Version 1.0

Author NAEVATEC, URIC

Dissemination PU

Elas

Status FINAL

D6.2 ElasTest platform toolbox and integrations

Project title

ElasTest: an elastic platform for testing complex distributed
large software systems

Project duration

01-01-2017 to 31-12-2019

Project type H2020-ICT-2016-1. Software Technologies
Project reference 731535

Project website http://elastest.eu/

Work package WP6

WP leader Guiomar Tufidén de Hita

Deliverable nature Other

Lead editor URJC

Planned delivery date 30-06-2018

Actual delivery date 29-06-2018

Keywords

Open source software, cloud computing, software
engineering, operating systems, computer languages,
software design & development

Funded by the European Union

http://elastest.eu/

D6.2 ElasTest platform toolbox and integrations C’_\) Elas

License

This is a public deliverable that is provided to the community under a Creative Commons
Attribution-ShareAlike 4.0 International License:

http://creativecommons.org/licenses/by-sa/4.0/

You are free to:
Share — copy and redistribute the material in any medium or format.

Adapt — remix, transform, and build upon the material for any purpose, even
commercially.

The licensor cannot revoke these freedoms as long as you follow the license
terms.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and
indicate if changes were made. You may do so in any reasonable manner, but not
in any way that suggests the licensor endorses you or your use.

ShareAlike — If you remix, transform, or build upon the material, you must
distribute your contributions under the same license as the original.

No additional restrictions — You may not apply legal terms or technological
measures that legally restrict others from doing anything the license permits.

Notices:

You do not have to comply with the license for elements of the material in the
public domain or where your use is permitted by an applicable exception or
limitation.

No warranties are given. The license may not give you all of the permissions
necessary for your intended use. For example, other rights such as publicity,
privacy, or moral rights may limit how you use the material.

For a full description of the license legal terms, please refer to:

http://creativecommons.org/licenses/by-sa/4.0/legalcode

@O0

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/legalcode

D6.2 ElasTest platform toolbox and integrations CIJ Elas

Contributors
Guiomar Tufidn NAEVATEC
Francisco Ramdn Diaz URJC
Eduardo Jiménez URJC
Pablo Fuente Pérez URJC

Version history

0.1 22/01/2018 Guiomar Tufidn Initial version (DRAFT)
0.2 31/05/2018 Francisco R. Diaz Added Jenkins Plugin, Toolbox, TestLink
Eduardo Jiménez and how it’s work deploy on AWS.

0.3 07/06/2018 Pablo Fuente Pérez Complete sections

1.0 29/06/2018 Pablo Fuente Pérez Final revision

D6.2 ElasTest platform toolbox and integrations C’_\) Elas

Table of contents

1 EXECULIVE SUMMIAIY...ciceuiriceeireenerreenerenserrennerensessessersnssssnssersnssssnsssssnssssanssssnssssannes 7
2 Strategic context and objectivescccccciiiiiiiiiiiiiiiii e 7
S I 3 T3 T A oTo] | oY) QO ORRPRt 9
3.1 SYSTEM REQUITEIMENTS ...vvviiiiiiiieieieieieieieieieeereeeeereeeeeerreeerererererrreeerereeeeeeeeeeeeeeeeeeeeeeeeaaaeaeaees 9
3.2 ElasTest distribution selected technNOlOgIes.....ccceeeeeciiiiiieiei e, 9
33 ElasTest Platform CONTAINETeeiieiieie et et e e e e anaee s 10
O 2 A 5 - TolV [0 ¢ I g Lo Yo L= IS 10
25 27 0T o s 1o T 1o K3 SR 11
3.4 FAN o] o 11 =Y ot U PSPPI 14
3.5 INEEIACTIONS (i 16
SR MY [fole] 1111 Te [T USSR 16
CHCVZ I (o] o Xolo) 111111 1o o (USSR 16
CHCHCIRN Vo To [0 {=2ole) 111 01 [Lo USRS 17
3.5.4 PuUll-imQages COMMANG............cccueieiceeeeesciieeeeiteeeeetteeeete e e e tte e e e steaeessrteaeesreeaaenanes 18
3.6 ElasTest 0N AWS deploymMentccoccuuiiiiiiiiee ittt e e s arae e e sareee s 19
3.6.1 HoW to deploy EIGSTESt iN AWS........ooeeeeeeeeeeeee ettt ctaa et a e eeaa e e s 20
3.6.2 Implementation AELQIlS...........ccueeeecueeeeseiiieeeeie et ee et e e e e e ssae e 21
4 ElasTest integrations with external toolscccovririrrreeciiiiiiniininnnnniiiinnnnneenn, 22
4.1 L= o] g I A=Y =4 =Y o o [USRS 23
4.1.1 Baseline concepts and teChNOIOGIEScccueeeeecivieeeiiieeeeiiieeeciee e eeciea e 23
4.1.2 COMPONENT AICRITECTUIEeeeeveeeeeeeeeeeeeee et ee e e et e e s st e e s svtea e e ssteaessseaaesanes 24
030 NG T 0 o (o 8 LY Lo Yo L= U 25
Q.14 USE COSES .ueeeeeeeeeieieeeee ettt te e et e e ettt te e e e e e e e et ettt sae s e e e aettab s saaeesaaasastsssaaassssaasnnnssans 26
4.2 TeStLINK INTEGIatioNueeeie i e e et e e e e e e e anbraeeeaaeean 31
4.2.1 Baseline concepts and teChNOIOGIEsccceeeeiveeeeiieeeesiiieiiaeeeeescceeee e e e e escciaeeens 33
4.2.2 COMPONCNL AICRILECTUIE ..ceeeeeeeeeeee ettt ee st e e e e e ettt e e e e e e esssasaaaaaaeeesssnnes 33
22375 N 0 o | (o 8 LV Lo Yo L= SR 35
7 N U Y- 6 Y =X 3Ot 36
5 Conclusions and future WOorkccceccvvnneeennennnennnssssssssenseessssnneee. 40
T £ T=1 =T =T 4 Vo <N 40

List of figures

Figure 1. Toolbox Component DIagramccccveiiiiiieeieiieeeceiee e ectre e e etee e e evre e e e eare e e e aaee e e 15
Figure 2. Toolbox Component DIagramccccuieeiiiiieeiecieeeeeiee e ertee e et e e e evre e e e stae e e e atee e e ennes 15
Figure 3. Platform container “start” commandcccccoeciiiiiiiiii e e 16
Figure 4. Platform container “stop” cOomMmand.........ccceiveiiiiiiiiiie et 17
Figure 5. Platform container “update” commandc.ccueeiiiiiiiiiiiiie e 18
Figure 6. Platform container “pull-images” commandcccoocveeiiiiiieiiiiee e 19
Figure 7. AWS Create StaCK Page....ciiciiii i cciiee e ciee et e e ertee et e e s bee e e e sbee e e s sntee e s sneeeeenanees 20
Figure 8. AWS Stacks page with output tab opened........cceeviviiiiiiciii e 21
Figure 9. ElasTest Jenkins Plugin official Web page.......ccccvee e 23

4

D6.2 ElasTest platform toolbox and integrations C’J Elas

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16 .
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.

ElasTest Jenkins Plugin modules diagramcccceeeciveiieiiiie e
Data Model DIagramccccuieeiiciiee ettt e e etre e e eettae e e s eate e e e sbae e e e snbaeeesntaeaeeans
Plugin ConfigUration.......ccocciiii ittt are e e e st e e e et ae e e snraeeeeaes
Jenkins and ElasTest interactions when plugin is configuredcccoccvvveviiieeiinnnnnn.
PlUgIN CONFIGUIAtION c.uviiiiiciiiee ettt e e st e e st ae e e snraeeeeaes
Jenkins job build using the PIUGINcvviiiiiii e
Using the plugin in @ pipeling Jobcooviiiiii e
Plugin behavior in @ Pipeling JObcooo i
Plugin configuration in a Freestyle JOb ...
Plugin behavior in a Freestyle JOb ...
Running a TestLink test plan within EISTestcccovvveiiiiiiie e
Module diagram of the integration between ElasTest and TestLinkcccc........
TeStLINK SCrE@NSNOTiiiiieiieeee e e
ETM TestLink Data MOdelc..coouiiiiiiiiiiiiiieeeeeeeeeeeeeeee et
Main page of the TestLink interface in ElasTest......ccccoveeevciiiieiiiiiee e
Synchronization between ElasTest and TestLinkcooocveeiiiiiiiiiiee e,

Execute a TestLink Test Plan in EIaSTESTuuvvviiiiiiiiiiiiiiiiiieiieeeeeeeeeeeeeeeeeeeeee e eeee e e

List of tables

Table 1. Recommended system specificationsccuviiiiii e

Table 2. CloudFormation OPLiONS.....uiii e e e e e e e e e e e e e naanaee s

Glossary of acronyms

API Application Programming Interface
AWS Amazon Web Services

Cl Continuous Integration

CLI Command Line Interface

CPU Central Processing Unit

DoA Description of Actions

EC2 Elastic Compute Cloud

ECE ElasTest Cost Engine

EDM ElasTest Data Manager

EDS ElasTest Device Emulator Service
EJ ElasTest Jenkins Plugin

D6.2 ElasTest platform toolbox and integrations

&7 Elas

EMP ElasTest Monitoring Platform
EMS ElasTest Monitoring Service
EPM ElasTest Platform Manager

ERE ElasTest Recommendation Engine
ESS ElasTest Security Service

EUS ElasTest User Emulator Service
FOSS Free and Open-Source software
HTML HyperText Markup Language
laC Infrastructure as Code

JSON JavaScript Object Notation
NPM Node.js Package Manager

RAM Random Access Memory

REST Representational State Transfer
RSA Rivest Shamir Adleman

SotA State of the Art

SPA Single Page Application

SUT System Under Test

TE Test Engines

TE Test Engine

Tlob Testing Job

TSS Test Support Service

URL Uniform Resource Locator
YAML YAML Ain't Markup Language

D6.2 ElasTest platform toolbox and integrations C’_\) Elas

1 Executive summary

The present document describes all the software artefacts of the ElasTest Toolbox
enabling the seamless installation and administration of ElasTest in different platforms.
In the current version, ElasTest can be easily installed on a machine with Docker engine
available and also on Amazon Web Services (AWS) cloud provider. Another important
part of the document is tailored to describe the integrations of ElasTest with external
tools. In the current version, ElasTest provides integrations with Jenkins Cl system and
with TestLink Test management system.

The rest of the document is structured as follows. In section 2, the strategic context and
objectives of ElasTest Toolbox and integrations are described. Section 3 is tailored to
ElasTest Toolbox with different sections for installing with Docker and deploying in AWS
cloud provider. In section 4, the integration with external tools, such as, Jenkins and
TestLink is explained. Finally, section 5 includes the conclusions and future work, and
section 6 contains the references.

2 Strategic context and objectives

The ElasTest Project DoA defines two main tasks related to the ElasTest platform
Toolbox and Integrations in WP6. Let us quote literally the description of tasks here to
fix the context of the tasks that need to be accomplished:

Regarding to ElasTest installers, the DoA states the following:
Task 6.3: ElasTest platform toolbox

This task shall be in charge of creating the appropriate mechanism and tools suitable
for distributing ElasTest artifacts inside and outside the consortium. As a result of
executing this task, developers should be able to install and use ElasTest in a seamless
way. For this, this task shall distinguish two types of situations:

e Distribution of ElasTest FOSS artifacts. The ElasTest platform and many of its
modules shall be released basing on FOSS licenses. For the associated software
artifacts, we shall use the widely accepted FOSS mechanism for software distribution
including robust versioning mechanisms as well as repositories such as Maven Central
(for Java artifacts), NPM and Bower (for JavaScript repositories), Docker Hub (for
Docker images), Launchpad (for Debian/Ubuntu packages), etc.

e Distribution of ElasTest proprietary artifacts. For the non-FOSS artifacts, the project
needs to provide the appropriate distribution mechanisms that shall be designed and
implemented in this task.

For complying with this, this task shall assume all additional developments that are
necessary for the installation, administration and management of ElasTest as a
whole. This task shall also assume the generation of the documentation and
guidelines enabling successful installation and use of ElasTest.

D6.2 ElasTest platform toolbox and integrations C’_\) Elas

The consortium has decided to distribute almost? all ElasTest components as Docker
containers. Docker provides a clean and simple way to package software and is a widely
accepted distribution platform for open source software artifacts. As a result of this, the
standard FOSS repository is DockerHub to publish all ElasTest binary artefacts.
Nevertheless, since DockerHub is a marketplace for providing images only, the
orchestration of all the containers must be managed separately including the download
of required images and starting them in the correct order by taking care of the
dependency resolution among all the components. To achieve this task, a new
component called “ElasTest Platform” has been developed. ElasTest Platform is also
distributed and executed as a Docker container and needs Docker engine installed to be
used. For that reason, to make the installation of ElasTest in a cloud provider’s server
even easier, we have developed a CloudFormation description file to deploy ElasTest in
AWS. These two components will be described in more detail in section 3.

With regard to ElasTest integrations, the DoA states the following:
Task 6.4: ElasTest toolbox external integrations

As specified in Section 1.1 on Part B of the DoA of this GA, we want ElasTest to be
compatible with current SotA Cl tools and methodologies so that developers can use
it without disrupting their common practices. For this, we shall create the appropriate
modules fully integrating ElasTest into, at least, one popular Cl tool so that ElasTest
can be used as a plugin of it. The specific Cl tool to be used needs to comply with the
following requirements:

e /t must be a FOSS Cl tool so that the ElasTest FOSS strategy is strengthened by this
integration.

e [t must be a very popular Cl tool having a strong community spread worldwide.
® The tool must provide an APl enabling the creation of extensions and plugins into it.

This task assumes the responsibility of 1) selecting the appropriate Cl tool, 2)
developing the appropriate Cl extensions and plugins enabling the use of ElasTest into
it, 3) validating the suitability and stability of the plugins and extensions along the
whole duration of the project.

We have studied [4] different sources about software development tools usage and all
share that today Jenkins? is the most used open source continuous integration system.
This tool meets all the requirements specified in the DoA, then we have selected it to
integrate with ElasTest. Moreover, used the lean methodology applied in the project,
we have found that some potential users are interested also in the integration of
ElasTest with open source test management tools. For that reason, ElasTest has been
integrated with TestLink3. Section 4 contains detailed descriptions of these integrations.

! Some components are distributed with other formats, like ElasTest Jenkins plugin.
2 https://jenkins.io/
3 http://testlink.org/

D6.2 ElasTest platform toolbox and integrations C’_\) Elas

3 ElasTest Toolbox

ElasTest Toolbox is an umbrella for all the tools, artefacts and procedures designed to
facilitate the installation of ElasTest in different environments. The toolbox can be
described in a high-level way with the following points:

e ElasTest components are executed as Docker containers and delivered using
standard Docker image registries. Open source containers are published in
DockerHub registry.

e ElasTest Platform is a component distributed as a Docker container designed to
orchestrate the downloading and execution of the rest of the component
containers.

e ElasTest can be installed easily in any mayor operating system (Linux, Windows
or Mac) using a single command with the only requirement of having installed
standard Docker tools.

e ElasTest can be deployed easily in AWS cloud provider using a CloudFormation
template - the standard mechanism to deploy complex systems in that provider.
The support of more cloud platforms (public and private) are planned for future
releases. One of the most interesting ones is Kubernetes for its popularity.

In the next subsections, all these main points will be described in more detail.

3.1 System Requirements

For now, ElasTest is intended to be deployed on a dedicated server due to the
considerable number of modules and technologies that are part of it. Table 1 shows the
recommended system specifications:

Processor 1GHz or faster

RAM 8GB (highly recommended 16GB)
SWAP 4GB (if RAM < 16GB)

Hard Disk 30GB

Table 1. Recommended system specifications

These requirements are very high and avoid to try ElasTest in a basic development
machine. For that reason, we have planned to create a new slim down version of
ElasTest (called “mini”) replacing some components for other less powerful ones but
with less resource requirements.

3.2 ElasTest distribution selected technologies

Currently the distribution of ElasTest is based on Docker containers [1]. This technology
provides a lightweight, stand-alone, executable package of each of the components of
ElasTest that includes everything needed to run it: code, system tools, system libraries,
and settings. We have selected Docker containers for the following reasons:

e Available in Linux, Mac and Windows operating systems.

e Containerized software will always run the same, regardless of the environment.

e Deployment of ElasTest containers can be done easily and interdependence
between themselves is easily configured.

9

D6.2 ElasTest platform toolbox and integrations C’_\) Elas

e Different configurations for ElasTest can be deployed by selecting which
components containers would be launched.

3.3 ElasTest Platform container

The “ElasTest Platform” is a Docker container that would manage the retrieval, running
of each of the components and also will provide a way to interact with the whole
platform. It allows to install and execute ElasTest as a whole in a system with Docker
installed by running the following command:

$ docker run --rm -v /var/run/docker.sock:/var/run/docker.sock elastest/platform
start

It is implemented using Python programming language. The Python scripts are used to
analyse command line options to execute ElasTest in different modes. Basically, every
mode defines what components shall be started. ElasTest Platform container uses the
docker-compose tool under the hood. In this way, every ElasTest component can be
composed by several containers if needed. All the configuration needed to execute
every component is described in a docker-compose.yml file stored in its GitHub
repository.

ElasTest Platform container is being developed in the ElasTest Toolbox GitHub
repository?.

3.3.1 Execution modes
ElasTest has three operating modes:

e normal: Currently this mode is the lightest of the three and it is the default
operating mode. In this mode, you can only use the ElasTest User Emulator
Service (EUS) as a Test Support Services (TSSs) and you won’t be able to use any
of the Test Engines (TE). It is ideal if you want to try ElasTest to test the core
features and test web applications.

e experimental-lite: This mode allows the user to use any of the TSS provided by
ElasTest by default: ElasTest Security Service (ESS), ElasTest Monitoring Service
(EMS), ElasTest Device Emulator Service (EDS) and EUS. Also, any TE can be used.
The available TEs are the ElasTest Cost Engine (ECE) and the ElasTest
Recommendation Engine (ERE). Please note that ERE can only be used if the
ElasTest private components repository have been configured in the machine.
Detailed instructions about this repository and how to configure it are given in
D6.1: ElasTest Continuous Integration and Validation System. The limitations of
this mode are that ElasTest Monitoring Platform (EMP), ElasTest Platform
Manager (EPM) and the full version of ElasTest Data Manager (EDM) are not
executed. This is recommended to test all the features but it is not
recommended for production use.

e experimental: In this mode ElasTest is executed with all the components. It is
the mode recommended for production use, but it is ideal to execute in a server

4 https://github.com/elastest/elastest-toolbox

10

https://github.com/elastest/elastest-toolbox

D6.2 ElasTest platform toolbox and integrations C’_\) Elas

with high computing resources. It can take several minutes to start all services
provided by ElasTest.

3.3.2 Commands
ElasTest Platform container has several commands to perform different actions:

e Start: Start ElasTest and install it if it is not installed.

e Stop: Stop ElasTest if it is in execution

e Wait: Blocks the command until ElasTest is ready to be used. This command is
useful for scripts automating the start and stop of ElasTest.

e Inspect: Shows information about the running ElasTest.

e Update: Execute the necessary steps to migrate the persistent data of ElasTest
and download new version of the components.

e Help: Show all available commands.

These commands are described in the following subsections.

3.3.2.1 Start command

The command “start” is used to start ElasTest. If ElasTest components are not available
in the machine, this command also downloads the components. The command blocks
until ElasTest is ready to be used and prints the URL where ElasTest GUI is accessible.

In the case ElasTest is not started for some error or it takes too long to be ready, the
command will print an informative message and will exit with non-zero result.

The user can use the following options for the configuration of the running ElasTest
platform:

e --mode=<mode>: This will configure the ElasTest to run with any of the previous
explained modes. Valid values for the mode option are: “normal”,
“experimental-lite” and “experimental”.

o --server-address=<PUBLIC_IP>: In order to execute ElasTest in a server for
remote usage this option should be used. If ElasTest will be used only locally, this
is not necessary.

e --user=<user> and --password=<password>: ElasTest currently supports Http
basic authentication, when these two options are used in the ElasTest start the
authentication will be automatically activated.

e --version=<version_tag>: ElasTest can be forced to be launched with a specific
version. If a version is not selected, by default the /atest version will be used. To
check available versions, go to:
https://hub.docker.com/r/elastest/platform/tags/.

e --pullall: Force refreshing all the components to the latest version not using the
ones found in the computer if any.

o -—pullcore: Force refreshing only the core components latest versions not using
the ones found in the computer if any.

e --noports: No binds service ports to host.

e -logs: Shows during the start the logs of all the components.

11

https://hub.docker.com/r/elastest/platform/tags/

D6.2 ElasTest platform toolbox and integrations C’J Elas

o --testlink or -tl: when this option is passed, a TestLink service will be started as
part of ElasTest platform.
o --help: This option will show the help for the start command:

usage: docker run -v /var/run/docker.sock:/var/run/docker.sock --rm elastest/platform
start [-h] [--mode {experimental,experimental-lite,normal}] [--dev]

[--pullall] [--pullcore] [--noports] [--logs]

[--server-address SERVER_ADDRESS] [--user USER]

[--password PASSWORD] [--testlink]

{start,pull-images,stop,update}

positional arguments:
{start,pull-images,stop,update}
Platform command to execute: start or stop

optional arguments:
-h, --help show this help message and exit
--mode {experimental,experimental-lite,normal}, -m {experimental,experimental-
lite,normal}
Set ElasTest execution mode. Usage:
--mode=experimental

--dev, -d Configure ElasTest for development.
--pullall, -pa Force pull of all images. Usage: --pullall
--pullcore, -pc Force pull of only necessary images. Usage: --pullcore
--noports, -np Unbind all ports. Usage: --noports
--logs, -1 Show logs of all containers. Usage: --logs
--server-address SERVER_ADDRESS, -sa SERVER_ADDRESS

Set server address Env Var. Usage: --server-

address=XXXXXX

--user USER, -u USER Set the user to access ElasTest. Use together
--password. Usage: --user=testuser

--password PASSWORD, -p PASSWORD
Set the user password to access ElasTest. Use together
--user. Usage: --password=passuser

--testlink, -tl Start the TestLink Tool integrated with ElasTest.
Usage: --testlink

ElasTest start command by default blocks the shell until ElasTest is stopped. This is
generally desirable when a developer uses the shell to start ElasTest, but it is not very
convenient if ElasTest has to be started within a script, for example in a Cl system.

When start command is executed with -d docker option (detached), the command
shows the container id just created and returns immediately. ElasTest is executed in
background:

docker run -d --rm -v /var/run/docker.sock:/var/run/docker.sock elastest/platform
start

Using detached mode, the ElasTest platform command “wait” can be used to wait until
ElasTest is ready to be used. This command will be described below in the document.

3.3.2.2 Stop command

If ElasTest is started with start command without detached mode, the shell is blocked.
If the user hits Ctrl+C in this shell, ElasTest is stopped in a controlled manner. If ElasTest
is started in detached mode, the stop command can be used.

|docker run --rm -v /var/run/docker.sock:/var/run/docker.sock elastest/platform stop

12

D6.2 ElasTest platform toolbox and integrations C’_‘) Elas

3.3.2.3 Wait command

When the platform is launched detached, user won’t have feedback of when ElasTest is
ready to be used. For this reason, the platform container provides a way to check if the
platform has already started. A timeout can be configured in this command.

docker run -v /var/run/docker.sock:/var/run/docker.sock --rm elastest/platform wait

The wait command can be configured for different outcomes with the following options:

e --container=<seconds>: specifies the seconds that the command should be
waiting to the ETM container to be created until exit. If the ETM container is
created while waiting or it had been created before the execution of the
command, it will return 0. Otherwise it would return a value different than 0.

e --running=<seconds>: specifies the seconds that the commando should be
waiting to the ETM service to be ready to be used. If the ETM service is started
while waiting or it had been started before the execution of the command, it will
return 0. Otherwise it would return <> 0.

e --help: This option will show the help for the wait command:

usage: docker run -v /var/run/docker.sock:/var/run/docker.sock --rm elastest/platform
wait [-h] [--container CONTAINER] [--running RUNNING]

optional arguments:

-h, --help show this help message and exit

--container CONTAINER, -c CONTAINER
Sets timeout in seconds for wait to the ETM container
creation. Usage: --container=240

--running RUNNING, -r RUNNING
Sets timeout in seconds for wait to ETM is running.
Usage: --running=290

3.3.2.4 Inspect command

Once ElasTest is started, it is important to know what the URL to reach it is. The
command inspect will return information about ElasTest. At the moment, the only
information returned is the graphical user interface URL obtained with --api
parameter.

docker run --rm -v /var/run/docker.sock:/var/run/docker.sock elastest/platform
inspect --api

The command is prepared to be extended so information that users could require from
the ElasTest platform container would be added to the information that the inspect
command can provide.

3.3.2.5 Update command

If you already have an ElasTest version installed on your computer and you want to
upgrade to the latest released version, you can use the update command.

usage: docker run -v /var/run/docker.sock:/var/run/docker.sock --rm elastest/platform
update [-h] [--mode {experimental,experimental-lite,normal}]

optional arguments:
-h, --help show this help message and exit
--mode {experimental,experimental-lite,normal}, -m {experimental,experimental-
lite,normal}
Set ElasTest execution mode. Usage:

13

D6.2 ElasTest platform toolbox and integrations C’_‘) Elas

--mode=experimental

This only works if a pre-installed version is already available.

3.3.2.6 Help command

This command will provide general information about the available options of the
ElasTest tool-box.

docker run -v /var/run/docker.sock:/var/run/docker.sock --rm elastest/platform -h
usage: docker run -v /var/run/docker.sock:/var/run/docker.sock --rm elastest/platform
[-h] {pull-images,inspect,stop,update,start,wait}

positional arguments:
{pull-images,inspect,stop,update,start,wait}
Instruction to execute
optional arguments:
-h, --help show this help message and exit

3.4 Architecture

This section describes how ElasTest platform container is architected and how its
modules interact. Platform container is made up by multiple Python files, but the most
important are the following:

e main: as the name suggests, is the central file that parses received arguments to
execute commands and is responsible for calling the corresponding python
scripts of the “second level”: run, update and pull.

e run: is used to start or stop ElasTest components. It makes use of “third level”
components, like setEnv to modify environment variables from docker-compose
of the ET services, ETImages to get services’ image or checkETM to wait until
ETM is ready.

e update and pull: are used to update ElasTest. They make use of DockerUtils to
update ElasTest components’ docker images and ETlmages to obtain those
images through Platform container service files.

Figure 1 shows the components and their interactions.

14

D6.2 ElasTest platform toolbox and integrations % EIaSTESt

Main Components of Toolbox

S
"\

‘mam

\ i

Figure 1. Toolbox Component Diagram

All scripts interact directly or indirectly with Docker, Filesystem and execute commands
in shell as you can see in the Figure 2.

Main Components of Toolbox (With external components)

-7 - ! hl \\‘ .
_ e i A\ S s
i - ~ S
- & *-\
-~ Ed
- A update ~
L e - ~
¢ - = s - - - ~
=z ~ 7= \ ~
ra _:-“ - P \ >/ + -,‘__ \ \
4 - & - ~ e \
/1?’ /4/ ‘.f’ A l /h
P o p i |
e PR
fl'f - v
-
P . \ ETImages
-
. Yoy - \
I AN . - _ -\
7 v | Pt _ - \ |
r Ay | - = w |
v N | - T~ N | / .r “,l-
W - - - / foo-
’ > - - - -
RS I - - - I - -
A4 I H“i -7 /
‘i !
—_ f
- -
~ - _ _ Docker Shell ! ,
- - 1 y
-
- _ 1 ;
- - i #
——— I
- - s

Filesystem

Figure 2. Toolbox Component Diagram

15

D6.2 ElasTest platform toolbox and integrations C’J Elas

3.5 Interactions

The modules described in the previous section interact between them to provide the
requested features. In the following subsections, the interactions in every command are
described.

3.5.1 Start command

When the user executes platform container with start command, ElasTest core
components will be started. Figure 3 shows the interaction between platform container
modules when this command is used. As it can be seen, platform container will parse
command line options, will get images of the corresponding components and start
them. During this process, it will inform the user through console messages and, when
the ElasTest is ready to be used, it will print the URL where it is accessible.

Start ElasTest

i) i EI |]| J E=

start (withiwithout parameters]

atart runPlatferm

e inel

Start Experimental-Lite Mode Services

mmmmmmmmmmmmmmm
Start Experimental Mode Services

check if ElasTest is Ready

. 2ENT Sutput message

| i J

i == £ E3l 1
Figure 3. Platform container “start” command

The message “Start ElasTest Normal Mode Services” of the diagram of Figure 3
represents the action of execute docker-compose command to start the docker-
compose files used to define ElasTest core components. Because docker-compose
command is in charge of pulling needed images and start the containers these low-level
actions are not shown in the diagram. The rest of the messages of type “Start ElasTest
... Mode Services” perform similar actions but using a different set of core components.

3.5.2 Stop command

Once ElasTest is started, the user can stop it pressing Ctrl + C in the shell. She also can
stop it executing the platform container using stop command. This command sends a
SIGTERM signal to the platform container launched with start command. Then, it
terminates all components. These interactions can be seen in Figure 4:

16

D6.2 ElasTest platform toolbox and integrations C’J Elas

Stop ElasTest

Toolbox Started Toolbox
=] E BE E)|)|

1

. Stop ElasTest Services ol

| stop
; stop runPlatform
—_—

parse params

SIGTERM
—

[alt 7 nermal medel
Stop ElasTest Normal Mode Services .

[experimental I-live] .
Stop Experimental-Lite Mode Services

Texperimentall
Stop Experimental Mode Services

%E D oDen =

Figure 4. Platform container “stop” command

The messages “Stop ... Mode Services” in Figure 4 are basically a call to docker-compose
down command, to stop the containers started with the previous docker-compose up
command.

3.5.3 Update command

The update command is used to update all component docker images to the latest
version. It only updates the components already downloaded in the machine. Also, you
can select the components to update using the mode option as with the start command.

Figure 5 shows what happens when the user runs platform container with update
command. First it checks the ElasTest version and then asks to the user if he wants to
continue with installation. If so, platform container checks if ElasTest is already running
and if so, informs the user about the need to stop it and asks for confirmation. If the
answer is yes (“Y”), update container sends SIGTERM to the platform container running
ElasTest to stop it and starts the update process. This process is composed by several
steps:

1. The platform_services volume will be removed, as it contains the descriptions
of all Test Support Services.

2. All the core components’ Docker images are updated with the new version.

3. Finally, it gets the already pulled ElasTest images by given mode and update
them to the last version. To do that, a new platform container is launched with
the pull-images command (view Figure 6).

When pull is done, platform container shows to the user the message “Update finished
successfully” and ends the execution.

17

D6.2 ElasTest platform toolbox and integrations CIJ Elas

Update ElasTast

update {withiwithaut parameters:
pdate (with! [1, i
update FlasTest

! parse gy
P
! get ElnsTest Version

i return T crshon
L retumn LlasTest Versar

| elosTestisumning

AT el
| Toop 7 Twalt Tor wer Teges vl

| The version of LlasTest thel yeu wanl to updels is alvady running and il is necessary Lo stop il Continue?

W [l i Feneiny]
[

slring st

i Run a new Platform container with "pull4dmages” param >
H = end 1
e H

o "Upttate lnlshed successtutly.] | :

Figure 5. Platform container “update” command

3.5.4 Pull-images command

When pull-images command (Figure 6) is executed (by means of update command) first
gets the ElasTest images of the given mode. Then, for each one of those images, checks
if it already exists locally and if so do pull. Next, old images will be removed and for last,
dangling images too.

18

D6.2 ElasTest platform toolbox and integrations C’J Elas

Pull-lmages

% @ & e Jooccroe fllovere

i pull-images (with mode parameter) i

pulETImages

| getElastestimagesByExecMode

| _return Elastest images list

loop / [for each ET imagel

| exist Image?

| _return if exist Image

alt TIF exist]
1 pull image

| execute pull _i
=

| end code

alt Tif error] T T
: |

| delete old images

= 3

T 7
loop /' [for each old ET image]

alt__J [old image notin new images listl|
; |

| Add old image to remove images list

| delete images

| delete dangling images

[—

- o nem =3
X

Figure 6. Platform container “pull-images” command

3.6 ElasTest on AWS deployment

Simplifying the installation and configuration process, and to provide alternatives for
the deployment in different cloud environments is one of the major concerns. Cloud
platforms are very easy to use because a template file can be used to deploy some ready
to use virtual machine with selected software already pre-installed. Among all the
available cloud providers and private platforms, AWS have been selected as the first
supported cloud provider to deploy ElasTest.

The most straightforward way to deploy ElasTest in AWS is using a CloudFormation file.
This file can be used with AWS CLI tools or AWS Console, a graphical web interface. This
file contains the description of all resources needed to deploy services in AWS. In the
current version, ElasTest CloudFormation file specifies that the platform is deployed in
a single EC2 instance. In the future versions, it is planned to allow ElasTest deployment
in a cluster of nodes.

ElasTest CloudFormation uses platform container under the hood to install and manage
ElasTest in the EC2 instance.

19

D6.2 ElasTest platform toolbox and integrations C’J Elas

3.6.1 How to deploy ElasTest in AWS

Using the AWS Console the ElasTest platform can be deployed filling an online web form.
The necessary steps are:

1. Open AWS Console with a valid AWS Account

2. Goto AWS CloudFormation dashboard and create a new stack.

3. Select the option “Choose a template” and use the ElasTest CloudFormation file
[2]. Figure 7 shows a screenshot of the creation stack page.

4. Fill the form with the information as listed in Table 2.

5. Deploy your stack. No more configuration is needed. Click on “Next -> Next -
> Create”

6. Stack status will show CREATE IN_PROGRESS. Wait a few minutes until it
shows CREATE_COMPLETE. Then check the Output tab to see the URL where
ElasTest is available. Figure 8 shows a screenshot of the output tab.

Create A New Stack =

< @ | [hitps)feu-west-1.console.aws.amazon.com)

Services v Resource Groups

@ CloudFormation ~ Stacks > Create Stack

Select Template Select TE!I"I'IFI|:]IE.‘
Specily Detads
Options Select the templase thar describes the stack that you want 10 create. A ssack is a group of related resources that you manage as a single unit

Heview

Design a template Use AWS ormation Designer o create of modify an existing template. Leam more

Choose atemplate A iemplate is a JSONMYAML-formaned e file thar describes your stack's resources and their propenies. Leamn mare

Select a sample lemplate

Inlnar A semane 1o A

Choose File

Spealy an Amazon 53 template URL

@ Feedback (@ English (US)

Figure 7. AWS Create stack page

Stack name The name of the stack For example, “Elastest”

normal, experimental-

;) Choose Elastest execution mode
lite or experimental

ElastestExecutionMode

ElastestPassword Your password Password to access the platform

ElastestUsername Your username Username to access the platform

20

D6.2 ElasTest platform toolbox and integrations C’J Elas

Which version of elastest do you
want to launch. latest version
points to the last stable release of
ElasTest, so it is always safe to use

ElastestVersion latest

The type of machine you
InstanceType want (recommended at
least m4.large)

Elastest needs high resources to
run

RSA key to access the instance
KeyName One of your AWS keys through SSH to execute
maintenance commands

SwapSize Recommended at least 4 The amount of swap memory in GB

Table 2. CloudFormation options

CloudFormation b x

< | [htkps;/feu-west-1.conscle.aws.amazon.com/cloudformaticn/home

@ CloudFormation ~ Stacks

Create Stack s ACnOns Desagn template c o

Filter: Active = Showing 1 stack

Stack Name Created Time Status Description
¢ YOUR-STACK-NAME 2017-11-28 12:24:25 UTC+0100 CREATE_COMPLETE AWS CloudFormarion ELASTEST.
Overview Outputs Resources Events Template Parameters Tags Siack Policy Change Sets _ N fm]
Hey Value Description Export Mame

EkystestiP hitp: /i34 2437000 Elasterst Endpomt

& Feedback @ English (Us)

Figure 8. AWS Stacks page with output tab opened

3.6.2 Implementation details

CloudFormation is an AWS product for IaC (Infrastructure as Code). A file formatted with
YAML syntax can be used to define what AWS resources are needed to deploy a service.
For example, it can be specified an EC2 Instance (Virtual Machine), with specific features
like memory, disc capacity or CPU.

In addition to AWS resources, it is necessary to specify the application to be deployed in
the resources. There are mainly two possibilities: a) create the instance with an image
that includes the software or b) create the instance with a plain operating system and
provision the software when instance is started. The first option would allow a faster
provisioning of the software artifacts since the software is pre-installed already whereas

21

D6.2 ElasTest platform toolbox and integrations C’J Elas

the second option is more flexible because it allows to select the version of the software
on deploy time. The consortium decided for the second option because while
developing a highly complex software framework it is beneficial to 1) consider and using
always the latest version of the artifacts including newest features and fixes and 2) to
have another automated installation process for verification, testing and
troubleshooting.

To provision the software there are also multiple possibilities. In ElasTest the tool used
is Ansible>. Ansible is a product from Red Hat that automates software provisioning,
configuration management, and application deployment. It's also based on YAML files,
called playbooks, to define the tasks to perform on remote or local systems.

When the AWS EC2 instance is ready, Ansible will provisioning it turning the form input
values into configured services. CloudFormation allows to execute scripts inside the
instances.

The Ansible playbook used in ElasTest will perform the following tasks:

1. Installation of Docker (Docker is needed to execute ElasTest).

2. Configuration of the instance in order to execute correctly ElasticSearch® in EDM
core component. ElasticSearch is a search engine based on Lucene. It provides a
distributed, multitenant-capable full-text search engine with an HTTP web
interface and schema-free JSON documents. The host system has to be
configured to execute ElasticSearch container correctly.

3. Configuration of the system to automatically start ElasTest in every boot up using
the start command available in platform container.

4. Creation of maintenance scripts to terminate ElasTest when necessary in order
to not deal with duplicated containers that might cause malfunctioning.

5. Send a signal to CloudFormation API to let it know the work is done.

When the last task is executed, Cloud Formation will receive the signal to show in the
output tab the URL that can be used to use ElasTest [3].

4 ElasTest integrations with external tools

ElasTest aims to be compatible with current SotA Cl tools and methodologies so that
developers can use it without disrupting their common practices. With this objective in
mind we have integrated ElasTest with:

e Jenkins: Is the leading open source continuous integration tool. It can be
extended with plugins to augment its features and integrate it with other tools.

e TestLink: Is the leading open source tool for test management, especially with
manual testing.

In the following subsections, these two integrations will be described.

5 https://www.ansible.com/
® https://www.elastic.co/products/elasticsearch

22

D6.2 ElasTest platform toolbox and integrations C’J Elas

4.1 Jenkins integration

The ElasTest Jenkins Plugin (EJ) is a Jenkins plugin whose purpose is to integrate ElasTest
with Jenkins. This plugin allows to use together Jenkins' capacity and experience to
manage the continuous integration of projects and ElasTest’s features for log analysis
and additional capabilities provided by TSSs. Figure 9 shows ElasTest Jenkins plugin
official web page’.

This plugin allows to use ElasTest features from a Jenkins job. Specifically, it allows to
send job logs to ElasTest and also let test code executed in the job to use ElasTest TSSs.
For example, a test executed in a Jenkins job can use browsers provided by EUS TSS.
Also, all the information gathered during test execution in Jenkins can be analyzed in
ElasTest graphical user interface. These features can be used in Freestyle jobs and in
jobs defined with the new Jenkins pipeline syntax.

£ Jenkins Plugins X

& C) & Esseguro | https//pluginsjenkins.io/elastest r|

Jenkins Plugins Download

+ Find plugins x

E Archives
ElasTest St st versions
Installs: 4 Maintainers Dependencies
GitHub —
L‘ ¢ 5 } " th Francisco R. Diaz Structs v.1.2 (required]
ast released: amonth ago JUREVAA0 e
Mask Passwords v.2.8 (options :"_
Pipeline: Step AP1 v.1.7 (optionz -
Command Agent Launcher v.1.0
Labels
JDK Tool v.1.0 (impliec
Description ARE YOU MAINTAINING
7
This plugin allows Jenkins to be integrated with , an elastic platform to ease end to end testing. THIS PLUGINZ
Visit the to
edit this content.
Features

MAfib fhate L £l ban alal

Figure 9. ElasTest Jenkins Plugin official web page

4.1.1 Baseline concepts and technologies

The EJ is developed using the framework for plugin development provided by Jenkins.
This framework provides the necessary tools to extend the Jenkins functionality in a
controlled and homogeneous way. It defines extensibility points (interfaces or abstract
classes) to allow developers to extend or define new Jenkins functionality. It provides its
own HTML rendering template called Jelly® and uses another framework called Stapler®
to export plugin objects with a REST-like API.

7 https://plugins.jenkins.io/elastest
8 https://wiki.jenkins.io/display/JENKINS/Basic+guide+to+Jelly+usage+in+lenkins
° http://stapler.kohsuke.org/

23

&7 Elas

D6.2 ElasTest platform toolbox and integrations

EJ communicates with ElasTest using the ElasTest Tests Manager (ETM) REST API. ETM
core can manage completely the lifecycle of TJobs executed inside ElasTest. But it also
allows external tools to manage part of this lifecycle. This feature is used by Jenkins
plugin to send Jenkins’ jobs log to ElasTest and provide to it TSSs.

4.1.2 Component Architecture

ElasTest Jenkins Plugin is composed by several modules. Figure 10 shows these modules
and the relations between them. It also shows how some of the modules interact with
ElasTest (by means of EMS’s REST API).

Component diagram

R ___:__ﬁ_é Jenkins Core I:“'—________——
L= -H"‘H-‘\ i

Plugin

Ve L N ~ N

\ i LogFilter

ElasTestStep ElasTestWrapper ElasTestConfiguration

i BuildListener

N

T 7

\ \ '
N X |III \ /I/
ElasTestWriter ElasTestSenvice /

ks
\
-
~
-

Y
EEIasTestSubmitter

ElasTest

Figure 10. ElasTest Jenkins Plugin modules diagram

Jenkins Core

This module represents the Jenkins logic and its main concepts: jobs, builds, context
execution, etc. This module is responsible to execute the actions provided by the plugin.
When a freestyle job is used, ElasTestWrapper module is used. Otherwise, when
pipeline job is used, the module is ElasTestStep. Job’s log is sent to ElasTest using
ElasTestWriter. Plugin configuration is managed with ElasTestConfiguration.

Plugin Modules
The main component modules are:

e LogFilter: Implementation of the ConsoleLogFilter class, an abstract class
provided by Jenkins to allow log manipulation.

e ElasTestWriter: Used by Jenkins to send the log traces of a Job builds to ElasTest.
Manages the sending cycle of a message, message composition and message
delivery.

24

D6.2 ElasTest platform toolbox and integrations C’_‘) Elas

e ElasTestSubmitter: Client used by the ElasTestWriter to send a composed
message to ElasTest. It sends messages to LogStash!® interface provided by
ElasTest.

o ElasTestStep: This component allows the plugin to be used from a Pipeline Job
and generates a new step that you can use in a pipeline script (elastest(){....}).
Prepares the build environment and integrates the Job execution with ElasTest.

e ElasTestWrapper: This component allows the plugin to be used from a Freestyle
Job. From the configuration of a Job, in the Build Environment section you can
select the Integrate with ElasTest option. It prepares the build environment and
integrates the Job execution with ElasTest.

e ElasTestConfiguration: Entity that stores the plugin configuration and that
provides the functionality to test the connection with ElasTest.

e ElasTestService: Interface with ElasTest REST API. It allows to create the external
TJob execution in ElasTest, to check if the TJob execution is ready so the Job
execution can continue and to send the Job execution results to ElasTest.

e BuildListener: Implementation of the RunlListener class, an abstract class
provided by Jenkins to receive notifications from every build that happens in
Jenkins. When the build of a job is finished, it starts the process to obtain the
test results and send them to ElasTest.

ElasTest

Represents the ElasTest Platform itself. Its APl allows an external tool to create the
necessary entities to integrate the execution of a job in Jenkins with the execution of a
TJob in ElasTest.

4.1.3 Data Model

The data model managed by the EJ plugin is shown in Figure 11 and is split into two
parts. On the one hand, the data managed and stored by Jenkins, such as the global
configuration of the plugin and the configuration of the plugin in a Job, and on the other
hand the data used to exchange information between the plugin and ElasTest.

=<Java Class=> <<Java Class=> << Java Class>> << Java Class>>
(2 ElasTestBuild (3 ElasTestinstallation (& ElasTestBuildWrapper {9 ElasTestStep

0.1 T

=<Java Class»> <<Java Clﬂ_ss:b-" @{;i& :::I: lﬂ::_:; I << Java Class>>

(3 Externaldob © Descriptor glomp (5 Descriptorimpl
0.t

<<Java Class>>

(5 TestSupportServices

Figure 11. Data Model Diagram

Exchange Data: These classes stored the necessary info to integrate both Jobs, the Job
on the Jenkins side and the TJob on the ElasTest side.

10 https://www.elastic.co/products/logstash

25

D6.2 ElasTest platform toolbox and integrations C’_‘) Elas

e ElasTestBuild: Main entity that stores all the data related to a construction that
the plugin requires for its proper operation. It contains the workspace path for
the current build and an instance of the Externallob class.

e Externallob: Main entity of this model with the information exchanged with
ElasTest.

e TestSupportService: Entity that stores the data related to each TSS requested to
ElasTest to be used within the Jenkins job.

Configuration Data: Jenkins has its own way of persisting the information used by a
plugin.

e ElasTestlInstallation: This class contains global configuration of the plugin.

e ElasTestBuildWrapper: This class is used for freestyle jobs.

o ElasTestStep: This makes the same as the previous one, but for a pipeline job.
4.1.4 Use Cases

ElasTest Jenkins Plugin offers to main use cases to the user:

e Use case 1: Set up the plugin
e Use case 2: Build a Job that uses the plugin.

In the following subsections, these two uses cases will be described:

4.1.4.1 Set up the plugin use case

In this use case a user configures the plugin and test if that configuration is right (Figure
12. Plugin Configuration).

ElasTest Plugin

ElasTest Url http://dev.elastest.io:37000 (7)

Username elastest ®

Password e ®

Success Test Connection

Figure 12. Plugin Configuration

Figure 13 shows an UML sequence diagram with the interaction between Jenkins and
ElasTest.

26

D6.2 ElasTest platform toolbox and integrations CIJ Elas

Set up the plugin

Jenkins Plugin ElasTest
Jenkins ElasTestApi
Usler
1 D 1 |
This sequence diagram \
describes the steps to follow I
to test the right configuration \
of the plugin.]
1 |
| Set up the pIuJ;in - i
|] - i
! test connectiop - i
1 - |
! get ElgsTest Versjon !
| Eall
! ElasTjest version | |
i | i
alt / [If is a compatible version] :
]
_ Success |
i i
:1 Error message :
[i
1 = |
User

Jenkins I ElasTestApi I

L

Figure 13. Jenkins and ElasTest interactions when plugin is configured

This diagram is expanded in Figure 14 to show how modules interact inside the plugin.

Set up the plugin

Jenkins Plugin ElasTest

ElasTestConfiguration ElasTestService ElasTestApi

User
|

1
This sequence diagram
describes the steps to follow
to test the right configuration
of the plugin.

fill in configuration form >

press Test button

!
!
I
I
I
I
I
I
I
I
i
I
I
I
. I
- |
I
L

get ElasTest Wersion_

v

get ElasTest Version_

>
ElasTest versjon ‘ |
-

|
i
L
I
I
L
I
I
i
i
I
I
I
I
I
i :
i ElasTest wersion
I

Il

alt / [If is a compatible|vErsion] I

|

|

| Success :

I‘ i

:{\ Error message I \

, C |
User ‘ ElasTestConfiguration ‘ ElasTestService ElasTestApi

Figure 14. Plugin configuration

27

D6.2 ElasTest platform toolbox and integrations

The components involved in this use case are ElasTestConfiguration component and the
ElasTestService component. The first one is used to store the plugin configuration and
contains the logic that allows to know if ElasTest version is compatible with the plugin

&7 Elas

version. The second one contains a client to access ElasTest REST API.

4.1.4.2 Build a Job that uses the plugin

The interaction between Jenkins plugin and ElasTest when a job is executed is shown in

the UML sequence diagram of Figure 15.

Build a Job that uses the EJ

Jenkins

| Create Job

X

Tester

i
| Execute
AL

plugin

ElasTest

ElasTest

Job execution

/

replicate the Job execution in ElasTest

Create all necessary entities
to can execute a external Tjob (Project,

=

Tjob, Tjob execution, TSSs,....)

T

U
I
I
I
|
I
I
|
I
I
I
I
|
| provision TSSs

i deploy TSS TsS

loop / [until TJob execution is ready]

Check if Tjob execution is ready

Check if the Tjob execution
3| has all the TSSs instances provided

]

[T

i| send to Jenkins all necessary info
!l for the right execution of the Jenkins

| _ Tjob execution status

Job, such as the necessary info to acce

to the TSSs

logs/metrics

interact with TSS

| TSS response

finish and send test results

Y

1 deprovision TSSs
-

[
%

job It
job results

Tester

A

_ finish Job buildy

---X

The actions performed by the modules of the plugin depends on the specific plugin
configuration of the Job. By default, if the plugin is configured in a job then the console
logs are produced when the job is executed, then sent to ElasTest. If a TSS is selected to

ElasTest

—
w
w

Figure 15. Jenkins job build using the plugin

28

D6.2 ElasTest platform toolbox and integrations C’J Elas

be used in the tests executed, then the plugin asks for selected TSSs to ElasTest as shown
in the sequence diagram.

The specific actions performed and the interactions between internal plugin modules
depends on the job type. They are very different if the job is a freestyle job or a pipeline
job.

ElasTest plugin in a pipeline job

Figure 16 shows how to use ElasTest Jenkins plugin in a pipeline job. In it, EUS service is
requested and surefireReportsPattern is set to send to ElasTest test results when job is
executed. In Figure 17 can be seen how ElasTestStep is the first plugin module be
invoked. It creates the TJob execution in ElasTest and associates it with the actual
Jenkins job build. Also, is the responsible to set up the build context with the
environment variables needed to allow test code to know the URL of requested TSSs.
Finally, LogFilter is invoked to create ElasTestWriter and ElasTestSubmitter modules to
be used to process the build logs. During the build, Jenkins sends the log traces to
ElasTest and, when the build finishes, Jenkins informs the BuildListener to send build
results to ElasTest.

Pipeline
Definition Pipeline script v
: 1 - nodef &
Script 2~ elastes EUS surefireReportsPattern: '**/target/surefire-reports,
S ;
5
[
7
8
9
19
11 mvnHome} fbinfmvn’ t
12 . testResults: "**/target/suref
11 }
14
15
¥ Use Groovy Sandbox ®
Pipeline Syntax

Figure 16 . Using the plugin in a pipeline job

29

D6.2 ElasTest platform toolbox and integrations C’J Elas

Use the plugin in a Pipeline Job

% Jenkins Plugin ElasTest
Jenki | BuildListener | ‘ ElasTestStep | ElasTestService ElasTest ElasTestApi
enkins

I T T

I i i
|| This sequence diagram | |
1| describes how is the ! i
| |

| |

i i

i i

| |

I |

i

i

.

1| plugin functionality started
! from a Jenkins pipeline.

I T
| start glugin exelcution
I i

bind the Job execution and the Tjob execution

create and start the Tjob execution

TJob created and started

__add fhe ElasTést menu option i

loop / [while Tjob Execution is not readyl
ask ElasTestService for Tjob

ask ElasTest for Tjob

Updated Tjob

T
I

i

I

I

I

!

I T

| Updated Tjob 1 ‘ ‘
I T

I

i

I

I

I

i

I

create LogFilter _| | agFiler

I |
| setti g Exscufitm Context
h T

| returp contrelto Jenkins
T

| create|writer

i
T

i ElasTestwriter

!

i

! ElasTestSubmiter
i

i

I

I

|

h |
loop__/ [whilg the Job is building]

The writer is invoked
for each end of line in the Job log.

1 send log trace |

send log trace to ElasTest

send log trace to ElasTest

| on Finilized .,_ | |
T I

‘I
L
-

T T
| i
i |
send results to ElasTest to finish the Tjob ! |
i |
i |
! |
.
i |
|

' i M L 0 !
Jenkins | BuildListener | ‘ ElasTestStep | | LogFi\terl | E\asTestWriterl ‘ ElasTestService | ‘ EIaSTestSubmiterl ‘ EIasTestl ‘ ElasTestApi

Figure 17. Plugin behavior in a pipeline job

ElasTest plugin in a freestyle job

When the plugin is used in a freestyle job (Figure 18), ElasTestWrapper module is the
main plugin module. The behavior is different in pipeline jobs (described before) and in
freestyle jobs (as shown in Figure 19). In this case, when Jenkins invokes the
ElasTestWrapper, the first thing to do is to create a TJob execution in ElasTest and
associate it with the actual build of the mmmsdfsdfdddfiob. Then, LogFilter module is
initialized so that it can be invoked from Jenkins. After that, Jenkins invokes the LogFilter
to create the ElasTestWriter and the ElasTestSubmitter to use them later to process the
logs. In the next step, ElasTestWrapper is invoked again to wait for the TJob execution
to be ready in the ElasTest side. With the data returned by ElasTest (in the updated TJob)
the plugin updates the build execution context in Jenkins. During the build, Jenkins sends
the log traces to ElasTest and, when the build finishes, Jenkins informs the BuildListener
and it sends the build result to ElasTest (including the test reports if the Junit plugin is
used in the job).

30

D6.2 ElasTest platform toolbox and integrations

&7 Elas

Build Environment

Delete workspace before build starts

Use secret text(s) or file(s)

Abort the build if it's stuck

Add timestamps to the Console Output
¥ Integrate Jenkins with ElasTest

EUS v

With Ant

Figure 18. Plugin configuration in a Freestyle Job

use the plugin from a Freestyle Job

1

!nulldl Is:rener] [rlagTeem'ranpsr]

Jenking Plugin

ElasTest

Jenkins -
;r This sequence diagram !
1| descrbes how s the
h zluqm functionality started
i from a jenking standar job.
1 i | [t writer and bind the job
o init wrdpper . o " ercution and the Tjob execution
lind the job execution and the Tiob exacution i '
create and start the Tjob execution \
Tjob created and started |]
5
LEreate LogFilter ! LogFilter I A
: createwrter o ‘| » : :
: e =
| |
i | ' i
T T H i i
while TInF Fxecutlon Is nat lrlzrl ']
ask ElasTestSenvice far Tob . [i I
ask ElasTast for Tjob i X
+ T gl
returns Tjob status H |]
ratum Tjob statue ; | ,
| | 0 " i
alt Til Externaljob has EnvVars . ; 3
| add ernv vars o the context H
— J
Toop while the Job 15 bullding]
The writer is imvoked
far each end of ling in the job log.
T =
| send log trace | R
! send log trace to ElasTest |
' sand log trace to ElasTest !
|ﬂ ol -
! on Figzed . ! ' !
| send results to ElasTest to finish the Tjob = ' :
i i send results to .ﬁluron 1o finigh the Tiob . ¥
I R i .
I ' . 13
e r '

I BulldUstener I [EHSTESMHDDEI’]

1 1 i
[EIasTestSeMce l [Loan(er I | ElasTestwriter l

[ElasTestsubmiter |

| ElasTestAp| l

Figure 19. Plugin behavior in a Freestyle Job

4.2 TestLink Integration

TestLink is one of the most popular open source tools to define test plans to be
performed manually during a QA test process. It allows to define test cases, test plans,
builds, etc. A test case in TestLink consists of several steps. Every step contains the exact
actions that should be performed in this step and the expected outcome of this actions.

31

D6.2 ElasTest platform toolbox and integrations C’_\) Elas

To verify if the SUT behaves as expected, a tester has to “execute” manually the steps
defined in every selected test case and verify if the obtained results are the expected
ones. If this is the case, then the test case execution is marked as PASSED. However, if
results are different than expected, the test execution is marked as FAILED. Moreover,
the current behavior needs to be annotated in the test case execution or in some
ticketing system to be managed by the development team. Usually, the not expected
behavior is caused by a bug that needs to be fixed. The process to register the current
behavior typically involves executing again the test case to take screenshots of the steps,
log into remote systems where SUT is deployed to gather logs, configuration files, etc.

Gathering all evidences and describing current behavior can be time consuming. The
integration between ElasTest and TestlLink allows the tester to perform the manual
actions defined in test case steps in a browser provided by ElasTest. In this way, when a
tester marks a test case execution as FAILED, a recording of the interactions with the
browser attached is provided to the test case execution, the browser console is also
attached. Moreover, if a SUT properly configured is being tested in ElasTest, logs and
metrics of the different SUT components are also registered. Using ElasTest integration
with TestLink, tester doesn’t have to register the actual behavior manually because it is
done automatically. The developers will have all the powerful ElasTest tools to analyze
the information associated to the failed test case like Log Analyzer.

The integration between ElasTest and TestLink is implemented using the TestLink REST
API to import test definitions into ElasTest. When tests’ information is imported into
ElasTest, tester can execute TestLink test plans using ElasTest graphical interface (see
Figure 20). Test execution results are written back to TestLink. The ElasTest URL for that
specific test case execution is added to the comments section of test case execution. In
that way, when a developer sees the bug report associated to this failed execution, he
can analyze all the gathered information using ElasTest tools.

32

D6.2 ElasTest platform toolbox and integrations C’J Elas

< Test Plan

C 0 @ locathost-4200/s/testlink/projects/1 /plans/7/builds/1 fexec/new

. C& ElasTest Testink Projects | Sample Project 1 / Sample TPlan 1 1 / New Execution

2§ Dwhboa Executing Test Plan "Sample TPlan 1" . Browser
- Build "Sample Build 1*- Exec 121
B Puojoct
G e Test Case Mame: Sample TC 1
B vog Anayzes Tost Case Vorsion: 1 Last Execution: PASSED
QO Teswnk Summary Precenditions
Sample TC 1 descripoon This is a precondition
Test Case Steps E I a S Te S 't
8 saltgsciigd igds gea g sty MANUAL |
9 saigs ot gsdlg soigs g MANLIAL
10 sdsat MANLIAL

11 MANUAL =

"y PASSED () O L
(O passen () FALED () BLOCKED

Figure 20. Running a TestLink test plan within ElasTest

4.2.1 Baseline concepts and technologies

TestLink provides a REST API! that can be used to perform the same actions that can be
performed using the web interface. For example, creating a test case, define the steps,
execute a test plan, etc. This APl is used by ElasTest to import TestLink information to its
own database. Then, when a test plan is executed using ElasTest tools, the result is saved
in TestLink database by means of TestLink REST API.

4.2.2 Component Architecture

The interaction between the high-level modules involved in the TestLink integration is
shown in the Figure 21. The integration is designed to allow the user interacting with
TestLink directly and through ElasTest main web interface.

1 https://metacpan.org/pod/TestLink::API

33

https://metacpan.org/pod/TestLink::API

D6.2 ElasTest platform toolbox and integrations C’J Elas

TestLink Integration Components

/
Usg%put

/]
/ |

/o

ETM/
¥

i ETMGLUI

— |
’ |

’
/ |

! iETMBackend |
| Z |

Other ElasTest

Components Testlink

Figure 21. Module diagram of the integration between ElasTest and TestLink

ElasTest Tests Manager (ETM) is the brain of ElasTest and the main entry point for
developers. ETM is implemented with a Single Page Application (SPA) architecture.
ETMGUI is the frontend part implemented with Angular!?> and ETMBackend is the
backend part implemented with Java and SpringBoot®3. TestLink integration is mainly
implemented in ETMGUI and ETMBackend, but other ElasTest components are used.

For example, EUS Test Support Service is used to provide the browsers used to perform
the tests.

TestLink itself can be started as an ElasTest component if required. This simplifies the
setup and configuration of the interaction between services. Figure 22 shows the
TestLink web interface. TestLink is started within ElasTest by default in Experimental
mode, whereas for Normal or Experimental Lite mode it is needed to specify it explicitly
in the command line when ElasTest is started.

12 https://angular.io/
3 https://spring.io/projects/spring-boot

34

D6.2 ElasTest platform toolbox and integrations CIJ Elas

4 TestLink 1.9.16 (Mo X

€« C {d @ nightly.elastest.io: 2
4, Testlink admin [admin) & = TestLink 1.9.16 (Moka pot)
[EB&snlEsd# [ey Test Project [p:Projed 1 7|
Settings =)z N
= ‘& [Print |[Snow only last execution |[Import XML Resuits |
Test Plan sampleTestPlan1 » ~ Test Plan SampleTestPlant
Build to execute SampleBuild1 ~ | Build SampleBuild1
SRR TG O ~+ Test Suite : SampleTestSuite/
LR
Execution history - Build : SampleBuild1
Filters -
Date Tested by Status. Exec (min) Version Run
Test Case ID = =t
[Test Case Title [L 06/10/2018 00:18:06 admin | Passed | 1 v 0 24
 Test Suite
Priority Ans
[any] B Test Case p-1 :: Version : 1 :: SampleTestCase
Execution type [Any] A o tester assigned
[Any]
Assigned to® Summary
include unassigned Test Cases
Bugs on Exec. Context [BUGK.BUGY.BUGZ | Preconditions
Result [Any] _
Step actions Expected Results Execution gy tion notes 2o Result @
on Build chosen for executi... 5 = == argad
ep jorks anuat -
|Appiyl [Reset Filters) |Advanced Filters|
[Expand tree] [Collapse tree|
Expand fres Colapse ree Fite @ | choose Files | No file chosen ‘

Figure 22. TestLink screenshot

4.2.3 Data Model

The data model of this integration between ElasTest and TestLink is shown in Figure 23.
The Data model is very similar to the model used to store the information about TJobs
executed by ElasTest, but in this case have different properties to maintain the relation
with the external entities stored in TestLink database.

ETM Teslink Data Model

@ExternaIProject

O..l'
O“*
) 0.* 0.1
@ExternalTJobExecutlon 01 @ExternaITJob o @ExternaITestCase
0.1 Q.

0.%*

@ ExternalTestExecution

Figure 23. ETM TestLink Data Model

These entities are used to store the following information:
e ExternalProject: is the basic organizational unit, which groups a series of

ExternalTlob under itself. It's related with one TestLink Test Project.

35

D6.2 ElasTest platform toolbox and integrations C’_\) Elas

e ExternalTlob: is the basic unit for executing a set of tests on an external
application. It can have a series of test cases associated to execute it. It is related
with one TestLink Test Plan.

e ExternalTestCase: is a set of conditions or variables that make up the test of a
simple case. It’s related with one TestLink Test Case.

e ExternalTestExecution: is the execution of an ExternalTestCase that contains
information about it. For example, information like test result (FAILED or
SUCCED) and start/end date are stored. It is linked to one TestLink Test
Execution.

e ExternalTJobExecution: is the execution of an ExternalTJob that contains
information about it. When an ExternalTJob is executed, one execution is
created for each one of its associated ExternalTestCases and its
ExternalTestExecutions are grouped in ExternalTJobExecution. It is not linked to
any TestLink data model.

4.2.4 Use Cases

When a tester wants to execute in ElasTest some tests defined in TestLink, the following
steps are needed:

1. Create the Test Project, Test Plan, Test cases, and the rest of the required entities
in TestLink.

2. Import TestLink tests to ElasTest.

3. Execute a TestLink Test Plan within ElasTest interface.

The first one of these steps is out of the scope of this documentation because it the
usual way to work with TestLink. The other two steps are described in the following
paragraphs.

Import TestLink tests to ElasTest

Before executing a TestLink Test Plan in ElasTest it is necessary to import it to create in
ElasTest the entities defined in the data model. To do this, the synchronization button
that appears at the top right of the main TestLink page in ElasTest have to be used
(Figure 24).

36

D6.2 ElasTest platform toolbox and integrations C,J Elas

Testlink Projects ¥ o TestLink 1.9.16 (M

C t O locathost-4

= C’J ElasTest Testink Projects

85 Dasnboard TestLink
B Proecs

Test Projects

Weh Browsers
0 a Project Prefix Notes Enable Requirements Enable Test Pricrity Enable Automation Enabile Inventory Active Public

|8 vLog Analyzer

1 Sample Project 1 SRj sample Pj deser false rug e ialse e e

TestLink

Figure 24. Main page of the TestLink interface in ElasTest

The internal actions performed when sync button is pressed are shown in Figure 25.

37

D6.2 ElasTest platform toolbox and integrations C’J Elas

ElasTest - Testlink Synchronization
ETM

ETMGUI ETMBackend Testlink

User
1

I go to TestLink section

get data of the external projects_

=
_ return projects data in ElasTest |
o ™

_ projects data in ElasTest

I

l

sync ElasTest with Tesflink _ '
- 1

1
[}

sync ElasTest with Testlink

get Tests data

>
tests data ‘ |

create|ElasTest
data infrastructure

projects data in ElasTest
i

_ projects data in ElasTest

X

User ETMGUI ETMBackend Testlink

Figure 25. Synchronization between ElasTest and TestLink

Run a TestLink Test Plan from ElasTest

When TestLink information are synchronized with ElasTest entities, a TestLink Test Plan
can be executed in ElasTest. In that way, all evidences gathered during the execution
are associated to the execution, making easier to fix bugs when obtained results are not
similar to the expected ones. To execute a Test Plan, the user has to navigate to the
screen of the Test Plan and click on Play button. The internal interactions performed in
this case are shown in Figure 26.

38

D6.2 ElasTest platform toolbox and integrations J Elas

Run Test Plan from ElasTest
ETM

E
User

go to Plan page

start test plan execution

select a build and
run the test plan

get Test plan
from Testlink

>
get Tegt Plan -
returr Test Plan | I
-
_ return Test Plan |
o T |
get Build from Testlink - |
>
|
get Build !
returr) Build | I
return Build
| get External Job i
return External Job | |

create External Tjob Execution 1

| create| execution resources

providg an EUS service

return External Tjob execution

start browser

providg a browser instance

returr) browser instance

.
1
browser ready i
1
I |
execution page ready i ! i
to start the test \ | i
I | |
loop /" ['for each test case"] | | |
I . | |
i | start video recording i i \
| T T T 1
X | create External Test Execution_ | | X
| T ! |
: : return External Test Execution | : :
| T T i |
: show test case execution card : 1 1 \
i I | | |
| save and continue 1 | | i
1 (click on "Save & nexe") [! ! I
I
1 I I
| Save & next | | \
I
| ! :
i update test case i |
| 1
I
i Update test case for a
i specific build (status, notes,..)
! T
: e |
1
! update External i
h Test Execution '
! |
! '
- |— |
€ |
I I
15 .
; >

finish External Tjob Execution

T

I

I

I

I

I

‘ |
top video recording | |
Il Il
T

I

I

I

I

I

I

T

stop browser

1 deprovide EUS I

remove EUS service

show results page

User

Figure 26. Execute a TestLink Test Plan in ElasTest

39

D6.2 ElasTest platform toolbox and integrations C’_\) Elas

5 Conclusions and future work

ElasTest is a powerful tool that provides interesting features to testers and developers.
But a tool difficult to install and difficult to adopt because requires to disrupt the existing
practices of a team is a tool doomed to failure. To improve the adoption of a tool it must
be easy to install and easy to adopt. For that reason, project members have put a lot of
effort to simplify the ElasTest installation and the usage with popular open source tools.
In particular, ElasTest can be installed and executed with only a command in a system
with Docker tools. Also, the ElasTest CloudFormation template can be used to deploy
ElasTest in an EC2 AWS instance with a few clicks. Regarding to integration with external
tools, ElasTest main features can be used very easily from Jenkins, the most used open
source continuous integration tool. In that way, it is very easy to adopt ElasTest if Jenkins
is used. Only a few new lines in a pipeline job and a few clicks in a Freestyle Job. Lastly,
if a team is using TestLink, ElasTest can be used to execute its test cases. Therefore, can
be concluded that objectives of facility of installation and integration with other tools
are met.

In the future, it is planned to improve existing installation options and add new
supported platforms. For example, deploying ElasTest in a Kubernetes cluster using
Helm or deploy in a CloudFormation stack are two options being considered. Regarding
to integration with existing tools, Jenkins plugin can be improved in several ways. For
example, in the current version, the user is responsible to instrument tests and SUT to
send metrics to ElasTest. In the future versions, it is planned to automatically instrument
them if requested by the user. TestLink integration can also be improved, for example,
allowing the user to select the browser version and vendor, or improving the copy and
paste behavior.

As a general conclusion, ElasTest has a Toolbox to install it easily in different platforms
and can be used integrated with Jenkins and TestLink. However, these tools can be
improved in different ways to improve user experience.

6 References

[1] Java Tools and Technologies Landscape 2016:
https://zeroturnaround.com/rebellabs/java-tools-and-technologies-landscape-
2016/

[2] Docker containers. https://www.docker.com/what-container

[3] ElasTest AWS Stack JSON file.
https://raw.githubusercontent.com/elastest/elastest-toolbox/master/AWS/cloud-
formation-latest.json

[4] D2.2: SotA revision document vl

40

https://zeroturnaround.com/rebellabs/java-tools-and-technologies-landscape-2016/
https://zeroturnaround.com/rebellabs/java-tools-and-technologies-landscape-2016/
https://www.docker.com/what-container
https://raw.githubusercontent.com/elastest/elastest-toolbox/master/AWS/cloud-formation-latest.json
https://raw.githubusercontent.com/elastest/elastest-toolbox/master/AWS/cloud-formation-latest.json

	1 Executive summary
	2 Strategic context and objectives
	3 ElasTest Toolbox
	3.1 System Requirements
	3.2 ElasTest distribution selected technologies
	3.3 ElasTest Platform container
	3.3.1 Execution modes
	3.3.2 Commands
	3.3.2.1 Start command
	3.3.2.2 Stop command
	3.3.2.3 Wait command
	3.3.2.4 Inspect command
	3.3.2.5 Update command
	3.3.2.6 Help command

	3.4 Architecture
	3.5 Interactions
	3.5.1 Start command
	3.5.2 Stop command
	3.5.3 Update command
	3.5.4 Pull-images command

	3.6 ElasTest on AWS deployment
	3.6.1 How to deploy ElasTest in AWS
	3.6.2 Implementation details

	4 ElasTest integrations with external tools
	4.1 Jenkins integration
	4.1.1 Baseline concepts and technologies
	4.1.2 Component Architecture
	Jenkins Core
	Plugin Modules
	ElasTest

	4.1.3 Data Model
	4.1.4 Use Cases
	4.1.4.1 Set up the plugin use case
	4.1.4.2 Build a Job that uses the plugin

	4.2 TestLink Integration
	4.2.1 Baseline concepts and technologies
	4.2.2 Component Architecture
	4.2.3 Data Model
	4.2.4 Use Cases

	5 Conclusions and future work
	6 References

