest Twitter]: https://twitter.com/elastestio

[GitHub ElasTest Group]: https://github.com/elastest

[GitHub ElasTest Bugtracker]: https://github.com/elastest/bugtracker

70

http://www.apache.org/licenses/LICENSE-2.0

D6.1: ElasTest Continuous Integration and Validation System v1 () ElaS

[StackOverflow]: http://stackoverflow.com/questions/tagged/elastest
[<member>]: <member url>

A2. Docker Image long description template

<I-=

kA Ak Ak kA kA hkhkhhhkhAhkhhkhkhhkhhkhhhkhkhkhhhkhkhkhkhhhkhkhkhhkhkhkhkhhkhrhkhkhkhrhkhkhkhhkhkrdhkkhkhkhrkkkkxx

ELASTEST - Template for Docker Images README

R I S b b e I S b e S S b e S S db e S S Sb S e S S S dh I S Sh 2b b I Sh Sb 2h b E b b b b S db b b Sh Sh Sb b b S Sb 2b b S S S 2 .
->
<!-- badges -->

[![License badge] (https://img.shields.io/badge/license-Apache2-
orange.svqg)] (http://www.apache.org/licenses/LICENSE-2.0)

[! [Docker

badge] (https://img.shields.io/docker/pulls/elastest/etm.svg)] (https://hub.
docker.com/r/elastests/etm/)

<!-- Elastest logo -->
['[][ElasTest Logo]] [ElasTest]

Copyright © 2017-2019 [ElasTest]. Licensed under [Apache 2.0 License].

elastest/\<image\>

What is this? (TITLE of the image and short description)

Supported tags and respective “Dockerfile® links

- [*1.0°, “1.1°, "1°
(*1.0/Dockerfile*)] (https://github.com/elastest/environments)
- ['2.0°, "2.1°, "2.2°, "2
(*2.0/Dockerfile*)] (https://github.com/elastest/environments)

Quick reference

- **Where to get help**:
[the ElastTest mailing list] (), [the Elastest Slack] (), or [Stack
Overflow] ()

- **Where to file issues**:
Issues and bug reports should be posted to the [GitHub ElasTest
Bugtracker].

- **Maintained by**:
[the ElasTest community] (https://github.com/elastest)

- **Published image artifact details**:
(image metadata, transfer size, etc).

71

D6.1: ElasTest Continuous Integration and Validation System v1 C,) ElaS

- **Source of this description**:
[docs repo's “template/ directory] (https://github.com/elastest/ci-
images/edit/master/doc-templates/template.md)

([history] (https://github.com/elastest/ci-images/commits/master/doc—
templates))

- **Supported Docker versions**:
[the latest

release] (https://github.com/docker/docker/releases/latest) (down to
17.03.1 on a best-effort basis)

What's on this image?
<!-- tools and purpouse -->

How to use this image
Dependencies (other containers or tools)
Integration with other containers or tools)

[Apache 2.0 License]: http://www.apache.org/licenses/LICENSE-2.0
[ElasTest]: http://elastest.io/

[ElasTest Logol: http://elastest.io/images/logos elastest/elastest-logo-
gray-small.png

[ElasTest Twitter]: https://twitter.com/elastestio

[GitHub ElasTest Group]: https://github.com/elastest

[GitHub ElasTest Bugtracker]: https://github.com/elastest/bugtracker

A3. Cobertura Reports and CodeCov.io integration procedure.
A3.1. Integration

Codecov can be integrated in the Jenkins Jobs. There are two example jobs in the
ElasTest Jenkins to show how to use it with maven:

e Hello-world-Docker-pipeline:

node ('Docker") {
stage "Container Prep"

echo ("the node is up")

def mycontainer = docker.image ('elastest/docker-
siblings:latest')

mycontainer.pull () // make sure we have the latest available

// from Docker Hub
mycontainer.inside {
git 'https://github.com/elastest/mvn-hello-world.git'

stage "Tests"
echo ("Starting maven tests")
sh 'mvn clean test'
step ([$class: 'JUnitResultArchiver', testResults:
'**/target/surefire-reports/TEST-*.xml"'])

stage "Package"

72

D6.1: ElasTest Continuous Integration and Validation System v1 (> Elas

echo ("Packaging")
sh 'mvn package -DskipTests'

stage "Cobertura"
sh 'mvn cobertura:cobertura’
sh('cd src && git rev-parse HEAD > GIT COMMIT')
git commit=readFile ('src/GIT_COMMIT')

sh 'export GIT COMMIT=Sgit commit'

sh 'export GIT BRANCH=master'
def codecovArgs = "-v -t $COB _MVN HELLO WORLD"

echo "S$codecovArgs"

def exitCode = sh(
returnStatus: true,
script: "curl -s
https://raw.githubusercontent.com/codecov/codecov-bash/master/codecov
| bash -s - S$codecovArgs")

//script: " pip install --user codecov && codecov
-v -t $COB_MVN HELLO WORLD")
if (exitCode != 0) {

echo(exitCode +': Failed to upload code
coverage to codecov')

}
}
stage "Archive artifacts"
archiveArtifacts artifacts: 'target/*.jar'
}
e mvn—hello-world:

Build

Maven Version mvn3.3.9 N

Rool POM pom.xmi

Goals and options clean package

ADVANCED...

Post Steps

@ Run only if bulld succeeds ¢, Run only if build succeeds or is unstable () Run regardiess of build result

Should the post-buikd steps run only for successful builds, e1c.

Invoke top-level Maven targets

Maven Version = mwn3.3.9

Goals v

cobertura.coberiura

ADVANCED...

Execute shell

commana B
curl -s https://codecov.io/bash | bash -s - -t $COB_MVN_HELLO WORLD

See the list of available environment variables

ADVANCED...

Figure 23. Test coverage job configuration

73

D6.1: ElasTest Continuous Integration and Validation System v1 C’) ElaS

For other kind of projects there is more information at
https://docs.codecov.io/docs/supported-languages and ElasTest environment are
available to solve any doubts or problems.

In order to upload to Cobertura reports to codecov.io from Jenkins is necessary to use a
unique token for project (GitHub repo). All the tokens have been already registered in
Jenkins.

The tokens have the following Name Structure:

COB_<component Acronym> TOKEN

For example:

COB_EUS_TOKEN

These tokens can be used just as any environment variable:

$ curl -s https://codecov.io/bash | bash -s - -t $COB_EUS TOKEN

A3.2. Other Useful integration

A3.2.1.Badges:

i[![codecov](https://codecov.io/gh/elastest/elastest—user—emulator— i
jservice/branch/master/graph/badge.svg)] (https://codecov.io/gh/elastest

1
|/elastest-user-emulator-service)
!

This badge can be retrieved from the https://codecov.io/gh/elastest/<component-
repo>/settings/badge. In this page you can retrieve the badge markdown for GitHub.

Only repositories that haven't upload any report to codecov.io will show the unknown
status.

A4. Maintenance Window Procedure Template

A4.1. General Information

Affected tools / SW

Template to be filled on each Maintenance Window one row per tool.

74

https://docs.codecov.io/docs/supported-languages
http://codecov.io/
https://codecov.io/bash
https://codecov.io/gh/elastest/elastest-user-emulator-service/branch/master/graph/badge.svg)%5D(https:/codecov.io/gh/elastest/elastest-user-emulator-service
https://codecov.io/gh/elastest/elastest-user-emulator-service/branch/master/graph/badge.svg)%5D(https:/codecov.io/gh/elastest/elastest-user-emulator-service
https://codecov.io/gh/elastest/elastest-user-emulator-service/branch/master/graph/badge.svg)%5D(https:/codecov.io/gh/elastest/elastest-user-emulator-service

D6.1: ElasTest Continuous Integration and Validation System v1 C’) ElaS

Link to the official

Currently . host /
. Proposed documentation of L
<name of the tool> installed . container in
version the proposed .
tool . host / image
version

Motivation
[Scheduled maintenance window]
[Critical request]

o ¢Who has requested it?
o ¢Why has been defined as critical?

e [Docker] The images that use the host Docker could fail until their own Docker is
upgraded.
e [Jenkins] Some Jobs may need to be reconfigured to work.

Contact information.

Requester

Upgrade responsible NaevaTec

Notify to ALL WP6 elastest-wpb@googlegroups.com
Upgrade Plan
Start {_DATE_} 07:15 am 2h
Init communication { DATE_} 07:15 am 5 min
Back Up { DATE_} 07:20 am 15 min
Upgrade { DATE_}07:35 am 1h
Test and confirmation { DATE_} 08:35 am 25 min
Rollback { DATE_} 09:00 am 10 min
Communication of results { DATE_} 09:15 am 5 min
End of the Upgrade { DATE_} 09:15 am

75

mailto:elastest-wp6@googlegroups.com

D6.1: ElasTest Continuous Integration and Validation System v1 () ElaS

A4.2. Procedure

A4.2.1.Notification

WP6 users will be notified through the mailing list at the beginning of the upgrade
procedure. Expected maintenance time will be reminded in this email.

A4.2.2. System shutdown.

A4.2.2.a Main Instance.
The administrators will check the Cl environment is available for the upgrade.

e No jobs are being executed
e No user processes are executing.

If there are slaves up, they will be stopped.

The security group will disable public http access to the instance only access from
NaevaTec will be accepted. ()

A4.2.2.b Slaves.

No actions required

A4.2.2.c ElasTest Nightly.

The security group will disable public http access to the instance only access from
NaevaTec will be accepted. (Figure 24. AWS disable inbound rules)

Protocol (i Port Range (i Source (i
TCPF v TCP 2377 Custom

TCP 80 Custom

TCP 22 Custom
TCPF v TCP 50000 Custom

TCP 443 Custom

Ter s TOsem LATAVLY

r edits made on existing rules will result in the edited rule being deleted and a new rule created with the new details. This will cause traffi

n that rule to be dropped f; ef period of time le can be created

Figure 24. AWS disable inbound rules

A4.2.3.Back Up

A4.2.3.a Main Instance.

[1] Push user Registry Image:

$ $(aws ecr get-login --no-include-email)
$ cd ci-containersEnviroment/private-user-registry
$ docker ps #get the id of the private-user-registry container

76

D6.1: ElasTest Continuous Integration and Validation System v1 (b Elas

docker commit <private-user-registry id> 842800759158.dkr.ecr.eu-west-
.amazonaws.com/elastest/private-user-registry:AAAAMMDD

Docker push 842800759158.dkr.ecr.eu-west-
.amazonaws.com/elastest/private-user-registry:AAAAMMDD

[l 00 S e 03

[2] Create Snapshot (Figure 25. AWS EC2. Create Image)
e Select instance: elastest-ci
e AMI Backup -> Image / Create Image. (Figure 26. AWS EC2. Configuration
of the Image)
= name: elastestci AAAAMMDD
= description: AAAAMMDD_Maintenance_Window
[3] Wait until Image status is: available. (Figure 27. AWS EC2. Available Image)

A4.2.3.b Slaves.

No actions required

A4.2.3.c ElasTest Nightly.

[1] Create Snapshot: (Figure 25. AWS EC2. Create Image)
e Select instance: Secure-ElastestStack-v001
e AMI Backup ->Image / Create Image. (Figure 26. AWS EC2. Configuration
of the Image)
= name: nigthly AAAAMMDD
= description: AAAAMMDD_Maintenance_Window

Wait until Image status is: available. (Figure 27. AWS EC2. Available Image)

[Connect

Launch More Like This
Instance State
Instance Settings

Create Image

MNetworking

CloudWatch Monitoring »

Figure 25. AWS EC2. Create Image

77

D6.1: ElasTest Continuous Integration and Validation System v1 () ElaS

Create Image

Instance ID (i

Image name

Image description (i
No reboot (j
Instance Volumes

Device

Volume Type (i t

LAl |

Root dev/sdal

EBS v | /devisal ~

Add New Volume

Total size of EBS Volumes: 200 GiB

ESTmEE 3 BE

[E

elastest-c
0

Size
Snapshot (i (GiB)

snap-U 9100

100

_Maintanance_Window

Volume Type (i

| General Purpose SSD (GP2)

| General Purpose SSD (GP2)

Delete on
Termination
i

Throughput

0P
oPs W' | mevs) (i

w
<3
S

NA

When you create an EBS image. an EBS snapshot will also be created for each of the above volumes

Cancel m

Encrypted
1

Not Encrypted

ypted [} -

] 300/3000 NA m] Encn

Figure 26. AWS EC2. Configuration of the Image

A4.2.4. Upgrade

A4.2.4.a Main Instance.

Figure 27. AWS EC2. Available Image

May 22, 2017 &t 11:01

June 30, 2017 at 10-23

e Kernel (5min):
o Update and upgrade
E$ sudo apt update
{$ sudo apt upgrade
o If unused packages:
§$ sudo apt autoremove
o Reboot
|S sudo reboot
e Docker:
o All the containers will be stopped.
E$ Docker stop $(Docker ps -a -q)
o Docker Images will be cleared.
i$ Docker rmi -f $(Docker images -q)
o Docker will be upgraded in the host with:
$ sudo add-apt-repository “deb [arch=amd64]
https://download.docker.com/linux/ubuntu $(lsb release -cs) stable"
$ sudo apt update
$ sudo apt-get install docker-ce=<DOCKER NEW VERSION>
e Docker Compose:

o Run this command to download the latest version of Docker Compose:

78

D6.1: ElasTest Continuous Integration and Validation System v1 C’) ElaS

$ sudo curl -L
https://github.com/docker/compose/releases/download/<docker-—
compose NEW VERSION>/docker-compose- uname -s - uname -m -0
/usr/local/bin/Docker-compose

o Apply executable permissions to the binary:

|$ sudo chmod +x /usr/local/bin/Docker-compose

o Test the installation.

|$ Docker-compose --version

e AWScli
o uninstall old version

i$ sudo apt-get remove awscli

o install new version

$ sudo curl "https://s3.amazonaws.com/aws-cli/awscli-bundle.zip" -o
"awscli-bundle.zip" && sudo unzip awscli-bundle.zip
&& sudo ./awscli-bundle/install -i /var/lib/aws -b /usr/bin/aws

o User-Registry
o Logininaws ecr:

$ $(aws ecr get-login --no-include-email)

o Modify docker-compose.yml to retrieve backup instead of clean image.
o Start container:

ES Docker-compose up -d

o Jenkins: <JENKINS NEW_VERSION>
o Retrieve Dockerfile and setup from GitHub

IS git pull

o remove related containers that could be stuck

;S Docker-compose rm

o Start and build containers:

$. ./env/generate docker env.sh
$ Docker-compose up --build -d

o Plugins and jobs will be upgraded (after nginx start).

e Nexus
o remove related containers that could be stuck

|$ Docker-compose rm

o The nexus Image will be built and started

§$ Docker-compose up --build -d

e Nginx:
o remove related containers that could be stuck

{$ Docker-compose rm

79

D6.1: ElasTest Continuous Integration and Validation System v1 C’) ElaS

o Nginx Image will be upgraded to <NGINX_NEW_VERSION> and the
container rebuilt and restarted

e Jenkins plugins and jobs
o Update all Jenkins plugins

A4.2.4.b Slaves.

e Launch Slaves AMI:
o Select launch instance: elastest-slave-basic-AMI
o Apply the steps 2- 5 into the instance

e Kernel (5min):
o Update and upgrade

$ sudo apt update
$ sudo apt upgrade

o If unused packages:

i$ sudo apt autoremove

o Reboot

ES sudo reboot

e Docker:
o All the containers will be stopped.

S Docker stop $(Docker ps -a -q)

o Docker Images will be cleared.

ES Docker rmi -f $(Docker images -q)

o Docker will be upgraded in the host with:

$ sudo add-apt-repository “deb [arch=amd64]
https://download.docker.com/linux/ubuntu $(lsb_release -cs) stable"
$ sudo apt update

$ sudo apt-get install docker-ce=<DOCKER NEW VERSION>

e Docker Compose:
o Run this command to download the latest version of Docker Compose:

$ sudo curl -L
https://github.com/docker/compose/releases/download/<docker-
compose NEW VERSION>/docker-compose- uname -s - uname -m -0
/usr/local/bin/Docker—-compose

o Apply executable permissions to the binary:

i$ sudo chmod +x /usr/local/bin/Docker-compose

o Test the installation.

i$ Docker-compose --version

e AWScli
o uninstall old version

80

D6.1:

ElasTest Continuous Integration and Validation System v1 C’) ElaS

i$ sudo apt-get remove awscli

o install new version

$ sudo curl "https://s3.amazonaws.com/aws-cli/awscli-bundle.zip" -o
"awscli-bundle.zip" && sudo unzip awscli-bundle.zip
&& sudo ./awscli-bundle/install -i /var/lib/aws -b /usr/bin/aws

AMI creation:
o Select instance: elastest-slave-basic-AMI : (Figure 25. AWS EC2. Create
Image)
o Image / Create Image. (Figure 26. AWS EC2. Configuration of the Image)
= name: elastest-slave-basic-AMI-v<new_version>
= description: AAAAMMDD_Maintenance_Window

Jenkins
o Inthe Jenkins substitute old AMI with new AMI

A4.2.4.c ElasTest Nightly.

Kernel (5min):
o Update and upgrade

$ sudo apt update
S sudo apt upgrade

o If unused packages:

|$ sudo apt autoremove

o Reboot

§$ sudo reboot

Docker:
o All the containers will be stopped.

|$ Docker stop $(Docker ps -a -q)

o Docker Images will be cleared.

§$ Docker rmi -f $(Docker images -q)

o Docker will be upgraded in the host with:

$ sudo add-apt-repository “deb [arch=amd64]
https://download.docker.com/linux/ubuntu $(lsb release -cs)
stable"

$ sudo apt update

$ sudo apt-get install docker-ce=<DOCKER NEW VERSION>

Docker Compose:
o Run this command to download the latest version of Docker Compose:

$ sudo curl -L
https://github.com/docker/compose/releases/download/<docker-
compose NEW VERSION>/docker-compose- uname -s - uname -m =-oO
/usr/local/bin/Docker-compose

o Apply executable permissions to the binary:

81

D6.1: ElasTest Continuous Integration and Validation System v1 C’) ElaS

{$ sudo chmod +x /usr/local/bin/Docker-compose

o Test the installation.

i$ Docker-compose --version

e AWScli
o uninstall old version

|$ sudo apt-get remove awscli

o install new version

$ sudo curl "https://s3.amazonaws.com/aws-cli/awscli-
bundle.zip" -o "awscli-bundle.zip" && sudo unzip awscli-
bundle.zip && sudo ./awscli-bundle/install -i /var/lib/aws
-b /usr/bin/aws

A4.2.5. Test and Confirmation

[Test-Jenkins-01] Login in Jenkins

[Test-Jenkins-02] Run basic jobs.

[Test-Jenkins-02-01] Run job hello-world/mvn-hello-world
[Test-Jenkins-02-02] Run job hello-world/hello-world-Docker-image-pipeline
[Test-Jenkins-03] Plugins?

[Test-Nexus-01] Web interface (Login and query)
[Test-Nexus-02] Publish artifact: run Jenkins job: hello-world/private-mvn-release
[Test-Nexus-03] Retrieve artifact.

[Test-UserRegistry-01] Log In
[Test-UserRegistry-02] Regenerate access.

[Test-DockerSibling-01] Run job hello-world/hello-world-Docker-image-pipeline.
[Test-DockerSibling-02] Run job hello-world/pipeline-Docker-privateRegistry

[Test-AMI-01] After AMI update test reboot and Docker TCP ports (if not check Docker
tcp procedure)

A4.2.6.Roll Back

A4.2.6.a Main Instance.

o The instance of the AWS EC2 will be switched off. (elastest-ci)

o A new instance of the AWS EC2 will be launched with the backed-up AMI
with the same configuration and IP as the old one.
Elastic IP will be assigned to the rolled back instance.

o The Docker Images will be rolled back (the Dockerfile recovered and the
images recreated with the old values)

A4.2.6.b Slaves.

o New image wouldn’t be saved so no extra actions required

82

https://ci.elastest.io/jenkins/view/examples/job/hello-world/job/private-mvn-release/

D6.1: ElasTest Continuous Integration and Validation System v1 (> ElaS

A4.2.6.c ElasTest Nightly:

o Theinstance of the AWS EC2 will be switched off. (Secure-ElastestStack-
v001)

o A new instance of the AWS EC2 will be launched with the backed-up AMI
with the same configuration and IP as the old one.

o Elastic IP will be assigned to the rolled back instance.

A4.2.7. Open System and Result Notification.

o The instances will be configured to accept external requests

Edit inbound rules X
Type (i Protocol (i Port Range (i Source (i
Custom TCPF v TCP 2377 Custom v [x]
HTTP v TCP 80 Custom ¥ [x]
HTTP v TCP 80 Custom v ||0.0.0.0/0]
HTTP v TCP 80 Custom v [:/0 [x]
SSH v TCP 22 Custom ¥ []
Custom TCPF * TCP 50000 Custom ¥ (%]
HTTPS v TCP 443 Custom v 9
HTTPS v TCP 443 Custom ¥ | 10.0.0.0/0 9
HTTPS v TCP 443 Custom v (/0 9
Add Rule

NOTE: Any edits made on existing rules will result in the edited rule being deleted and a new rule created with the new details. This will cause traffic that

Cance‘ E

depends on that rule to be dropped for a very brief period of time until the new rule can be created.

Figure 28. AWS enable inbound rules

A4.3. Results

A4.3.1.Table of results

Back UP SUCCESS / FAILURE /
Upgrade SUCCESS / FAILURE /
Test and

SUCCESS / FAILURE /
NOT RUN / SUCCESS [FAILURE /

Confirmation

Rollback

83

D6.1: ElasTest Continuous Integration and Validation System v1 C’) ElaS

A4.3.2. Actions to be executed after upgrade
A4.3.2.a Main Instance
A4.3.2.b Slaves

A4.3.2.c ElasTest Nightly

A4.4. Logs

<if applies>

A4.5. Issues

Any issue that is detected and is suspected to be related to the upgrade should be
registered here.

A5. ElasTest Jenkins Library API.

A5.1. Configuration methods:

’ Overrides the Verbose configuration parameter value (false) of the Library ‘

Overrides the Elastest Version configuration parameter value (“latest”) of the ‘
Library

To select if and which version of the ERE component will be deployed and used on
the running ElasTest instance

Initializes the context that should be applied for the execution of certain steps and
commands.

Initialization of the parameter Lite just for personalization, for normal execution
leave it empty. For lite execution initialize with ‘--lite’

Overrides the ElasTest Shared configuration parameter value (false) of the Library

84

D6.1: ElasTest Continuous Integration and Validation System v1 C’) ElaS

Overrides the default ElasTest Authentication parameter configuration parameter
value (false) of the Library. If true the launched ElasTest would be initialized with
basic authentication.

Overrides the default ElasTest TestLink parameter configuration parameter value
(false) of the Library. The TestLink component will be launched on the new
instance.

A5.2. Support functionalities for end-to-end testing:

Executed after the ElasTest start returns the IP address where the main component
(ETM) is listening

Executed after the ElasTest start returns the port where the main component
(ETM) is listening

Executed after the ElasTest start returns the full http connection URL where the
ETM is listening (Example: http://172.0.18.10:8091)

Returns an object that can execute the methods implemented by the library in the
user defined stages.

Returns the user for the ElasTest Basic Authentication if the ElasTest is
authenticated

Returns the password for the ElasTest Basic Authentication if the ElasTest is
authenticated

A5.3. ElasTest management functionalities:

Executes the ElasTest platform with the options configured in the library (version,
lite)

Return (in the moment) while ElasTest is already running. Checking if elastest
Platform container is running and if ETM is running too.

85

D6.1: ElasTest Continuous Integration and Validation System v1 C’) ElaS

Waits up to 900s to ElasTest to start up. Returns true if it has started, and false
otherwise.

This is a variation of the waitElasTest that detects if any the platform component
has been launched but the rest of the platform hasn’t.

After the ElasTest platform is launched as a Docker container, if this method is
executed inside another container the method adds it with the ElasTest network.

Stop the ElasTest platform and all the components.

After the ElasTest Platform is started, this method initializes the connection
information for the ElasTest

In case the ERE is expected to be launched the pullERE method will pull the defined
version of the component if selected and the latest if void.

In case the ERE is expected to be launched the pullERE method will pull the defined
version of the component if selected and the latest if void.

If the library is configured to connect with an external ElasTest (nightly mainly) the
library would try to connect with it instead of “startElastest”.

A5.4. Pipeline encapsulation:

This method receives as parameter the user defined stages of the pipeline and
encapsulates them between the necessary logic to select the kind of ElasTest
execution and the management logic of the ElasTest. Resulting in a more complete
pipeline with the start ElasTest and release ElasTest stages added to the user
defined stages.

86

	1 Executive summary
	2 Strategic context and objectives
	3 CI environment
	3.1 Self-hosted Services
	3.1.1 Main Instance.
	3.1.2 ElasTest Nightly Instance.
	3.1.3 ElasTest Stable Instance.

	3.2 Tools.
	3.2.1 Tool chain.
	3.2.1.1 GitHub
	3.2.1.2 CI Server: Jenkins
	3.2.1.2.1 Slaves
	3.2.1.2.2 Jobs
	3.2.1.2.3 ElasTest Plugin

	3.2.1.3 Sonatype OSSRH
	3.2.1.4 Nexus Repository Manager (OSS).
	3.2.1.5 DockerHub
	3.2.1.6 Amazon EC2 Container Registry
	3.2.1.7 Private User Registry
	3.2.1.8 ElasTest
	3.2.1.8.1 Nightly
	3.2.1.8.2 ElasTest Stable

	3.2.2 Add-ons and auxiliary tools.
	3.2.2.1 Codecov.
	3.2.2.1.1 What is code coverage?
	3.2.2.1.2 What does Codecov bring to the table?

	3.2.2.2 SonarCloud.
	3.2.2.3 ElasTest Jenkins Library.
	3.2.2.3.1 Configuration methods:
	3.2.2.3.2 Support functionalities for end-to-end testing:
	3.2.2.3.3 ElasTest management functionalities:
	3.2.2.3.4 Pipeline encapsulation:

	3.3 Security and User Access
	3.3.1 Security
	3.3.2 User Access

	3.4 Maintenance

	4 Methodology and Procedures
	4.1 Methodology and Procedures
	4.1.1 Basic Rules and Best practices.
	4.1.2 Jenkins: Login
	4.1.3 Jenkins: Tagging slaves and jobs
	4.1.3.1 Slaves
	4.1.3.2 Jobs

	4.1.4 Private User Registry: Login and Register
	4.1.5 Private User Registry: Manage User,
	4.1.5.1 Delete User.
	4.1.5.2 Edit User Information.
	4.1.5.3 Requesting access to Nexus Repository.
	4.1.5.4 Requesting access to ECR
	4.1.5.5 Refresh access to Nexus
	4.1.5.6 Refresh access to ECR
	4.1.5.7 Revoke access to Nexus
	4.1.5.8 Revoke access to AWS ECR

	4.2 Development environment configuration for AWS ECR
	4.3 Jenkins Jobs Naming
	4.4 Development
	4.5 Testing
	4.5.1 Unitary and integration (component)
	4.5.2 End-to-end tests.
	1. Component end-to-end: Components provide end-to-end tests that ensure the behaviour of the component and all the services that it makes use of. This kind of tests are usually held against the component API and can be launch against the component ru...
	2. Platform end-to-end, traditional tools: Most components have defined their own end-to-end tests that test their behaviour within the ElasTest platform through the GUI. These tests reproduce use cases that would make use of the component tested. The...
	3. Platform end-to-end, ElasTest: All the Jenkins jobs of the stage 2 are being converted on TJobs of for ElasTest. These TJobs would be run on a Stable ElasTest. This is a project milestone planned for the end of 2018.
	4.5.2.2 ElasTest-library
	4.5.2.2.1 Library initialization
	4.5.2.2.2 End-to-end stages

	4.5.2.3 Jenkins end-to-end tests job structure
	4.5.2.4 End-to-end tests per component
	4.5.2.4.1 ElasTest Big Data Service (EBS)
	4.5.2.4.2 ElasTest Cost Engine (ECE)
	4.5.2.4.3 ElasTest Data Manager (EDM)
	4.5.2.4.3.1 Hadoop/Alluxio

	4.5.2.4.4 ElasTest Device Emulator Service (EDS)
	4.5.2.4.4.1 Test Application for the EDS tests

	4.5.2.4.5 ElasTest Instrumentation Manager (EIM)
	4.5.2.4.6 ElasTest Monitoring Platform (EMP)
	4.5.2.4.7 ElasTest Monitoring Service (EMS)
	4.5.2.4.8 ElasTest Orchestrator Engine (EOE)
	4.5.2.4.9 ElasTest Platform Manager (EPM)
	4.5.2.4.10 ElasTest Recommendation Engine (ERE).
	4.5.2.4.11 ElasTest Security Service (ESS)
	4.5.2.4.12 ElasTest Service Manager (ESM)
	4.5.2.4.13 ElasTest Tests Manager (ETM)
	4.5.2.4.14 ElasTest User impersonation Service (EUS)

	4.5.2.5 Integrated UI end-to-end tests
	4.5.2.5.1 ElasTest Big Data Service (EBS)
	4.5.2.5.2 ElasTest Cost Engine (ECE)
	4.5.2.5.3 ElasTest Data Manager (EDM)
	4.5.2.5.3.1 Cerebro/Elasticsearch/Kibana
	4.5.2.5.3.2 Cloud Commander

	4.5.2.5.4 ElasTest Device Emulator Service (EDS)
	4.5.2.5.5 ElasTest Instrumentation Manager (EIM)
	4.5.2.5.6 ElasTest Monitoring Platform (EMP)
	4.5.2.5.7 ElasTest Monitoring Service (EMS)
	4.5.2.5.8 ElasTest Orchestrator Engine (EOE)
	4.5.2.5.9 ElasTest Platform Manager (EPM)
	4.5.2.5.10 ElasTest Recommendation Engine (ERE)
	4.5.2.5.11 ElasTest Security Service (ESS)
	4.5.2.5.12 ElasTest Service Manager (ESM)
	4.5.2.5.13 ElasTest Tests Manager (ETM)
	4.5.2.5.14 ElasTest User impersonation Service (EUS)

	4.6 Releasing
	4.6.1 Maven/Gradle Artifacts.
	4.6.1.1 Basic rules and best practices
	4.6.1.2 Procedure
	 Javadoc and Sources
	 Sign Files with GPG/PGP
	 Sufficient Metadata
	o Correct Coordinates
	o Project Name, Description and URL
	o License Information
	o Developer Information
	o SCM Information

	 Specific ElasTest artifact Requirements

	4.6.1.3 Configuration for consuming private Maven artifacts.

	4.6.2 Docker Images.
	4.6.2.1 How to create component images
	4.6.2.2 How to create Environmental Images

	4.6.3 Documentation.
	4.6.3.1 Docker Images descriptions
	4.6.3.1.1 Short Description
	4.6.3.1.2 Long Description

	4.7 Maintenance.
	4.7.1 Request to admin.
	4.7.2 Plan and document the maintenance.
	4.7.3 Execution.

	5 References
	ANNEXES
	A1. GitHub Readme.md Template.
	A2. Docker Image long description template
	A3. Cobertura Reports and CodeCov.io integration procedure.
	A3.1. Integration
	A3.2. Other Useful integration
	A3.2.1. Badges:

	A4. Maintenance Window Procedure Template
	A4.1. General Information
	Affected tools / SW
	Template to be filled on each Maintenance Window one row per tool.
	Motivation
	Risks
	Contact information.
	Upgrade Plan

	A4.2. Procedure
	A4.2.1. Notification
	A4.2.2. System shutdown.
	A4.2.2.a Main Instance.
	A4.2.2.b Slaves.
	A4.2.2.c ElasTest Nightly.

	A4.2.3. Back Up
	A4.2.3.a Main Instance.
	A4.2.3.b Slaves.
	A4.2.3.c ElasTest Nightly.

	A4.2.4. Upgrade
	A4.2.4.a Main Instance.
	A4.2.4.b Slaves.
	A4.2.4.c ElasTest Nightly.

	A4.2.5. Test and Confirmation
	A4.2.6. Roll Back
	A4.2.6.a Main Instance.
	A4.2.6.b Slaves.
	A4.2.6.c ElasTest Nightly:

	A4.2.7. Open System and Result Notification.

	A4.3. Results
	A4.3.1. Table of results
	A4.3.2. Actions to be executed after upgrade
	A4.3.2.a Main Instance
	A4.3.2.b Slaves
	A4.3.2.c ElasTest Nightly

	A4.4. Logs
	A4.5. Issues

	A5. ElasTest Jenkins Library API.
	A5.1. Configuration methods:
	A5.2. Support functionalities for end-to-end testing:
	A5.3. ElasTest management functionalities:
	A5.4. Pipeline encapsulation:

