
1 

 

 D2.4 
Version 1.1 

Author CNR 

Dissemination PUBLIC 

Date 31-12-2019 

Status FINAL 
 

  

D2.4 SotA revision document v2 

Project acronym ELASTEST 

Project title ElasTest: an elastic platform for testing complex distributed 
large software systems 

Project duration 01-01-2017 to 31-12-2019 

Project type H2020-ICT-2016-1. Software Technologies 

Project reference 731535 

Project website http://elastest.eu/  

Work package WP2  User-centered agile conception 

WP leader TUB 

Deliverable nature Report 

Lead editor Francesca Lonetti 

Planned delivery date 31-12-2019 

Actual delivery date 30-12-2019 

Keywords Open source software, cloud computing, software 
engineering, operating systems, computer languages, 
software design & development 

 

Funded by the European Union 

 

 

http://elastest.eu/


D2.4 SotA revision document v2 

 

2 

 

License 

This is a public deliverable that is provided to the community under a Creative 
Commons Attribution-ShareAlike 4.0 International License: 

http://creativecommons.org/licenses/by-sa/4.0/ 

You are free to: 

Share — copy and redistribute the material in any medium or format. 

Adapt — remix, transform, and build upon the material for any purpose, even 
commercially. 

The licensor cannot revoke these freedoms as long as you follow the license 
terms. 

Under the following terms: 

Attribution — You must give appropriate credit, provide a link to the license, 
and indicate if changes were made. You may do so in any reasonable manner, 
but not in any way that suggests the licensor endorses you or your use. 

ShareAlike — If you remix, transform, or build upon the material, you must 
distribute your contributions under the same license as the original. 

No additional restrictions — You may not apply legal terms or technological 
measures that legally restrict others from doing anything the license permits. 

Notices: 

You do not have to comply with the license for elements of the material in the 
public domain or where your use is permitted by an applicable exception or 
limitation. 

No warranties are given. The license may not give you all of the permissions 
necessary for your intended use. For example, other rights such as publicity, 
privacy, or moral rights may limit how you use the material. 

For a full description of the license legal terms, please refer to: 

http://creativecommons.org/licenses/by-sa/4.0/legalcode 

 

 

  

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/legalcode


D2.4 SotA revision document v2 

 

3 

 

Contributors 

Name Affiliation 

Antonia Bertolino CNR 

Malena Donato Cohen ATOS 

Guglielmo De Angelis CNR 

Felicita Di Giandomenico CNR 

Emilia García ATOS 

Francisco Gortázar URJC 

Varun Gowtham TUB 

Piyush Harsh ZHAW 

Guiomar Tuñón Hita NAEVATEC 

Eduardo de la Iglesia Monje NAEVATEC 

Eduardo Jiménez URJC 

Magda Kacmajor IBM 

Francesca Lonetti CNR 

Kimon Moschandreou REL 

Michael Pauls TUB 

Tran Quang TUB 

Christos Roupas REL 

Avinash Sudhodanan IMDEA Soft 

 

 

 

 

 

 

 

 

 

 

 

 



D2.4 SotA revision document v2 

 

4 

 

Version history 

Version Date Author(s) Description of changes 

0.1 10/01/2019 Francesca Lonetti 

Antonia Bertolino 

Guglielmo De Angelis 

Initial ToC 

0.2 26/07/2019 Francesca Lonetti 

Guglielmo De Angelis 

Antonia Bertolino 

First draft version of Grey 
Literature 

0.3 11/11/2019 Malena Donato Cohen First draft version of Market 
Analysis 

0.4 20/11/2019 ALL First draft version of Technical 
SotA 

0.5 22/11/2019 Guglielmo De Angelis First draft version of projects 
related to ElasTest 

0.6 25/11/2019 Francesca Lonetti Executive Summary, 
Introduction, Conclusion 

0.7 27/11/2019 Francesca Lonetti 

Guglielmo De Angelis 

Antonia Bertolino 

Final version of Grey Literature 
and Projects 

0.8 28/11/2019 ALL Final Version of 

Technical SoTA 

0.9 29/11/2019 Malena Donato Cohen Final version 

of Market Analysis 

0.10 6/12/2019 Francesca Lonetti 

Guglielmo De Angelis 

Revision of the document 

0.11 19/12/2019 Christos Roupas Internal review 

0.12 23/12/2019 Francesca Lonetti 

 

Revised document 

following internal 

review 



D2.4 SotA revision document v2 

 

5 

 

 Table of contents 

1 Executive summary ................................................................................................. 15 

2 Introduction ............................................................................................................ 16 

2.1 Objectives ........................................................................................................ 16 

2.2 Structure of the document .............................................................................. 17 

3 Literature Review on Cloud Testing ....................................................................... 17 

3.1 Scientific Literature review on cloud testing ................................................... 17 

3.2 Grey Literature review on cloud testing .......................................................... 17 

3.2.1 Methodology ............................................................................................ 18 

Planning the Review ........................................................................................... 18 

Sources for the Review ....................................................................................... 18 

Automated Search .............................................................................................. 19 

Selection based on inclusion/exclusion criteria ................................................. 19 

Selection based on quality assessment .............................................................. 20 

3.2.2 The classification framework .................................................................... 23 

3.2.3 Summary of Results .................................................................................. 24 

4 Technical Analysis of SoTA...................................................................................... 31 

4.1 Continuous Integration .................................................................................... 32 

4.1.1 Continuous Integration Server - Baseline and comparative analysis ....... 32 

AWS_CodePipeline ............................................................................................. 34 

Jenkins X ............................................................................................................. 34 

Semaphore.......................................................................................................... 35 

Team Foundation Server .................................................................................... 35 

TeamCity ............................................................................................................. 35 

4.1.2 Continuous integration - Artifact distribution - Baseline and comparative 
analysis                                                                                                                                36 

4.1.3 Progress within ElasTest ........................................................................... 37 

4.2 Performance Testing ........................................................................................ 38 

4.2.1 Baseline and comparative analysis ........................................................... 38 

StormRunner Load .............................................................................................. 39 

Load Impact ........................................................................................................ 39 

Loader ................................................................................................................. 39 

OctoPerf .............................................................................................................. 40 



D2.4 SotA revision document v2 

 

6 

 

LoadNinja ............................................................................................................ 40 

Gatling ................................................................................................................. 40 

Tsung ................................................................................................................... 40 

Locust .................................................................................................................. 40 

4.2.2 Progress within ElasTest ........................................................................... 41 

4.3 Security testing ................................................................................................ 41 

4.3.1 Baseline and comparative analysis ........................................................... 41 

Privacy.net .......................................................................................................... 42 

Extensions.inrialpes.fr ........................................................................................ 42 

4.3.2 Progress within ElasTest ........................................................................... 42 

4.4 Monitoring ....................................................................................................... 43 

4.4.1 Baseline and comparative analysis ........................................................... 43 

InfluxData TICK ................................................................................................... 44 

Zabbix.................................................................................................................. 45 

Datadog .............................................................................................................. 45 

4.4.2 Progress within ElasTest ........................................................................... 46 

4.5 GUI automation and impersonation (IoT Testing) ........................................... 47 

4.5.1 Baseline and comparative analysis ........................................................... 47 

Patriot IoT Testing Framework ........................................................................... 47 

Eggplant .............................................................................................................. 47 

IoT Emulator ....................................................................................................... 48 

Simple IoT Simulator ........................................................................................... 48 

4.5.2 Progress within ElasTest ........................................................................... 50 

4.6 Cloud Instrumentation ..................................................................................... 51 

4.6.1 Baseline and comparative analysis ........................................................... 51 

Marathon ............................................................................................................ 54 

Google Kubernetes Engine (GKE) ....................................................................... 54 

MaaS ................................................................................................................... 55 

Opensource MANO (OSM) ................................................................................. 55 

Ansible ................................................................................................................ 56 

Chef habitat ........................................................................................................ 56 

Terraform ............................................................................................................ 56 

BOSH ................................................................................................................... 57 



D2.4 SotA revision document v2 

 

7 

 

4.6.2 Progress within ElasTest ........................................................................... 59 

4.7 Dashboard Management ................................................................................. 59 

4.7.1 Baseline and comparative analysis ........................................................... 59 

Prometheus/Grafana .......................................................................................... 59 

Honeycomb ......................................................................................................... 60 

4.7.2 Progress within ElasTest ........................................................................... 61 

4.8 WebRTC Testing ............................................................................................... 61 

4.8.1 Baseline and comparative analysis ........................................................... 61 

4.8.2 Progress within ElasTest ........................................................................... 62 

4.9 Cross-browser Testing ..................................................................................... 62 

4.9.1 Baseline and comparative analysis ........................................................... 62 

4.9.2 Progress within ElasTest ........................................................................... 63 

4.10 Mobile Testing .............................................................................................. 64 

4.10.1 Baseline and comparative analysis ........................................................... 64 

4.10.2 Progress within ElasTest ........................................................................... 66 

4.11 Cognitive Q&A Systems ................................................................................ 66 

4.11.1 Baseline and comparative analysis ........................................................... 67 

4.11.2 Progress within ElasTest ........................................................................... 69 

5 Summary of ElasTest Outcomes, Progresses and Benefits .................................... 69 

5.1 ElasTest Outcomes and Progresses ................................................................. 69 

5.2 ElasTest Main Benefits ..................................................................................... 72 

6 Research projects related to ElasTest: an overview............................................... 74 

6.1 CodeSan ........................................................................................................... 74 

6.2 GAMMA ........................................................................................................... 74 

6.3 SENECA ............................................................................................................. 75 

6.4 TEFIS ................................................................................................................. 75 

6.5 SWITCH............................................................................................................. 76 

6.6 STAMP .............................................................................................................. 76 

6.7 ADVANCE ......................................................................................................... 77 

6.8 PRECRIME ......................................................................................................... 77 

6.9 NOBUGS ........................................................................................................... 78 

6.10 FI-WARE ........................................................................................................ 78 

6.11 TESTOMAT .................................................................................................... 79 



D2.4 SotA revision document v2 

 

8 

 

6.12 GAUSS ........................................................................................................... 79 

7 Market Analysis ...................................................................................................... 80 

7.1 IT budget allocated to testing .......................................................................... 81 

7.2 ICT market ........................................................................................................ 83 

7.3 Cloud Market ................................................................................................... 84 

7.4 Devops ............................................................................................................. 86 

7.5 Test automation ............................................................................................... 86 

7.6 Expectations from the market ......................................................................... 88 

7.7 Comparison of ElasTest with trendy tools ....................................................... 90 

7.8 Main stream technologies related to ElasTest ................................................ 96 

7.8.1 Kubernetes................................................................................................ 96 

7.8.2 Jenkins and TestLink ................................................................................. 96 

7.9 Market Perspective for ElasTest ...................................................................... 96 

8 Conclusions ............................................................................................................. 97 

9 References .............................................................................................................. 98 

 

 

 

 

 

  



D2.4 SotA revision document v2 

 

9 

 

List of figures 

Figure 1: Triangular Isosceles Membership Functions ................................................... 21 

Figure 2: Cloud Testing Framework ................................................................................ 23 

Figure 3: Breakdown of the Primary Studies by Category ............................................. 25 

Figure 4: Number of Publications by Year ...................................................................... 25 

Figure 5: Number of Publications by Year and Area ...................................................... 26 

Figure 6: Distribution of the Papers by Area .................................................................. 26 

Figure 7: Breakdown of the Primary Study in Test Perspective ..................................... 27 

Figure 8: Breakdown of the Primary Study in Test Design ............................................. 28 

Figure 9: Breakdown of the Primary Study in Test Objective ........................................ 29 

Figure 10: Breakdown of the Primary Study in Test Execution ...................................... 29 

Figure 11: Breakdown of the Primary Study in Test Evaluation ..................................... 30 

Figure 12: Breakdown of the Primary Study in Test Domain ......................................... 31 

Figure 13: Jenkins X architecture .................................................................................... 34 

Figure 14: InfluxData TICK architecture .......................................................................... 45 

Figure 15: Number of developers in the world .............................................................. 81 

Figure 16: Portion of the testing budget allocated to QA testing (including testing 
process, tools and resources) ......................................................................................... 82 

Figure 17: Factors influencing the portion of IT budget dedicated to testing ............... 83 

Figure 18: Worldwide ICT Spending 2016-2020 ............................................................. 84 

Figure 19: Cloud market prediction ................................................................................ 85 

Figure 20: Functional Testing Trend ............................................................................... 87 

Figure 21: Main challenges faced while achieving test automation .............................. 88 

Figure 22: Artificial intelligence and machine learning projects for 2019. .................... 89 

 

  



D2.4 SotA revision document v2 

 

10 

 

List of tables 

Table 1: Inclusion and Exclusion Criteria ........................................................................ 20 

Table 2: Indicators driving the quality score procedure ................................................ 20 

Table 3: Continuous integration server tools ................................................................. 33 

Table 4: Semaphore characteristics ............................................................................... 35 

Table 5: Comparison of CI server tools ........................................................................... 36 

Table 6: CI- Artifact distribution tools ............................................................................ 37 

Table 7: CI - Artifact distribution tools: Main Features .................................................. 37 

Table 8: Performance Testing Tools ............................................................................... 39 

Table 9: Comparison of performance tools .................................................................... 41 

Table 10: Security Testing Tools ..................................................................................... 42 

Table 11: Comparison of Security Testing Tools ............................................................ 42 

Table 12: Monitoring Tools ............................................................................................ 44 

Table 13: Comparison of monitoring tools ..................................................................... 46 

Table 14: IoT Testing tools .............................................................................................. 49 

Table 15: Comparison of IoT Testing Tools .................................................................... 50 

Table 16: Cloud Instrumentation Tools .......................................................................... 54 

Table 17: Comparison of Cloud Instrumentation Tools ................................................. 58 

Table 18: Dashboard Management Tools ...................................................................... 61 

Table 19: Comparison of Dashboard Management Tools .............................................. 61 

Table 20: WebRTC Testing Tools .................................................................................... 62 

Table 21: KITE features ................................................................................................... 62 

Table 22: Cross Browser Testing Tools ........................................................................... 63 

Table 23: Browsersync features ..................................................................................... 63 

Table 24: Mobile Testing Tools ....................................................................................... 66 

Table 25: Comparison of Mobile testing Tools ............................................................... 66 

Table 26: Cognitive Q&A Tools ....................................................................................... 68 

Table 27: Comparison of Cognitive Q&A Tools .............................................................. 69 

Table 28: Summary of ElasTest Progresses and Outcomes ............................................ 72 

Table 29:Spending Forecast for technology (Billions of U.S. Dollars) ............................ 84 

Table 30:Public Cloud Service Revenue Forecast (Billions of U.S. Dollars) .................... 85 

Table 31: ElasTest vs key tools ....................................................................................... 95 

 

  



D2.4 SotA revision document v2 

 

11 

 

Glossary of acronyms 

Acronym Description 

API (Application Programming 
interface) 

It refers to an interface or 
communication protocol aiming  to 
simplify the implementation and 
maintenance of software 

AST (Abstract Syntax Tree) It refers to a tree representation of the 
abstract syntactic structure of source 
code written in a programming language 

CI (Continuous Integration) It refers to a software development 
practice 

CLI (Command Line Interface) It refers to a console or text based 
representation in which the user types 
the commands to  interact with an 
operating system or device 

CNCF (Cloud Native Computing 
Foundation) 

It refers to communities supporting the 
growth and health of cloud native open 
source software 

CPS (Cyber-Physical Systems) They refer to systems integrating 
sensing, computation, control and 
networking. 

DSL (Domain Specific Language) It refers to a computer language 
specialized to a particular application 
domain 

EDM (ElasTest Data Manager) A core component of ElasTest 

EDS (ElasTest Device Emulator 
Service) 

A test support service provided by 
ElasTest 

EMP (ElasTest Platform 
Monitoring) 

A core component of ElasTest 

EMS (ElasTest Monitoring Service) A test support service provided by 
ElasTest 

EOE (ElasTest Orchestration 
Engine) 

A test engine provided by ElasTest 

EPM (ElasTest Platform Manager) A core component of ElasTest 

ERE (ElasTest Recommendation 
Engine) 

A test engine provided by ElasTest 

ESS (ElasTest Security Service) A test support service provided by 
ElasTest 

ETM (ElasTest Tests Manager) A core component of ElasTest 



D2.4 SotA revision document v2 

 

12 

 

EUS (ElasTest User Impersonation 
Service) 

A test support service provided by 
ElasTest 

GUI (Graphical User Interface) It refers to a type of user interface that 
allows users to interact with electronic 
devices through graphical icons and 
visual indicators  

IaaS (Infrastructure as a Service), 
PaaS (Platform as a Service) and 
SaaS (Software as a Service) 

CaaS (Container-as-a-Service)  

This refers to different models of 
exposing cloud capabilities and services 
to third parties 

ICT (Information and 
communications technology) 

It refers to all devices, networking 
components, applications and systems 
that  allow people and organizations to 
interact in the digital world 

IoT (Internet of Things) It refers to a system of interrelated 
computing devices, and digital objects 
that are provided with unique identifiers 
and the ability to transfer data over a 
network without requiring human-to-
human or human-to-computer 
interaction 

IT (Information Technology) It refers to the use of computers to 
store, retrieve, transmit, and manipulate 
data 

JSON (JavaScript Object Notation) It refers to an open-standard file format 
and data interchange format 

LDAP (Lightweight Directory 
Access Protocol) 

It is an open and cross platform protocol 
used for directory services 
authentication 

LGs (Load Generators) It refers to a system which is used to 
simulate load for performance testing 

LVM (Logical Volume 
Management) 

It refers to an advanced system of 
managing logical volumes or filesystems 

NFV (Network functions 
virtualization) 

It  allows to abstract network functions, 
allowing them to be installed, 
controlled, and manipulated by software 
running on standardized compute nodes 

NLP (Natural Language Processing) It refers to a branch of artificial 
intelligence dealing with the interaction 
between computers and humans using 



D2.4 SotA revision document v2 

 

13 

 

the natural language 

OSS (Open Source Software) It refers to a type of computer software 
whose source code is released under a 
license in which the copyright holder 
grants users the rights to study, change, 
and distribute the software to anyone 
and for any purpose 

QA (Quality Assurance)   It refers to a set of activities for 
monitoring the software engineering 
processes and methods used to ensure 
quality 

QoE (Quality of Experience) It is a measure of the overall level of 
customer satisfaction  

QoS (Quality of Service) It refers to non functional attributes of 
the system 

RAID (Redundant Arrays of 
Independent Disks) 

It is a data storage virtualization 
technology that combines multiple 
physical disk drive components into one 
or more logical units for the purposes of 
data redundancy as well as performance 
improvement 

RDP (Remote Desktop Protocol) It is a proprietary protocol which 
provides a user with a graphical 
interface to connect to another 
computer over a network connection 

REST (Representational State 
Transfer) 

It refers to an architectural style for 
providing standards between computer 
systems on the web, making it easier for 
systems to communicate with each 
other 

SAML (Security Assertion Markup 
Language) 

It is an XML-based framework for 
authentication and authorization 

SDK (Software Development Kit) It refers to a collection of software 
development tools in one installable 
package 

SiL (System in Large) A SiL is a large distributed system 
exposing applications and services 
involving complex architectures on 
highly interconnected and 
heterogeneous environments 



D2.4 SotA revision document v2 

 

14 

 

SOA (Service-Oriented 
Architecture) 

It refers to an architectural style where 
applications are essentially a collection 
of services that communicate with each 
other 

SotA State of the Art 

SUT (Software under Test) This refers to the software that a test is 
validating 

T-Job (Testing Job) We define a T-Job as a monolithic (i.e. 
single process) program devoted to 
validating some specific attribute of a 
system. Current Continuous Integration 
tools are designed for automating the 
execution of T-Jobs. T-Jobs may have 
different flavors such as unit tests, 
which validate a specific function of a 
SiS, or integration and system tests, 
which may validate properties on a SiL 
as a whole 

TiL (Test in the Large) A TiL refers to a set of tests that execute 
in coordination and that are suitable for 
validating complex functional and/or 
non-functional properties of a SiL on 
realistic operational conditions. We 
understand that a TiL can be created by 
orchestrating the execution of several T-
Job 

UI (User Interface) It represents the point of human-
computer interaction and 
communication in a device 

VM (Virtual Machine) It refers to an emulation of a computer 
system 

VNC (Virtual Network Computing) It refers to a technology for remote 
desktop sharing and remote access on 
computer networks 

ZFS (Z File System) It is a combined file system and logical 
volume manager designed by Sun 
Microsystems 

   



D2.4 SotA revision document v2 

 

15 

 

1 Executive summary 

This deliverable presents the results of the scouting activity carried out in Task 2.1 of 
WP2 in the second reporting period (from M18 to M36). Specifically, on the one side 
this document provides an overview of the existing (scientific and grey) literature and 
technical solutions on the topics covered by the project. On the other side, it reports 
about an analysis of the market so that to highlight current ICT trends and potential 
opportunities for ElasTest platform. Both the technical survey and the market analysis 
in this document represent an update of the scouting performed during the first 
review period and already provided in D2.2 [7]. The survey on the (scientific and grey) 
literature in cloud testing concerns scouting activities started in the second reporting 
period. 

The document includes four main parts. The first part (i.e., Section 3) presents an 
overview of the literature in cloud testing. Specifically, Section 3.1 discusses the 
activities performed while surveying the scientific literature in M18-36; while Section 
3.2 focuses only on the grey literature. The aim of this last analysis it to complement 
and enhance the results of a systematic review of the scientific literature on the broad 
field of cloud testing in the last five years and a framework we propose for categorizing 
all relevant research in this context. As cloud testing is a practitioner-oriented and an 
application-oriented field, in this document we want mainly to classify in a systematic 
way also the knowledge coming from all the informal sources (such as blogs, videos, 
white papers and web-pages) that are different from the formal literature sources 
rigorously reported in academic settings that we addressed in [6].  

The second part (Section 4 and Section 5) of the document includes the results of a 
technical analysis of the state of the art, aiming to collect the most relevant tools 
identified in this second review period as well as important updates of the tools 
already presented in D2.2 [7]. This part also includes main progresses and benefits of 
ElasTest. The analysis was performed in two main steps: a first overview was 
conducted in March 2019 and its update in September 2019. The survey is a collective 
work from the consortium, in which each partner was responsible for the technical 
analysis of one or more identified aspects according to its expertise. As in D2.2 [7], the 
tools have been classified according to the main technological areas that are of 
interest for ElasTest as specified also in the Description of the Action (DoA) [1] that 
are: Continuous Integration, Performance Testing, Security Testing, Monitoring, GUI 
Automation and Impersonation (IoT Testing), Cloud Instrumentation, Data Ingestion, 
Dashboard Management, WebRTC Testing, Cross-browser Testing, Test Execution & 
Visualization, Mobile Testing, Cognitive Q&A Systems, Test Orchestration, Test 
Management, Testing Framework and Virtualization. This technical analysis represents 
an update of the technical analysis of SotA presented in D2.2 [7].  Specifically, in 
Section 4 of this document we report only the technological areas in which new tools 
have been found or important updates of tools presented in D2.2 [7] have been 
identified in the second review period. For each of these technological areas, we 
present a short description of the tools, a comparison among them and the ElasTest 
progress in this second review period in this area with respect to the state of the art. 



D2.4 SotA revision document v2 

 

16 

 

With respect to the technical analysis presented in D2.2 [7], no new tools or relevant 
updates of the existing ones have been identified in the technological areas of: Data 
Ingestion, Test Execution & Visualization, Test Management, Testing Framework, Test 
Orchestration and Virtualization. In Section 5 we present a summary of the main 
ElasTest outcomes and progresses for all the technological areas that are of interest 
for ElasTest as well as the main benefits of ElasTest. 

The third part (Section 6) shows an overview of research projects covering one or 
more topics adressed in ElasTest. The aim is to identify common research topics and 
related technologies among ElasTest and the other ongoing or past projects. 

Finally, the fourth part (Section 7) presents an overview of the most important IT 
market trends in this second review period and shows that the demand of competitive 
testing solutions as well as the growing investments in cloud testing and test 
automation will have a positive impact on the development of ElasTest. 

2  Introduction  

2.1 Objectives  

ElasTest developed a comprehensive platform aimed at improving the efficiency and 
effectiveness of the testing process of large complex systems. The platform supports 
end-to-end testing in the cloud (TiC) and addresses many research challenges of the 
literature on cloud testing. After providing the results of a systematic review of the 
scientific literature in D2.2 [7] and in [6] , in this document we present a systematic 
review of the grey literature related to topics of interest of ElasTest.  

ElasTest is a quite ambitious project that aims at evolving current SotA in many 
technological domains. For the sake of simplicity, in this document we concentrate on 
the ones which have more relevance for the project. For this, we identified 17 
technological areas, covering those specified in the DoA [1] that are: Continuous 
Integration, Performance Testing, Security Testing, Monitoring, GUI Automation and 
Impersonation (IoT Testing), Cloud Instrumentation, Data Ingestion, Dashboard 
Management, WebRTC Testing, Cross-browser Testing, Test Execution & Visualization, 
Mobile Testing, Cognitive Q&A Systems, Test Orchestration, Test Management, Testing 
Framework and Virtualization. For each technological area, we provide an update of 
the technical state of the art with respect to that of D2.2 [7], namely the most relevant 
tools, a comparison of these tools and the current technological progress of ElasTest 
with respect to the presented tools. Then, in Table 28 we provide a summary of the 
ElasTest outcomes and advancements in all the identified technological areas.  

The reseach topics addressed into ElasTest are also covered by other past or current 
research projects. In this document, we provide an overview of European and national 
research projects related to ElasTest outlining the main potential synergies and 
common technological aspects. This overview is useful to foster future dissemination 
and exploitation of ElasTest results in the context of other research projects. 



D2.4 SotA revision document v2 

 

17 

 

Finally, a goal of this document is to present an update of the state of the art about 
market trends with respect to that presented in D2.2 [7]. This document provides a 
quantitative and qualitative assessment of the market and gives an overview of market 
trends focusing on the IT areas in which ElasTest can later create impact. 

2.2 Structure of the document 

This document is structured as follows: in Section 3, we present an analysis of the 
literature about cloud testing. Then, in Section 4, we provide an analysis of the 
technical state of the art focusing on the technological areas that are of interest in 
ElasTest. In Section 5 we summarize the main ElasTest outcomes and progresses with 
respect to all the technological areas identified in the SotA. In Section 6, we present an 
overview of the research projects related to ElasTest. Section 7 shows how ElasTest is 
aligned with the markets trends in the areas in which ElasTest can have an impact. 
Finally, Section 8 draws conclusions. 

3 Literature Review on Cloud Testing 

3.1 Scientific Literature review on cloud testing 

The systematic review of the scientific literature was carried out in two main steps: a 
former systematic review was performed in the first review period (M1-M18) analyzing 
and classifying peer reviewed articles in cloud testing found in IEEE Xplore Digital 
Library, ACM Digital Library and Scopus electronic sources. The results of this 
systematic review have been presented in D2.2 [7]; a latter systematic review of the 
scientific literature in cloud testing was performed in the second review period (M18-
M36) by analyzing peer reviewed articles in cloud testing found in ScienceDirect, Wiley 
Online, and Springer Link digital libraries and by performing snowballing of the primary 
studies identified in the first review period. We refer to [6] for the whole results of the 
systematic survey of the scientific literature on cloud testing. 

3.2 Grey Literature review on cloud testing 

In this deliverable, we present the results of a grey literature review on cloud testing, 
with the main objective to identify and categorize the literature that is not formally 
published in sources such as books or journal articles on cloud-based testing. To this 
purpose, we present in Figure 2 a framework used for classifying the selected primary 
studies into three (non-overlapping) categories that are: testing in the cloud, testing of 
the cloud and testing of the cloud in the cloud, and six areas that are: Test Perspective, 
Test Design, Test Execution, Test Objectives, Test Evaluation and Application Testing. 
Within each area we list several topics.  More details of this framework are in Section 
3.2.2. We show in Section 3.2.1  the methodology adopted for conducting our review 
where Section 3.2.3 depicts the obtained results. 



D2.4 SotA revision document v2 

 

18 

 

3.2.1 Methodology 

This survey combines the guidelines proposed by two major and influential categories 
of works in this field. On the one side, this work refers to the procedures proposed by 
Garousi and co-authors [2] for planning and running a multivocal literature review. On 
the other side, this work also includes aspects following the overall recommendations 
proposed by Kitchenham and co-authors [3] when conducting systematic literature 
reviews on software engineering. In the following, we present the research 
methodology that was applied in this study. Specifically, the resulting approach has 
been structured around the following 5 phases: planning of the objectives, 
identification of the sources, entries extraction from the sources, selection of the 
entries in scope with the study, quality assessment of the resulting entries.  

Planning the Review 

The objective of this work is an analysis of the current approaches and trends in cloud 
testing as discussed by the industry, professionals, and SE practitioners, outside of 
academic forums. Such a goal has been achieved by answering the following research 
questions (RQs): 

1. RQ1: What are the challenges, issues and future directions of cloud testing?  
2. RQ2: What type of cloud testing methods has been used? 
3. RQ3: What are the main objectives for cloud testing?  
4. RQ4: How many primary entries present techniques, tools, or models for cloud 

testing?  
5. RQ5: Which are the main application domains for software testing in the cloud? 

 

 Sources for the Review 

The applied methodology started from the identification of a set of sources considered 
relevant for a grey literature survey on cloud testing. The selection was driven 
following four main categories of sources: Authoritative Grey Literature Sources; 
Authoritative Industrial Sources; Must-read Cloud Computing Blogs; Must-read 
Software Engineering Blogs. For each category, the actual sources have been selected 
by means of joint discussions among colleagues from the ElasTest project coming from 
both industry and academia. In addition, it was also considered useful to include the 
outcomes from a general purpose search engine such as Google Search Engine. In the 
following, we report the final list of the sources adopted in this study: 

Authoritative Grey Literature Sources 

OpenGrey EU (http://opengrey.eu/) 

Cloud Computing IEEE (https://cloudcomputing.ieee.org/) 

Medium Blogging Platform (https://medium.com/) 

Authoritative Industrial Sources  

ISTQB (https://www.istqb.org/) 

https://medium.com/


D2.4 SotA revision document v2 

 

19 

 

IBM Blog (https://www.ibm.com/blogs/) 

AWS Blog (https://aws.amazon.com/blogs/aws/) 

IDC (https://www.idc.com/) 

TechRepublic (https://www.techrepublic.com/) 

InfoQ (https://www.infoq.com/) 

Must-Read Cloud Computing Blogs 

Infoworld Cloud Computing (https://www.infoworld.com/) 

All Things Distributed (https://www.allthingsdistributed.com/) 

Diversity Limited (https://www.diversity.net.nz/) 

Compare the Cloud (https://www.comparethecloud.net/) 

Network World (https://www.networkworld.com) 

Cloud Tweaks (https://cloudtweaks.com) 

Must-Read Software Engineering Blogs 

Toptal Engineering Blog (https://www.toptal.com/blog) 

Martin Fowler Blog (https://martinfowler.com/) 

Coding Horrors (https://blog.codinghorror.com/) 

Scott Hanselman Blog (https://www.hanselman.com/blog/) 

Scott Berkun Blog (https://scottberkun.com/blog/) 

Steve Yegge Blog (https://steve-yegge.blogspot.com/) 

Generic Sources from the Web 

Google Search Engine (https://www.google.com/) 

 

Automated Search 

The second step in the methodology concerned the definition of the criteria for 
launching automated searches on the identified sources. Specifically, it was 
established to apply a full search on all the fields indexed by the specific source 
repository (e.g., title, description, body of the content, meta-data, etc.). In order to be 
as comprehensive as possible, there was an agreement on adopting a quite general 
search string that was: “{testing} <AND> {cloud}”. The main idea was that entries must 
concern both testing, and cloud. However, it was also agreed to limit the search to 
English contributions appeared from 2012 to 2018. 

Selection based on inclusion/exclusion criteria 

On top of all the entries returned by querying the selected sources, a first screening 
was planned by taking into account the title of the item, and where possible, by 

https://steve-yegge.blogspot.com/
https://www.google.com/


D2.4 SotA revision document v2 

 

20 

 

reading its associated abstract or short description. A set of Inclusion and Exclusion 
Criteria has been considered in order to uniformly drive such preliminary selection 
process. The detailed list of the adopted criteria is reported in Table 1. Specifically, 
exclusion criteria aimed to filter academic or peer-reviewed works, but also 
commercial or sponsored entries. In addition, it is well known that querying general 
purpose search engine (e.g., Google Search) may return a huge number of entries so 
that it is unfeasible to treat all of them. A common approach in grey literature surveys 
is to rely on the rank algorithm that each search engine includes in order to sort the 
returned results by relevance. For this reason, as inclusion criteria it was agreed to 
consider only the first 120 items returned by each search engine. 

 

Exclusion Criteria Inclusion Criteria 

papers published in proceedings/journals after 
peer-review process 

edited between 2012 and 2018 

advertisement/sponsored links thesis 

presentations about a company or its profile tech reports 

commercial material about a specific 
product/solution/service/platform/tool 

tools manual 

market report/overview tutorials 

no English webinars 

no full and free accessible (for the authors) blog posts 

not in the scope of the survey video from panels 

online courses opinions 

How-to (i.e. Quora, StackOver-flow, FAQ, etc)  slides 

job offer interviews 

not included within the first 120 
returned items 

 

Table 1: Inclusion and Exclusion Criteria 

Selection based on quality assessment 

The actual selection of any identified entry has been done by considering its whole 
contribution (e.g. reading the article, watching the video, etc.) and evaluating it 
according to a quality checklist. Specifically, the checklist aggregated the 8 different 
indicators reported in Table 2. 

 

Indicator Indicator description 

I1 The publishing organization is supposed to be authoritative 

I2 The individual author is associated with a renowned organization 

I3 The author published other work either in the area of testing or cloud 

I4 The author has a clear expertise either in the area of testing or cloud 

I5 The document is focusing on cloud testing 

I6 The statements in the source are as much objective as possible 

I7 The source has a clearly stated aim 

I8 The source has a stated methodology 

Table 2: Indicators driving the quality score procedure 



D2.4 SotA revision document v2 

 

21 

 

All the entries have been processed by two reviewers that assigned to each indicator a 
quality score expressed in terms of the fuzzy Likert approach proposed in [4]. In detail, 
each fuzzy quality score is composed by two consecutive judgements measuring the 
level of agreement with the statements associated to the considered indicator. This 
level of agreement can be: Fully Disagree (value =1), Partially Disagree (value =2), 
Neutral (value =3), Partially Agree (value =4), Fully Agree (value =5). Also, a reviewer 
was requested to give a confidence level for each of these two judgements. The sum of 
the two confidence levels expressed per a quality score is assumed to be 1. For 
instance, let us consider the indicator I5: a reviewer can have a clear opinion about the 
focus of the contribution (e.g., she/he somehow agrees with the indicator), or she/he 
tends to disagree with the statement associated to the indicator but without a crystal 
opinion. The former case could be represented by assigning to the fuzzy quality score a 
single judgment (e.g., QS1_I5=f[4; 1:0]), while in the latter the reviewer can express 
the fuzzy quality score by means of a pair of judgments with different confidence 
degrees (e.g., QS2_I5=f[1; 0:3]; [2; 0:7]). For each fuzzy quality score expressed by a 
reviewer (i.e., one per indicator), the de-fuzzification process described in [4] has been 
applied. A de-fuzzification process represents the transformation procedure that maps 
back a fuzzy input (i.e., the pairs of quality scores expressed as judgement and 
confidence) into a scalar value. More specifically, in [4] the de-fuzzification process has 
been instantiated by taking into account the triangular isosceles membership 
functions; the same approach has been adopted also in this study. Specifically, the 
output of the de-fuzzification process is calculated as a combination of the two 
consecutive judgments in a fuzzy quality score (i.e., Ji and Ji+1 in Eq. 1) weighted with 
the area of the trapezoids resulting from their respective confidence degrees (i.e., A(Ci) 
and A(Ci+1) in Eq. 1). 

       
                     

             
   (1) 

 

 
Figure 1: Triangular Isosceles Membership Functions 

 

Figure 1 depicts the triangular isosceles membership functions. Reviewers could have 
very different interpretations on the indicators in Table 2; in addition they could refer 
very different standards or metrics in order to express their feelings. For these 



D2.4 SotA revision document v2 

 

22 

 

reasons, a set of guidelines have been agreed by the reviewers before accessing the 
results from the automated search procedure. Among the others, such guidelines 
established criteria supporting the judgements about: an authoritative organisation 
(i.e., I1); the number of publications (i.e., I3); the expertise of an author (i.e., I2, and 
I4). The overall opinion of each reviewer about an entry has been calculated by taking 
into account all the quality scores from the 8 indicators. Specifically, as all the 
indicators have the same relevance for this study, thus the aggregated entry's quality 
score per reviewer has been computed as the average on the resulting fuzzy Likert 
values. The decision about adding or rejecting an entry from the set of primary studies 
has been taken by estimating the level of agreement reached by both the reviewers. 
Specifically, a measure of the consensus [5] on the aggregated quality scores has been 
considered. Intuitively, consensus is modelled as a function over a set of different 
opinions about some statement expressed on the basis of a pre-defined scale (e.g., 
Likert scale, or fuzzy Likert scale) and that ranges from 0 (i.e., complete disagreement 
of opinions), to 1 (i.e., for complete agreement). Following the formulation reported in 
[5], the consensus model adopted in this study is given with Eq. 2. 

 

     
  
  

             
       

 
 
   =       

       

 
=1+     

       

 
  (2) 

 

where ri is the aggregated quality score from the reviewer i on the considered entry; d 
= Lmax - Lmin = 4 is the width of categories on the referred fuzzy Likert scale (i.e., 5 - 1 = 
4), and    is the mean on the aggregated agreements by the two reviewers. 

On the one hand, when the two reviewers show a high agreement on a given entry 
(i.e., the consensus scored at least 0.85) then the verdict on their evaluations is 
assumed to be significant. In this case, if the average on both the aggregated quality 
scores results greater than 3 the entry is added to the set of the primary studies; 
otherwise it is rejected. On the other hand, when the agreement between the two 
reviewers is not significant (i.e. the consensus scored less than 0.85) then the entry is 
processed by a third reviewer who decides if it deserves to be included or not within 
the set of primary studies. 

Specifically, we applied the automated search described before to all the identified 
sources, obtaining an initial set of 250 entries. Duplicated entries among Google 
Search Engine and the other sources have been deleted, and not considered in the 
initial set of entries found in Google Search Engine. To this set of 250 entries, we 
applied the inclusion and exclusion criteria described in Table 1, obtaining a set of 141 
included entries. Out of these 141 entries, according to the quality assessment 
procedure described above, 51 were included, 80 were excluded, whereas the 
remaining 10 entries (for these entries the consensus scored was less than the 
threshold) were processed by a third reviewer. Out of these 10 entries, applying the 
same quality assessment procedure, the third reviewer decided to include 6 and 
exclude 4 entries, obtaining a total set of 57 primary studies analyzed in our study. 



D2.4 SotA revision document v2 

 

23 

 

3.2.2 The classification framework 

 

 
Figure 2: Cloud Testing Framework 

In Figure 2, we present the framework we developed to characterize the results of our 
grey literature review on cloud testing. This framework was inspired by a similar 
framework we developed to classify the papers of a systematic review in cloud testing 
presented in [6]. Specifically, we initially considered as draft scheme the framework 
presented in [6] including six areas and several topics for each area. Then, we used this 
draft scheme to classify the primary entries, adding new topics within each area during 
the reading of the full text of the primary entries. Finally, we removed the topics not 
covered by any primary entry. The resulting framework that is presented in Figure 2 
includes the following six areas and some topics representing trends and directions of 
the grey literature on cloud testing: 

Test Perspective. The primary entries belonging to this area address topics such as 
basic concepts, trends, current research directions, terminology, challenges and 
benefits of cloud testing. 



D2.4 SotA revision document v2 

 

24 

 

Test Design. This area includes approaches addressing the design phase of testing 
activity. This area shows less topics than the same area in the framework of [6], 
namely test cases generation or selection, test specification and test metric, 
evidencing a low interest of the grey literature for test design approaches. 

Test Execution. The primary entries belonging to this area present artifacts involved 
into the execution phase of the testing activity, such as platforms or infrastructures or 
tools or services for cloud testing as well as visualization or cloud configuration 
approaches or solutions for testbed setup. 

Test Objective. The primary entries belonging to this area address the different 
objectives of cloud testing such as functional aspects or different types of testing such 
as unit or integration or end-to end or non-functional properties such as robustness, 
performance, reliability, security, usability and others. 

Test Evaluation. The primary entries belonging to this area address the evaluation 
stage of the testing activity namely monitoring of the testing activity, report and 
analysis of test results, as well as support for debugging.  

Test Domain. The primary entries belonging to this area present cloud-based testing 
solutions addressing specific application domains, such as mobile, web applications, 
CI/CD applications among the other. 

As in [6], we classify papers into three different categories that span over the above 
areas as shown by the colored frames in Figure 2: i) Testing in the cloud (blue 
continued frame in Figure 2) refers to software testing performed by leveraging 
scalable cloud technologies, solutions and computing resources to validate non-cloud 
software/applications; ii) Testing of the cloud (red dotted frame in Figure 2) refers to 
validating the quality (functional and non-functional properties) of applications and 
infrastructures that are deployed in the cloud; iii) Testing of the cloud in the cloud 
(green dashed frame in Figure 2) refers to applications and infrastructures deployed in 
the cloud and tested by leveraging cloud environment. 

 

3.2.3 Summary of Results 

Figure 3 shows the breakdown of primary studies according the three categories of our 
framework. This figure evidences a high interest of the grey literature for TIC category 
(41% of the selected primary studies belong to this category) whereas a minor number 
of primary studies proposes to leverage cloud platform for testing of applications and 
infrastructures deployed in the cloud (11% of primary studies belong to ToiC category 
and only few primary studies address TOC, 5%). 

 



D2.4 SotA revision document v2 

 

25 

 

 
Figure 3: Breakdown of the Primary Studies by Category 

Figure 4 shows the number of primary studies per year. As evidenced, this number 
swings between 10 and 20 until 2016, then, it rapidly grows in the last 2 years (from 14 
items in 2016 to 57 in 2018). This confirms the growing attention devoted to the cloud 
testing in the last years by the grey literature. 

 

 
Figure 4: Number of Publications by Year 

 

 

The data of Figure 5 confirm the trend of Figure 4, showing the number of primary 
studies per year in each area. These data show that for most of the areas the number 
of items rapidly grows in the last two years (from 4 to 13 for Test Execution, from 4 to 
11 for Test Objective, from 3 to 16 for Test Domain and from 2 to 10 for Test 
Perspective). 

 



D2.4 SotA revision document v2 

 

26 

 

 
Figure 5: Number of Publications by Year and Area 

 

Figure 6 depicts the distribution of primary studies over the six areas. In particular, the 
majority of primary studies focus on four of the six areas: Test Perspective (34 primary 
studies), Test Execution (38 primary studies), Test Objective (39 primary studies), and 
Test Domain (40 primary studies). Data suggest a low coverage from the grey literature 
on Test Evaluation (21 primary studies) and even lower on Test Design (7 primary 
studies). Note that, as each primary study could be classified in multiple areas, any 
distribution analysis done by area is not a partition of the set of primary studies; thus 
in each kind of distribution the sum of primary studies could be greater than their 
number (57). 

 

 
Figure 6: Distribution of the Papers by Area 



D2.4 SotA revision document v2 

 

27 

 

Comparing the results of Figure 6 with those of the analysis reported in D2.2 (Fig. 3)[7], 
we can observe that Test Perspective and Test Domain areas achieve a greater interest 
from primary studies of our grey literature review than from the research papers 
analyzed in D2.2[7], evidencing a different audience of the two types of publications.  

In the following, we summarize the main results that answer to the research questions 
defined in Section 3.2.1, by presenting the breakdowns of primary studies over the 
topics of each area and considering the three categories of TiC, ToC and ToiC.  

 

Research Question1: What are the challenges, issues and future directions of cloud 
testing?  

Figure 7 evidences that the majority of primary studies classified in the Test 
Perspective describe the concepts underlying cloud testing (17 primary studies). Other 
topics that show a good interest are challenges and technology (13 primary studies for 
each of them). Lower interest is showed for benefit (9 primary studies), issues (10 
primary studies), motivation (8 primary studies) and terminology (10 primary studies) 
topics. Finally, few works address future research direction (4 primary studies) as well 
as current status and trends (3 primary studies for each one) of cloud testing. 

 

 
Figure 7: Breakdown of the Primary Study in Test Perspective 

 

Research Question2: What type of cloud testing methods has been used? 

Figure 8 shows that the few primary studies included in the area of Test Design fairly 
address the different topics (1 primary study for test metrics, test process, test 
selection, and test specification with the only exception of test generation that is the 
most addressed topic, covered with 3 primary studies). 



D2.4 SotA revision document v2 

 

28 

 

 
Figure 8: Breakdown of the Primary Study in Test Design 

 

Research Question3: What are the main objectives for cloud testing?  

In Figure 9, the primary studies have been classified according to the objectives of the 
cloud testing. This figure shows that functional and non-functional aspects are fairly 
addressed. Specifically, the most covered goals are functional and performance testing 
(i.e., 12 primary studies) with a similar breakdown on the TIC, TOC and TOIC 
categories. Other goals that result to be sufficiently covered are integration testing 
(i.e., 7 primary studies), compatibility (i.e., 7 primary studies) and security (i.e., 8 
primary studies). These results also confirm what already evidenced in D2.2[7] (Figure 
5) concerning the great effort spent in validating performance and the low interest of 
cloud testing for the other not functional aspects such as load (i.e., 1 primary study), 
resilience (i.e., 2 primary studies), robustness (i.e., 3 primary studies), as well as 
usability and sw quality in general (i.e., 5 primary studies). Minor attention is also 
deserved for end-to-end and unit testing (only 3 primary studies). 



D2.4 SotA revision document v2 

 

29 

 

 
Figure 9: Breakdown of the Primary Study in Test Objective 

Research Question4: How many primary entries present techniques, tools, or models 
for cloud testing?  

Many primary studies focus on the execution phase of the testing activity. The 
distribution of papers addressing Test Execution is presented in Figure 10. The 
reported data show the great interest in this area for testing tools and services (i.e., 22 
primary studies), in particular concerning testing in the cloud (i.e., 16 primary studies). 
Few works address testbed setup (i.e., 9), cloud configuration and testing 
infrastructures (i.e., 8) whereas still less attention is deserved to testing platform (i.e., 
3) and virtualization (i.e., 2). 

 

 
Figure 10: Breakdown of the Primary Study in Test Execution 

 



D2.4 SotA revision document v2 

 

30 

 

Figure 11 highlights that the main task supporting the evaluation of the cloud testing 
activities concerns reporting of test results (i.e., 16 over 27 primary entries address this 
topic). All the other topics receive a marginal attention, indeed a very few works 
address analysis (i.e., 3), debugging (i.e., 4), monitoring (i.e., 4) and sw quality 
comparison (i.e., 1). 

 

 
Figure 11: Breakdown of the Primary Study in Test Evaluation 

 

Research Question5: Which are the main application domains for software testing in 
the cloud? 

Figure 12 plots the classification of the primary studies according to the application 
domains addressed by the testing solutions leveraging scalable cloud technologies. 
Concerning the domains of cloud testing, the collected data confirm what already 
evidenced in the survey reported in D2.2 [7] (Figure 10), namely that cloud solutions 
are mostly used to validate mobile (i.e., 18 primary studies) and web applications (i.e., 
12 primary studies). The other application domains receive less attention: 3 primary 
studies focus on CI/CD applications, 2 primary studies on DB Applications, GUI, 
network and SOA whereas only one study addresses front-end JS Application. 

 



D2.4 SotA revision document v2 

 

31 

 

 
Figure 12: Breakdown of the Primary Study in Test Domain 

 

4 Technical Analysis of SoTA 

In this section, we focus on technical analysis of SotA, namely the most important tools 
that can be of interest for ElasTest. As in D2.2 [7], these tools have been classified 
according to the following main aspects covering the technological areas in which 
ElasTest advanced the state of the art, defined also in the DoA [1]: 

- Continuous Integration 
- Performance Testing 
- Security Testing 
- Monitoring 
- GUI automation and impersonation (IoT Testing) 
- Cloud Instrumentation 
- Dashboard Management 
- WebRTC Testing 
- Cross-browser Testing 
- Mobile Testing 
- Cognitive Q&A Systems 
- Test Orchestration 
- Data Ingestion 
- Test Execution & Visualization 
- Test Management 
- Testing Framework 
- Virtualization 

The analysis includes a different number of tools for each technological area and has 
been performed along all the second reporting period. Specifically, after the delivery of 
D2.2 [7], an overview of the state of the art was conducted in March 2019 and its 



D2.4 SotA revision document v2 

 

32 

 

update performed in September 2019. We describe the most important tools for each 
technological area in the following sections. We report only the technological areas in 
which new tools have been found or important updates of tools presented in D2.2 [7] 
have been identified in the second review period. For each of these technological 
areas, we present a short description of the tools, a comparison among them and the 
ElasTest progress in this area with respect to the state of the art.  

 

4.1 Continuous Integration 

In this section, we provide the most relevant tools of continuous integration identified 
in the second review period. Specifically, we divide the tools into two main categories: 
Continuous integration Server and Continuous integration - Artifact distribution.  There 
are not new relevant tools about Continuous integration - Identity Access 
Management and Continuous integration – Docker Image Distribution addressed in 
D2.2 [7]. 

4.1.1 Continuous Integration Server - Baseline and comparative analysis 

At the beginning of the ElasTest project the main use of the CI servers was building and 
testing software projects/artefacts. Occasionally, only in well established companies or 
projects where the DevOps trend was adopted early, some activities concerning 
deployment tasks were also conceived in charge of CI servers. Not all the tools 
specified in the first version of the SoTA were able to manage the whole DevOps cycle 
and those that were able, did it with different level of simplicity for the administrators, 
and giving the user/admin different level of control.  

Nowadays, DevOps and Continuous Delivery are the main trends. Tools and 
frameworks are often integrated in CI/CD pipelines, and at the same time new tools 
specifically designed to be linked into the CI/CD pipelines have appeared. The 
integration between CI servers and other tools such as code repositories, development 
IDEs, code quality, testing tools was successful in different degrees. Most of the CI 
servers were able of executing a series of tasks, that where triggered either manually, 
periodically or automatically by an event. The definition of these series of tasks usually 
takes place by managing of some sort of pipelined infrastructure.  

Currently, most of the CI servers have been evolved to the DevOps paradigms; in line 
with this new paradigm, CI technologies support the explicit management of SW 
development activities in terms of pipelines. Even though CI Servers could impose a 
structured organization of the activities on the projects they are managing, nowadays 
most of the CI servers allows the admin/user to maintain their pipelines as code. 
Another big evolution of the CI servers is the redefinition of their own architecture 
towards cloud-native; thus the CI server functionalities have been improved also 
towards this kind of applications. In addition, due to the proliferation of cloud-native 
applications, also big public cloud providers like AWS and Azure have launched their 
own CI servers specifically designed for the DevOps operations in their cloud, and have 
integrated this product as part of their global offer. 



D2.4 SotA revision document v2 

 

33 

 

Table 3 shows the most relevant tools identified in this second review period for 
continuous integration server. 

Name URL Brief description  Licence 

AWS 
CodePipeline 

https://aws.amazon.com/pi
peline/ 

AWS CodePipeline is a fully 
managed continuous delivery 
service that helps to automate 
your release pipelines for fast and 
reliable application and 
infrastructure updates. 
CodePipeline automates the build, 
test, and deploy phases of the 
release process every time there is 
a code change, based on: the 
release model you define; the 
release process every time there is 
a code change. 

Proprietary 

Azure 
Pipelines 

https://azure.microsoft.com
/en-
us/services/devops/pipeline
s/?nav=min 

It provides the capacity of creating 
pipelines to cover all the DevOps 
cycle stages. 

Proprietary but 
provides free 
access for OSS 

CloudBees 
CodeShip 

https://www.cloudbees.com
/products/cloudbees-
codeship 

Aim to ship faster with CI/CD as a 
Service. 

Proprietary 

 

Jenkins X https://jenkins-x.io/ Jenkins X is a CI/CD solution for 
modern cloud applications on 
Kubernetes and is being proposed 
as a sub-project via JEP-400. 

OSS (Apache 
License 2.0) 

Semaphore https://semaphoreci.com/pr
oduct 

AutoScalable CI/CD-as-a-service. Proprietary 

Team 
Foundation 
Server 

https://www.visualstudio.co
m/tfs/ 

Microsoft tool that provides 
source code management (Team 
Foundation Version Control or Git), 
reporting, requirements 
management, project 
management, automated builds, 
lab management, testing and 
release management capabilities. 

Proprietary 

TeamCity http://www.jetbrains.com/t
eamcity/ 

It allows Java-based build 
management and CI server from 
JetBrains. 

Proprietary 

Table 3: Continuous integration server tools 

According to the opinions registered on G2Crowd1 and Slant2, the most relevant tools 
about continuous integration server developed in this second review period are: AWS 

                                                      
1
 Open Source Initiative, licenses https://opensource.org/licenses/alphabetical 

2
 Slant.co https://www.slant.co/topics/799/~best-continuous-integration-tools 

https://opensource.org/licenses/alphabetical
https://www.slant.co/topics/799/~best-continuous-integration-tools


D2.4 SotA revision document v2 

 

34 

 

CodePipeline, Jenkins X, and Semaphore. In the following, we present a brief 
description of each of them. Other tools, such as Team Foundation Server and 
TeamCity have been updated with respect to the description provided in D2.2 [7]. We 
describe in the following their main updates. 

AWS_CodePipeline  

AWS CodePipeline is part of the AWS Developers tools. The AWS Developers tools is a 
set of services designed to enable developers and IT operations professionals 
practising DevOps to rapidly and safely deliver SW.  
Specifically, AWS CodePipeline is a continuous integration and continuous delivery 
service for fast and reliable application and infrastructure updates. CodePipeline 
builds, tests, and deploys the code every time there is a code change, based on the 
defined release process models. This enables you to rapidly and reliably deliver 
features and updates. You can easily build out an end-to-end solution by using the pre-
built plugins for popular third-party services like GitHub or integrating your own 
custom plugins into any stage of your release process. 
AWS CodePipeline has a simple rate of $1.00 per active pipeline per month. 

Jenkins X  

Jenkins X provides pipeline automation, built-in GitOps and preview environments to 
help teams collaborate and accelerate their software delivery at any scale. As shown in 
Figure 13, Jenkins X is not exactly a new CI Sever but an architecture around Jenkins 
over Kubernetes, so while it makes use of the very mature functionality of Jenkins it 
adapts to the Cloud natively.  
 

 
Figure 13: Jenkins X architecture 

 



D2.4 SotA revision document v2 

 

35 

 

Semaphore  

Semaphore [5] just claims to be a CI/CD server that “just works”. It expresses well that 
even it doesn’t stand out for something ground-breaking it does what is expected: 
automate any continuous delivery pipeline with customizable stages, parallel 
execution, control flow switches, secrets and dependency management; and provides 
auto-scalability while offering a pricing system of pay per use. The pricing offering is 
based on the characteristics of the underlying infrastructure where the pipeline is 
executed and the time of execution is detailed in Table 4. 
 
 

Instance name Characteristics Price 

e1-standard-2 
2 vCPU @ 3.4GHz (Turbo 4.0GHz), 4GB 
RAM, 25GB RAM 

$0.00025/sec 

e1-standard-4 
4 vCPU @ 3.4GHz (Turbo 4.0GHz), 8GB 
RAM, 35GB RAM 

$0.00050/sec 

e1-standard-8 
8 vCPU @ 3.4GHz (Turbo 4GHz), 16GB 
RAM, 45GB RAM 

$0.00100/sec 

Table 4: Semaphore characteristics 

Team Foundation Server  

As described in D2.2 [7], Team Foundation Server (TFS) is an enterprise-grade server 
for teams to share code, track work, and ship software for any language, all in a single 
package. TFS works better as a part of the Microsoft CI tools, but multiple tools 
(proprietary and open source) can be integrated with TFS. 
Team Foundation Server is available in two different forms: on-premises and online.  
TFS is quite easy to install and configure while working within the Microsoft Suite and 
Microsoft Cloud platform (Azure). TFS has evolved to separate the on premise 
environment, still called Team Foundation Server, and the hosted one now called 
Azure DevOps. The CI Server inside Azure DevOps has been renamed as Azure 
Pipelines and evolved into a more “standard” CI server where the tasks are organised 
as pipelines and can be managed as code. 
 

TeamCity  

As described in D2.2 [7], TeamCity is a continuous integration and deployment server 
from JetBrains. It is known to be quite harsh to setup, but once it is done, building 
projects using Ant or MSBuild is incredibly easy, whereas for many other languages the 
initial setup of the build configuration can be a bit daunting. As many environments 
are supported such as Java or Python, TeamCity shines while used in .Net 
environments. 
TeamCity provides a wide range of additional plugins to provide integration with most 
used CI tools. TeamCity has evolved in the same line of most CI servers; it has focused 
in the UI and usability. 
 



D2.4 SotA revision document v2 

 

36 

 

Finally, Table 5 shows a comparison of CI server tools according to some common 
dimensions such as simplicity of usage, acceptance by the developer community, 
expertise of partners, integration with other CI tools, costs. The table also compares 
the CI server tools described before with Jenkins that has been integrated into 
ElasTest. We refer to D2.2 [7] for the Jenkins description.  
 
 

 AWS 
CodePipeline 

 

Jenkins 

 

Jenkins 

X 

 

Semaphore 

 

Microsoft 
TFS 

 

TeamCity 

 

Simplicity of 
usage 

Bad Good Medium Good Good Medium 

Hosted Yes No No Yes Yes/No Yes/No 

Supported 
types of 
projects 

multiple multiple multiple multiple multiple multiple 

Integration 
with other CI 
tools 

Poor
3
 Very Good Good Average Good Good 

Acceptance 
by the 
developer 
community 

Niche High Medium Medium 
Medium-

High 
Low 

Expertise of 
partners 

Low High Low Low Low Low 

Costs 
Average (pay 

per use) 

Open 
Source 

+ hosting 

Open 
Source 

+ 
hosting 

Average (pay 
per use) 

High 
Average 

(License + 
Hosting) 

Table 5: Comparison of CI server tools 

 

4.1.2 Continuous integration - Artifact distribution - Baseline and comparative 
analysis 

In the context of continuous integration-artifact distribution, a new tool has been 
identified in the second review period that is Jfrog Artifactory + Bintray. In the 
following a brief description and main features of this tool are provided (see Table 6 
and Table 7).  
 

Name URL Brief description License 

Jfrog Artifactory 
+ Bintray   

https://jfrog.com/artifactory/  
https://jfrog.com/bintray/ 

It allows for fast  release and 
Universal Artifact Management 

Private (Pay per use 
and License) 

                                                      
3
 AWS CodePipeline has poor integration with tools outside the AWS Code* tools.  

https://jfrog.com/artifactory/
https://jfrog.com/bintray/


D2.4 SotA revision document v2 

 

37 

 

for DevOps Acceleration.  

Table 6: CI- Artifact distribution tools 

 
Jfrog Artifactory + Bintray - The DevOps integrated option 
 
Jfrog Artifactory + Bintray can work together in order to provide not only a storage for 
artifacts but a set of rules and integrations for deliver and release these artifacts. 
As a universal repository manager, Artifactory integrates with the existing ecosystem 
supporting end-to-end binary management that overcomes the complexity of working 
with different software package management systems, and provides consistency to 
CI/CD workflow. In the other hand, Bintray that can be integrated with Artifactory 
would provide the access control to the artifacts, statistics of access and downloads of 
the artifacts.  
These two tools are specifically designed to be integrated in DevOps pipelines for 
Rapid Continuous Delivery.  
 
 

 Jfrog 

Artifactory + 

Bintray 

Simplicity of usage High 

Access and Permission 

 management 

Very good 

Acceptance by the developer 
community 

Medium-Low  

Previous knowledge and  

experience of partners 

Low 

Integration with other CI tools Medium 

Costs 
Pay per use and 
license (high) 

Table 7: CI - Artifact distribution tools: Main Features 

4.1.3 Progress within ElasTest 

During this last review period, the consortium decided to avoid drastic replacement 
about the main CI tools (including the server) already included within the ElasTest 
platform. In fact, any update of that pool of CI tools would have also required to 
consider different infrastructure and to put in place different IT procedures. 
Nevertheless, as motivated in D2.2 [7], most of the CI tools adopted within the 
ElasTest platform during the first review period of the project are still valid as their 
new releases took into account new trends about CI.  About Jenkins (i.e. the CI server 
adopted within the ElasTest platform), although nowadays there are more advanced CI 
servers on the market, Jenkins still provides good functionality and it covers the needs 



D2.4 SotA revision document v2 

 

38 

 

of the project. Thus, there was not any justified gain for risking a major evolution of 
the ElasTest platform by adopting a more recent technology as CI server. 

Looking forward into the ElasTest integration with CI servers, the current available 
integration can be used as an example of how this integration can be made, as ElasTest 
is providing an Open API that other servers, or plugins can make use of in order to 
integrate ElasTest functionality into their core. 

 

4.2 Performance Testing 

In this section, we provide an overview and a brief description of the most important 
tools concerning performance and scalability testing. As remarked since the DoA [1], 
supporting both the aspects is one of the main objectives for the ElasTest project. 

4.2.1 Baseline and comparative analysis 

In the following, we provide a short description of the performance tools identified in 
this second review period (Table 8).  An overall comparison of the most relevant tools 
is reported in Table 9. 

 

Name URL Brief description License 

StormRunner 
Load 

https://www.microfocus.co
m/en-
s/products/stormrunner-
load-agile-cloud-
testing/overview 

It allows for load testing of 
mobile and web applications. 

Proprietary 

Load Impact https://loadimpact.com/ It allows to run  larger tests on 
global cloud infrastructure and 
makes stress testing of websites 
and web apps to ensure they can 
handle peak traffic conditions. 

Proprietary 

Loader https://loader.io/pricing It allows for stress testing of web-
apps & apis as well as monitoring 
of the tests in real-time. 

Proprietary (free for 
a reduced number 
of tests) 

Octoperf https://octoperf.com/ It is a SaaS-based performance 
testing tool powered by Jmeter. 

Proprietary 

LoadNinja https://loadninja.com/ It uses real browsers for load 
tests, monitors the CPU Usage 
and allows to create different 
performance scenarios as well as 
to destroy session data captured 
in a load test. 

Proprietary 

Gatling https://gatling.io/ Gatlin is an open source load 
testing framework that is built 
based on Netty, Akka and Scala.  

Open source 

Tsung http://tsung.erlang-
projects.org/ 

It is an open source load testing 
tool that runs on multiple 

Open source 

https://www.microfocus.com/en-s/products/stormrunner-load-agile-cloud-testing/overview
https://www.microfocus.com/en-s/products/stormrunner-load-agile-cloud-testing/overview
https://www.microfocus.com/en-s/products/stormrunner-load-agile-cloud-testing/overview
https://www.microfocus.com/en-s/products/stormrunner-load-agile-cloud-testing/overview
https://www.microfocus.com/en-s/products/stormrunner-load-agile-cloud-testing/overview


D2.4 SotA revision document v2 

 

39 

 

protocols and can be used to 
stress WebDAV, HTTP, MySQL, 
LDAP and many other servers. 

Locust https://locust.io/ Locust is an easy-to-use, 
distributed, user load testing tool. 
It allow to write very expressive 
scenarios in Python. 

Open source (MIT 
license) 

Table 8: Performance Testing Tools 

StormRunner Load 

It is a cloud-based load testing tool for mobile and web applications. It can create 
voluminous virtual users as required to identify the breaking point of any application. 
The tool is customizable and has pre-loaded testing scenarios within the tool. The main 
benefits of this tool are: i) reduce effort and skill level: it provides easy to record and 
playback protocol support for developers and testers with TruClient and TruAPI 
protocols. Agile teams can quickly automate the user stories and start running 
performance tests in quick time.  ii) geographical location simulation: all cloud based 
solutions offer simulating traffic from various geographical locations by choosing the 
LGs (Load Generators). StormRunner Load makes it simpler by just choosing the user 
load against a geographical location without having the need to calculate the number 
of load generators needed to simulate the target user load. iii) real time analysis: 
StormRunner Load identifies the SLA violations and anomalies during the test based on 
the script, geographical location and elapsed time. iv) monitoring servers: 
StormRunner can be integrated with monitoring tools like Sitescope to provide the 
resource utilization on the servers. 

Load Impact 

It reduces development costs, improves customer satisfaction and provides a new 
approach for supporting performance testing throughout the development lifecycle. It 
supports load testing early in the software development life cycle, on the developer's 
machine. It allows easily analyzing load test results and fixing performance issues. It 
allows running large tests in the cloud and catching API performance problems before 
production. It allows using the same test scripts across local and cloud execution 
modes. It allows to run larger tests on global cloud infrastructure and to make stress 
testing of websites and web apps to ensure they can handle peak traffic conditions. It 
allows generating loads from multiple load zones around the world to test 
performance for all global customers. 

Loader 

It is a load testing service that allows stress testing of web-apps & apis with thousands 
of concurrent connections. It allows to monitor the test in real-time, then share the 
results with the team. 



D2.4 SotA revision document v2 

 

40 

 

OctoPerf 

It is a SaaS-based performance testing tool powered by JMeter for the web, API, REST 
& mobile app. It allows for designing, monitoring, executing and analyzing how the 
website performs through a web browser. Each test comes with an option to 
download the report including: rate and response time, request details, response time 
breakdown, average response time, throughput. 

LoadNinja 

It uses real browsers at scale for load tests, creating the most realistic and accurate 
representation of load on the infrastructure supporting the web application under 
test. It monitors the CPU Usage of the load generating severs to ensure there are no 
bottlenecks. It allows to create different performance scenarios as well as to destroy 
session data captured in a load test after the test is run for privacy reasons. 

Gatling 

Gatlin is an open source load testing framework based on Netty, Akka and Scala. It is a 
high-performance framework that offers ready-to-present HTTP reports. It offers 
scenario recorder and developer-friendly DSL. 

Tsung 

This is an open source load testing tool that runs on multiple protocols. It is free 
software that is released under GPLv2 license. It can be used to stress WebDAV, HTTP, 
MySQL, LDAP and many other servers. 

Locust 

Locust is an easy-to-use, distributed, load testing tool. It allows for load-testing web 
sites (or other systems) and figuring out how many concurrent users a system can 
handle. Locust is completely event-based, and able to support thousands of concurrent 
users on a single machine. In contrast to many other event-based apps, it doesn’t use 
callbacks and allows for writing very expressive scenarios in Python. Locust has a 
HTML+JS user interface that shows relevant test details in real-time. It is cross-
platform and easily extendable. Even though Locust is web-oriented, it can be used to 
test almost any system. 

 

 LoadNinja Gatling Tsung  Locust 

OS Any Any Linux/Unix  Any 

GUI Yes Recorder Only No  No 

Test Recorder - HTTP HTTP, Postgres  No 

Test Language Scripting Language Scala XML  Python 

Extension 
Language 

Scripting Language Scala Erlang  Python 

Load Reports HTML HTML HTML  HTML 

Protocols HTTP, HTTPS, SAP 
GUI Web, 

HTTP, JDBC,JMS HTTP, WebDAV 
Postgres MySQL, 

 HTTP 



D2.4 SotA revision document v2 

 

41 

 

WebSocket, Java 
based protocol, 
Google Web  
Toolkit, Oracle  
forms 

XMPP WebSocket, 
AMQP, MQTT, 
LDAP 

Host Monitoring No No Yes  No 

Open Source No Yes Yes  Yes 

Detailed 
Documentation 

No No Yes  Yes 

Table 9: Comparison of performance tools 

4.2.2 Progress within ElasTest 

As stated also in D2.2 [7], ElasTest enables the combination of performance testing 
with scalability aspects. Such an objective was achieved by means of the ElasTest 
configuration management mechanisms, and the Test Support Services. The main 
progress of ElasTest with respect to the tools reviewed in this second review period is 
that it allows testers and developers to assess their SiL by running different 
configurations and comparing the results among them. This will enable teams to 
choose the most appropriate scalability approach. Existing tools for load testing don’t 
enable running the SuT under different conditions and don’t enable testers to compare 
results from different configurations. We used these tools to gather ideas for the 
implementation/features/user interface of ElasTest. ElasTest allows integrating some 
existing performance tools. For example, ElasTest could execute JMeter performance 
tests and show the results in its web interface. This work has been reinforced by our 
collaboration with H2020 STAMP Project that allowed bringing generated test 
configurations to ElasTest.  

 

4.3 Security testing 

This section surveys the technological area about security testing. The analysis reports 
the list of tools identified, and an overview on their main features with respect to 
ElasTest. 

4.3.1 Baseline and comparative analysis 

The survey in this second review period revealed two security testing services: 
Privacy.net and Extensions.inrialpes.fr. Table 10 resumes their main information, while 
Table 11 provides a comparison between them. 

Name URL Brief description License 

Privacy.net https://privacy.net/analyzer/ It is an online tool that can be 
leveraged to check the web 
logins of a user and also to 
determine whether a user can 
be tracked across browsers. 

Free (Not OSS) 

Extensions.inri
alpes.fr 

https://extensions.inrialpes.fr In this online tool, a user can 
check whether he can be 

Free (Not OSS) 



D2.4 SotA revision document v2 

 

42 

 

uniquely fingerprinted or not 
using web logins and browser 
extensions installed. 

Table 10: Security Testing Tools 

Privacy.net 

It is an online tool that leverages several user fingerprinting techniques such as canvas 
fingerprinting, login leak and user agent settings in order to identify whether a user 
can be uniquely identified or not. A user can visit the tool from their browser and run 
the tests in order to calculate the unique fingerprint of the user. 

Extensions.inrialpes.fr  

It is an online service that can be leveraged by a user to identify whether a web site 
can uniquely identify them or not. The web site uses techniques such as installed 
browser extensions and login leak in order to calculate the unique fingerprint of the 
user. 

 

 Privacy.net Extensions.inrialpes.fr 

Purpose Browser Fingerprinting Browser Fingerprinting 

# of Attack Classes 5 2 

License Free Free 

Target Users Web users Web users 

Table 11: Comparison of Security Testing Tools 

4.3.2 Progress within ElasTest 

ElasTest Security Services (ESS) supports security testing of cloud-based web 
applications. Compared to the security testing provided by the above tools, the ESS 
supports the detection of Cross-Origin State Inference (COSI) attacks, that are not 
currently supported by the others. Although the online services from privacy.net and 
extensions.inrialpes.fr leverage some COSI techniques, the ESS in ElasTest platform 
considers more sophisticated attack classes (40 attack classes including object 
properties, AppCache and postMessage) and it provides more advanced functionalities 
such as automatic attack page generation and combining of multiple user states. The 
main beneficiaries of these two online services are web users, the main beneficiaries 
of ESS are testers. Additionally, ESS also comes with OWASP ZAP integration for 
identifying common web application weaknesses. 

 



D2.4 SotA revision document v2 

 

43 

 

4.4 Monitoring 

This section surveys the technological area about monitoring frameworks and 
infrastructures. The analysis reports the list of tools identified, and an overview on 
their main features with respect to ElasTest. 

4.4.1 Baseline and comparative analysis 

We present in Table 12 the most relevant monitoring tools identified in this second 
review period. Among them, InfluxData TICK,  Zabbix,  and Datadog have been 
described and compared in D2.2 [7] (see Section 4.4), we present here the most 
important updates of these tools whereas in Table 13 we present a comparison of the 
new identified monitoring tools in this second review period.  

 

Name URL Brief description License 

InfluxData 
TICK 

https://www.influxdata.com/t
ime-series-platform/ 

Building monitoring and  analytics 
applications. 

MIT 
Licensed 

ZABBIX https://www.zabbix.com/ Zabbix is open source enterprise 
monitoring tool to track the availability 
and performance of IT infrastructure 
components. 

OSS 

Datadog https://www.datadoghq.com/ It allows for quickly search, filter, and 
log analysis. It enables events 
correlation as well as generation and 
upload of JSON-formatted dashboards. 

MIT and GPL 
2 

Heapster https://github.com/kubernete
s/heapster 

It allows to compute resource usage 
analysis and monitoring of container 
clusters. 

ASL 2.0 

OpenTSDB http://opentsdb.net/overview
.html 

Time series database written on top of 
HBase or hosted Google Bigtable 
service. It is released under LGPLv2.1+ 
and GPLv3+ licenses. It allows fast 
handling of large amount of monitoring 
metrics.  

LGPLv2.1+ 

Weave Scope https://www.weave.works/os
s/scope/ 

Open source monitoring and 
visualization engine for Docker and 
Kubernetes. It can perform automatic 
topology identification and clustering of 
containers as well as tracking of key 
metrics assisting developers. 

ASL 2.0 

Sentry https://sentry.io/welcome/ Sentry is open source distributed 
tracing framework which tracks and 
reports errors as and when they occur. 
It supports alerting, notification, issue 
assignments. 

BSD 3-
clause 

Graylog https://www.graylog.org/ Graylog supports monitoring of logs 
and other metrics at scale. The 
community version components are 

GPL 3.0 

https://www.influxdata.com/time-series-platform/
https://www.influxdata.com/time-series-platform/
https://www.datadoghq.com/


D2.4 SotA revision document v2 

 

44 

 

released under mixed GPL-3.0 and ASL 
2.0 licenses. Core components are 
under GPL-3.0 license. The solution is 
developed over ElasticSearch and 
MongoDB clusters. 

Jaeger https://www.jaegertracing.io/ A CNCF supported ASL2.0 distributed 
tracing framework open sourced by 
Uber. It is especially suited for 
microservices based distributed system. 

ASL 2.0 

Netdata https://my-netdata.io/ Netdata is a lightweight monitoring, 
visualization solution for tracking large 
amount of metrics across physical 
machines, VMs, containers, etc. It 
supports alarms, and data archival. 
Netdata is released under GPL-3.0 
license. 

GPL v3+ 

Table 12: Monitoring Tools 

InfluxData TICK 

The system architecture of InfluxData TICK generally kept the structure we presented 
in deliverable D2.2 (Section 4.4.1.1) [7] but a slight refocus on stream processing of 
monitored data has happened. The revised architecture is shown in Figure 14. The 
components names have been modified whereas the overall process workflow 
remains the same. 

 

 



D2.4 SotA revision document v2 

 

45 

 

 
Figure 14: InfluxData TICK architecture 

 

Zabbix 

The overall architecture for Zabbix has undergone no major updates. The framework 
itself has advanced filtering capabilities but in line with the analysis presented in D2.2 
(Section 4.4.1.2) [7]. 

Datadog 

Datadog has extended the range of capabilities by adding application performance 
monitoring and tracing capabilities in general. They now support integration with 
Prometheus and open-metrics. No major updates to architecture were observed since 
our initial report in D2.2 (Section 4.4.1.3) [7]. 

 

 

 

 

 



D2.4 SotA revision document v2 

 

46 

 

 Heapster  OpenTSDB Weave 
Scope 

Netdata Sentry Graylog Jaeger 

OpenSource Yes  Yes Yes Yes Yes Yes Yes 

Community 
activity 
indicators 

1000+ stars 
on github 

3800+ stars on 
github 

3500+ stars 
on github 

40000+ 
stars on 
github 

21500+ 
stars on 
github 

4900+ stars 
on github 

8600+ 
stars on 
github 

Main features Metrics 
collection 
and reporting 
of kubernetes 
resources 

Time series data 
store with space 
optimization 
backed by 
HBase store 

Automatic 
real time 
resource 
view for 
Docker  
and 
Kubernetes 

Real time 
performa
nce 
monitorin
g with 
support 
for many 
platforms 

Application 
monitoring 
with focus 
on error 
tracking 

Focuses on 
log 
managemen
t 

A 
distribute
d tracing 
platform 

Main users  Kubernetes 
framework 

Yahoo, 
Pinterest, 
Cloudflare 

Weavework
s in their 
Weaveclou
d 

Atos, 
Cisco, 
Google, 
Amazon, 
Newrelic, 
SAP, and 
many 
more 

Uber, 
Airbnb, 
Paypal, and 
more 

CircleCI, 
AppBrain 

A lot of 
smaller 
SaaS 
providers, 
IBM in 
their app 
cloud 
deployme
nts 

Table 13: Comparison of monitoring tools 

4.4.2 Progress within ElasTest 

The development of monitoring tools has been especially driven by the activities in 
CNCF, such as fast adoption of containers and CI/CD driven development. ElasTest 
project identified these trends early on, the homegrown monitoring solutions - EMS 
and EMP have already provided key features now available within the ecosystem of 
monitoring tools. The tools described in both the previous [7] and the current SoTAs 
are primarily designed for handling system metrics; in particular, InfluxData TICK stack 
and Zabbix are agent push based systems. In ElasTest, the monitoring tool that has 
been designed and implemented supports many of the features used in the tools 
described above, and made it capable of handling both metric data as well as log 
streams. Most of the described tools support collector/server style architecture. 
Regarding this aspect, all the collectors which were developed in ElasTest could be 
easily modified to send metrics into any of the identified platforms described above. 

One trend which has become prominent is the increasing availability of tracing 
solutions easing the tracing of both control, and data flows in large scale distributed 
systems deployment. The assessment of the monitoring capabilities offered by the 
EMP on the verticals in the ElastTest project demonstrates how the proposed 
approach is an innovative means for tracing nowadays strongly demanded solutions in 
ICT such as microservices, or serveless architectural styles. 



D2.4 SotA revision document v2 

 

47 

 

4.5 GUI automation and impersonation (IoT Testing) 

This section surveys GUI Automation and Impersonation tools. More specifically, the 
technological area refers to two main aspects: i) general GUI test automation tools; 
and ii) device emulation tools. The former aspect has been extensively considered in 
D2.2 [7] and no relevant changes in the SoTA have been identified during this second 
review period. The latter specifically refers to emulation of IoT devices in order to 
realize and test IoT applications. In this sense, the rest of the section only focuses on 
reporting updates for the tools and frameworks in the context of IoT Testing. 

4.5.1 Baseline and comparative analysis 

Device emulation refers to the approach where a virtual device can take the role of a 
real device. The process of emulation can help in establishing a device to completely 
replace the functionalities of a real device. It depends on the use case, for which the 
user decides the level of emulation required. The level of emulation here refers to the 
extent the virtual device mimics the real device in terms of its overall aspects. Devices 
in the context of IoT, refer to sensors, actuators and smart devices. IoT solutions can 
be complex and may require many devices to come to effect. IoT testing with device 
emulation aims to reduce the cost to test IoT solutions. In order to sufficiently address 
the number of devices required to realize a complex application, device emulation 
helps in providing a solution to first test concepts with virtual devices. 

The view point considered here is that, the sensors or actuators cannot be used 
directly to realize an IoT application. Associated to the sensors and actuators, a nodal 
device is required which acts as an interface for the network. Sensor and actuator data 
is obtained by the nodal device and converted to for example data packets or data 
visualized on a GUI. The main purpose is to emulate the behaviour of the nodal 
devices.  

The services or tools identified in this second review period that are available in the 
state of the art and that can assist or provide emulated IoT devices in order to realize 
and test an IoT application are: Patriot IoT Testing Framework; Eggplant; IoT Emulator; 
Simple IoT Simulator. In the following there is a short description of these tools.  Table 
14 shows an overview of these tools. 

Patriot IoT Testing Framework 

It is a framework which enables testing of distributed IoT applications by providing 
testers with features such as network virtualization and/or interaction with hardware 
devices all integrated into a single tool. It allows communication with a Docker 
container and uses Java programming language for network simulation and device 
emulation. It runs on an OS where Docker is available. The interaction method is with 
Docker using Java. 

Eggplant 

Eggplant is a UI based automated testing tool for IoT applications on the SuT where 
there are already physical IoT devices connected. The advantage that Eggplant offers is 



D2.4 SotA revision document v2 

 

48 

 

that of automated testing of applications. The interaction is mainly using UI based 
approach where a machine running Eggplant connects to a SuT using RDP or VNC. A 
user is able to connect to the Eggplant instance on the SuT in order to configure tests 
using UI. It has a closed platform. It uses a GUI based programming approach to 
automate and configure tests and provides data analytics and visualization facilities. 

IoT Emulator 

It represents an online platform to emulate IoT applications and accelerate 
prototyping. It is a closed platform. Users can create, customize, integrate and test IoT 
applications online. It allows on-line debug and re-configuration and provides facilities 
for collaborating online. 

Simple IoT Simulator 

It is a simulator that focuses on capturing device data from sensors, actuators and 
gateways. It allows to learn from the captured data and to replicate them so that the 
traffic from such devices can be simulated. The simulated traffic is used to test and aid 
rapid prototyping of applications. The main idea is to simulate the capability of 
networking technologies that are standard in the current industries. It is a closed 
platform. It captures and replicates device traffic to test networking technologies.  A 
core feature is to ascertain the capabilities of handling network data from many 
devices. 

 

Name URL Brief description License 

Patriot IoT 
Testing 
Framework 

https://patriot-framework.io A framework which enables 
testing of distributed IoT 
applications by providing test 
developers with features such 
as network virtualization and/or 
interaction with hardware 
devices all integrated into a 
single tool. 

NA 

Eggplant http://docs.testplant.com/egg
plant-documentation-
home.htm 

Eggplant is a UI based 
automated testing tool for IoT 
applications on the SuT where 
there are already physical IoT 
devices connected. 

Private 

IoT Emulator http://iot-
emulator.weebly.com/ 

An online platform to emulate 
IoT applications and accelerate 
prototyping. 

Private 

Simple IoT 
Simulator 

https://www.smplsft.com/Si
mpleIoTSimulator.html 

A simulator that focuses on 
capturing device data from 
sensors, actuators and 
gateways. Learn from the 
captured data and furthermore 
replicate them so that the 
traffic from such devices can be 

Private 



D2.4 SotA revision document v2 

 

49 

 

simulated to test networking 
technologies. 

Table 14: IoT Testing tools 

As in D2.2 [7], these tools are compared according to the following aspects: 

Prerequisite: Any application that the user needs to run and access the facilities to get 
started with device emulation. 

Language: Language/s in which the application is written. 

Codeless testing tool: Whether there exists a codeless testing tool such as buttons or 
another graphical interface which could be used to turn on/off or change behavior of 
the device. 

Type of device emulated: It refers to the type of device emulated. Type of device refers 
to sensor/actuator hardware or platform. 

Runtime environment emulated device: It refers to where the application used to 
emulate the device is run. 

Runtime environment IoT application: It refers to where the IoT application which 
makes use of the emulated devices is run ultimately. 

Interface: The type of interface used for communication between the IoT application 
and the emulated devices. 

Table 15 shows the comparison among these IoT testing tools. 

 Patriot IoT Testing 
Framework 

Eggplant IoT  
Emulator 

Simple IoT Simulator 

Prerequisite Java, Availability of 
Framework 

Availability of the 
licensed 
framework 

Purchase of a 
licensed 
software 

Purchase of a licensed 
software 

Language Java NA NA NA 

Codeless testing tool No YES NA NA 

Type of emulated 
device 

Framework  
emulates network, 
data generation and 
network routing 

The framework 
provides 
automated testing 
features. 

NA Data exchanges on 
the network are 
learnt which can be 
manifested into the 
many devices and 
gateways. 
Concentrates mainly 
on networking. 



D2.4 SotA revision document v2 

 

50 

 

Runtime environment 
for emulated device 

Windows, OS X,  
Linux 

Windows Cloud/online 
virtual 
environment 

NA 

Runtime environment 
for IoT application 

Docker containers, 
Windows, OS X,  
Linux 

Via RDP or VNC 
connected UI 

Cloud/online 
virtual 
environment 

NA 

Interface API UI NA NA 

Table 15: Comparison of IoT Testing Tools 

4.5.2 Progress within ElasTest 

Firstly, the main progress is to increase the ease of device emulation and using the 
emulated device to form IoT applications. Secondly, testing such IoT applications 
should be relatively easier as compared to the tools presented. The emphasis is 
towards rapid prototyping and testing of IoT solutions. The test support service, 
ElasTest Device Emulator Service (EDS) focuses on the above mentioned 
improvements compared to the tools already mentioned in this document. The ease of 
deploying and testing IoT solutions for a user further narrows down the approach of 
ElasTest to use virtualization technologies such as Docker which can be used to 
implement tests and solutions at user defined platforms. Emphasis is given towards 
end to end testing which signifies that emulated device mimic the nodal behavior 
rather than hardware details. Device emulation acts as an economical approach 
towards validating the features of an IoT solution. Typically, an IoT application is 
realized by implementing a test bed containing physical devices connected in small 
scale to establish a proof of concept. The challenge of testing large scale test beds 
involves the usage of multiple physical devices towards establishing a proof of concept 
which can be expensive. ElasTest brings together device emulation and test 
orchestration. The feature of device emulation provides facilities to emulation of 
physical devices. Many of the tools listed before provide the feature of device 
emulation as cloud services or proprietary software. ElasTest provides the feature of 
device emulation as an open source implementation that is implemented using 
OpenMTC, yet another open source reference implementation of industrial machine to 
machine communication protocol called oneM2M. Accompanying the strength of open 
source device emulation feature, ElasTest provides the facility of test orchestration 
which simplifies the activity of IoT testing. 

 



D2.4 SotA revision document v2 

 

51 

 

4.6 Cloud Instrumentation 

Cloud Instrumentation refers to the management and orchestration of virtualized 
resources exposing services over cloud environment. The crucial importance of this 
technological area is grounded on the ongoing and constantly increasing trend in 
offering both cloud-based and cloud-native applications. 

4.6.1 Baseline and comparative analysis 

Table 16 shows a list of cloud instrumentation tools. Among them, the most relevant 
ones are:  Ansible, Chef habitat, MaaS, Terraform, OSM, Marathon, GKE, BOSH. 

Several tools have been utilized in the ElasTest Platform Manager (EPM) so far. In the 
latest version, a new Ansible-based EPM adaptor has been developed that allows 
deploying Kubernetes cluster on OpenStack. 

Table 17 shows a comparison of these cloud instrumentation tools. As in D2.2 [7], the 
following characteristics are considered for proper comparison of the proposed 
solutions: 

- Model of abstraction: Infrastructure-as-a-Service (IaaS), Platform-as-a-Service 
(PaaS), Container-as-a-Service (CaaS); 

- Type of virtualized resources: Virtual Machines, Containers; 
- Monitoring support: internal, external; 
- Runtime Management: autoscaling of resources, update of services; 
- Activity; 
- License: OSS, Proprietary; 
- Management: API, CLI, SDK, Dashboard. 

In the following, a short description of these tools is presented. 

 

Name URL Brief description License 

Marathon https://mesosphere.github.io
/marathon/ 

A production-grade container 
orchestration platform for 
Mesosphere’s Datacenter 
Operating System (DC/OS) and 
Apache Mesos. 

Apache-2.0 

ServiceNow 
Cloud 
Management 

https://www.servicenow.com
/products/cloud-
management.html 

The solution offers a standard 
operating approach to hybrid 
and public clouds. It provides 
on-demand access to multi-
cloud resources which is fully 
automated. 

Commercial 

OSM https://osm.etsi.org/ Open Source MANO is an ETSI-
hosted project to develop an 
Open Source NFV Management 
and Orchestration (MANO) 
software stack aligned with ETSI 
NFV. 

Apache-2.0 

https://www.servicenow.com/products/cloud-management.html
https://www.servicenow.com/products/cloud-management.html
https://www.servicenow.com/products/cloud-management.html


D2.4 SotA revision document v2 

 

52 

 

CloudForms https://www.redhat.com/en/
technologies/management/cl
oudforms 

Red Hat® CloudForms® is an 
infrastructure management 
platform that allows IT 
departments to control users’ 
self-service abilities to 
provision, manage, and ensure 
compliance across virtual 
machines and private clouds. 

Commercial 

ManageIQ http://manageiq.org/ 

 
ManageIQ is an open source 
management platform for 
Hybrid IT. It can manage small 
and large environments, and 
supports multiple technologies 
such as virtual machines, public 
clouds and containers. 

Apache-2.0 

ECS https://aws.amazon.com/ecs/ Amazon Elastic Container 
Service (Amazon ECS) is a highly 
scalable, high-performance 
container orchestration service 
that supports Docker containers 
and allows to easily run and 
scale containerized applications 
on AWS. Amazon ECS 
eliminates the need to install 
and operate the own container 
orchestration software, manage 
and scale a cluster of virtual 
machines, or schedule 
containers on those virtual 
machines. 

Amazon license 

AKS https://azure.microsoft.com/e
n-us/services/kubernetes-
service/ 
 

The fully managed Azure 
Kubernetes Service (AKS) makes 
deploying and managing 
containerized applications easy. 
It offers serverless Kubernetes, 
an integrated continuous 
integration and continuous 
delivery (CI/CD) experience, and 
enterprise-grade security and 
governance.  

Microsoft license 

GKE https://cloud.google.com/kube
rnetes-engine/ 
 

Kubernetes Engine (GKE) is a 
managed, production-ready 
environment for deploying 
containerized applications. It 
brings latest innovations in 
developer productivity, 
resource efficiency, automated 
operations, and open source 
flexibility to accelerate time to 
market. 

Google license (Free 
for master node) 

Terraform https://www.terraform.io Terraform is a tool for building, MPL-2.0 

https://www.redhat.com/en/technologies/management/cloudforms
https://www.redhat.com/en/technologies/management/cloudforms
https://www.redhat.com/en/technologies/management/cloudforms
http://manageiq.org/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/kubernetes-engine/
https://www.terraform.io/


D2.4 SotA revision document v2 

 

53 

 

 changing, and versioning 
infrastructure safely and 
efficiently. Terraform can 
manage existing and popular 
service providers as well as 
custom in-house solutions. The 
infrastructure Terraform can 
manage includes low-level 
components such as compute 
instances, storage, and 
networking, as well as high-
level components such as DNS 
entries, SaaS features, etc. 

BOSH https://bosh.io/docs/ 
 

It is a project that unifies 
release engineering, 
deployment, and lifecycle 
management of small and large-
scale cloud software. BOSH 
supports multiple 
Infrastructures as a Service 
(IaaS) providers like VMware 
vSphere, Google Cloud 
Platform, Amazon Web Services 
EC2, Microsoft Azure, and 
OpenStack. 

Apache-2.0 

Chef habitat https://www.habitat.sh/ Habitat is a new approach to 
automation that focuses on 
building, deploying, and 
managing applications that can 
be run anywhere, from bare 
metal servers and VMs to 
containers and PaaS solutions. 

Apache-2.0 

MaaS https://maas.io/ 
 

Self-service, remote installation 
of Windows, CentOS, ESXi and 
Ubuntu on real servers turns 
data center into a bare-metal 
cloud (Metal-as-a-service). 

AGPL-3.0 

Pulumi https://www.pulumi.com/docs
/index.html 
 

A platform for building and 
deploying cloud infrastructure 
and applications in the favorite 
language on any cloud. Pulumi 
is open source, free to start, 
and has plans available for 
teams. 

Apache-2.0 

Puppet https://puppet.com/products/
why-puppet 
 

It delivers infrastructure faster, 
no matter where it lives, using 
leading agile practices. 

Apache-2.0 

Ansible https://www.ansible.com/over
view/how-ansible-works 

It is a radically simple IT 
automation engine that 
automates cloud provisioning, 
configuration management, as 

GPL-3.0 

https://bosh.io/docs/
https://maas.io/
https://www.pulumi.com/docs/index.html
https://www.pulumi.com/docs/index.html
https://puppet.com/products/why-puppet
https://puppet.com/products/why-puppet


D2.4 SotA revision document v2 

 

54 

 

well as application deployment 
and intra-service orchestration. 

Table 16: Cloud Instrumentation Tools 

Marathon 

Marathon is a production-grade container orchestration platform for Mesosphere’s 

Datacenter Operating System (DC/OS) and Apache Mesos. The main features offered 

by Marathon are described as follows: 

- High Availability: Run as an active/passive cluster with leader election for 100% 
uptime. 

- Multiple container runtimes: Support both Mesos containers (using cgroups) 
and Docker. 

- Stateful applications: Can bind persistent storage volumes to the application.  
- Beautiful and powerful UI 
- Constraints: Allow to e.g. place only one instance of an application per rack, 

node, etc. 
- Service Discovery & Load Balancing 
- Health Checks: Evaluate the application’s health using HTTP or TCP checks. 
- Event Subscription: Supply an HTTP endpoint to receive notifications. 
- Metrics: Query them in JSON format, push them to systems like Graphite, 

StatsD and DataDog, or scrape them using Prometheus. 
- REST API: for easy integration and scriptability. 

Google Kubernetes Engine (GKE) 

GKE is a managed, production-ready environment for deploying containerized 
applications. It allows users to get up and running with Kubernetes in no time, by 
completely eliminating the need to install, manage, and operate the own Kubernetes 
clusters.  The main features offered by GKE are: 

- Wide Variety of Applications: It isn't just for stateless applications; it allows 
attaching persistent storage, and even running a database in the cluster.  

- Hardware accelerators: makes it easy to run Machine Learning, General 
Purpose GPU, High-Performance Computing, and other workloads that benefit 
from specialized hardware accelerators.  

- Operate Seamlessly with High Availability: it allows to control the environment 
from the built-in Kubernetes Engine dashboard in Google Cloud console. It uses 
routine health checks to detect and replace hung, or crashed, applications 
inside deployments. Container replication strategies, monitoring, and 
automated repairs help ensure that the developed services are highly available 
and offer a seamless experience to the users.  

- Scale Effortlessly: Go from a single machine to thousands to meet customer 
demands. 



D2.4 SotA revision document v2 

 

55 

 

MaaS 

MAAS is freely available, open source server provisioning software from Canonical. The 
main features offered by MaaS are: 

- Speed: Zero-touch deployment of Ubuntu, CentOS, Windows and RHEL. Full 
deployment time is approximately two boot cycles plus two minutes for disk 
imaging. 

- Cloud metadata: Reuse standard cloud operations with cloud-init and metadata 
services. 

- Storage layouts: Create advanced filesystem layouts with RAID, bcache, LVM, 
ZFS and more. Automate storage configuration through APIs. 

- Network monitoring: Continuously observes network traffic and catalogs every 
active IP address of unknown origin. Discovers rogue devices, IPs and MAC 
addresses. Drives active scanning of network ranges. 

- Authentication and Identity: Integrate with LDAP, Active Directory or SAML for 
central identity management and single-sign-on across multiple MAAS regions. 

- DevOps on bare-metal: Integration with Chef, Puppet, SALT, Ansible, Conjure-
up, and Juju. 

- REST API, CLI and Python bindings: Enable full lifecycle and project automation. 

Opensource MANO (OSM) 

Open Source MANO is an ETSI-hosted project to develop an Open Source NFV 
Management and Orchestration (MANO) software stack aligned with ETSI NFV. The 
goal of OSM is the development of a community-driven production quality E2E 
Network Service Orchestrator (E2E NSO) for telco services, capable of modelling and 
automating real telco-grade services, with all the intrinsic complexity of production 
environments. It provides a way to accelerate maturation of NFV technologies, enable 
a broad ecosystem of VNF vendors, and test and validate the joint interaction of the 
orchestrator with the other components it has to interact with: commercial NFV 
infrastructures (NFVI+VIM) and Network Functions (either VNFs, PNFs or Hybrid ones). 
The main features offered by MANO are: 

- Well-known Information Model (IM): aligned with ETSI NFV, that is capable of 
modelling and automating the full lifecycle of Network Functions (virtual, 
physical or hybrid), Network Services (NS), and Network Slices (NSI). 

- Unified northbound interface (NBI): it enables the full operation of system and 
the Network Services and Network Slices under its control. 

- Extended concept of “Network Service”: An NS can span across the different 
domains identified (virtual, physical and transport) and therefore control the 
full lifecycle. 

- Network slicing for 5G: Manage the lifecycle of Network Slices. 
- Monitoring Metrics and Alarms: Metrics collection is now supported from both 

the infrastructure (VIM) and directly from VNFs. OSM is now able to create, 
manage and trigger alarms based on infrastructure or VNF events and metrics. 



D2.4 SotA revision document v2 

 

56 

 

- Service Assurance with Autoscaling VNFs: Through the Policy Manager and in 
coordination with LCM orchestrator, OSM is now capable of automating the 
horizontal scaling decisions. 

Ansible 

Redhat Ansible is an open source simple IT automation engine that automates cloud 

provisioning, configuration management, application deployment, intra-service 

orchestration, and many other IT needs. It uses a simple language (YAML, in the form 

of Ansible Playbooks) that allows for describing the automation jobs and includes 

hundreds of modules to support a wide variety of integrations. Its main features are: 

- Simple to set up and use: No special coding skills are necessary. 
- Powerful: Ansible allows to model even highly complex IT workflows.  
- Flexible: It is possible to orchestrate and customize the entire application 

environment no matter where it’s deployed.  
- Agentless: It is not needed to install any other software or firewall ports on the 

client systems to automate. 
- Cloud Integration: Ansible can deploy to bare metal hosts, virtualized systems 

and various cloud environments. 

Chef habitat 

Habitat is open source software that creates platform-independent application 

artifacts and provides built-in deployment and management capabilities. Its main 

features are: 

 

- Fast: Package services easily with a simple Plan file to build the application as a 
Habitat artifact. 

- Flexible Deployments: Publish Habitat artifacts via the build service, and run on 
traditional systems, or export to containers to deploy anywhere. 

- Traceable Content: Audit the configuration, dependencies, and health of each 
artifact built with Habitat via the Supervisor API. 

- Intelligent Run-time Management: Cluster components through gossip based 
service groups to enable dynamic configuration updates, leader elections, 
rolling deployments, and more. 

Terraform 

Terraform is a tool for building, changing, and versioning infrastructures safely and 

efficiently. The key features of Terraform are: 

- Infrastructure as Code: Infrastructure is described using high-level 
configuration syntax. This allows a blueprint of the datacenter to be versioned 
and treated as any other code. Additionally, infrastructure can be shared and 
re-used. 



D2.4 SotA revision document v2 

 

57 

 

- Execution Plans: Terraform has a "planning" step where it generates an 
execution plan. The execution plan shows what Terraform will do when you call 
apply. This allows avoiding any surprise when Terraform manipulates 
infrastructure. 

- Resource Graph: Terraform builds a graph of all resources, and parallelizes the 
creation and modification of any non-dependent resource. Because of this, 
Terraform builds infrastructure as efficiently as possible, and operators get 
insight into dependencies in their infrastructure. 

- Change Automation: Complex changesets can be applied to the infrastructure 
with minimal human interaction. With the previously mentioned execution 
plan and resource graph, it is possible to know exactly what Terraform will 
change and in what order, avoiding many possible human errors. 

 

BOSH 

BOSH is a project that unifies release engineering, deployment, and lifecycle 

management of small and large-scale cloud software. BOSH can provision and deploy 

software over hundreds of VMs. It also performs monitoring, failure recovery, and 

software updates with zero-to-minimal downtime. 

BOSH was developed to deploy Cloud Foundry PaaS, it can also be used to deploy 

almost any other. BOSH is particularly well-suited for large distributed systems and 

supports multiple Infrastructure as a Service (IaaS) providers. 

 

 

 

 



D2.4 SotA revision document v2 

 

58 

 

 Marathon  GKE  MaaS  OSM  Ansible  Chef habitat  Terraform  BOSH  

Abstraction CaaS  Caas  MaaS  VNFaaS, 
CaaS 

 CaaS, PaaS, 
MaaS 

 CaaS, MaaS, 
PaaS, 

 IaC, CaaS, 
MaaS, PaaS, 

 PaaS  

Model 
Virtualized 
resources 

Container  Container  VM, 
bare-
metal 

 VM, 
Container 

 Container, 
VM, bare-
metal 

 Container, VM, 
bare-metal 

 Container, 
VM, bare-
metal 

 VM  

Monitoring 
support 

Built-in  Built-in  Built-in  Built-in  (Modules)  Built-in  Built-in  Built-in  

Runtime 
Management 

Yes  Yes  Yes  Yes  Yes  Yes  Yes  Yes  

Activity High  High  High  High  high  high  high  high  

License OSS (Apache 
2.0) 

 Google 
Software 
License 

 OSS 
(AGPL 
3.0) 

 OSS 
(Apache 
2.0) 

 OSS (GPL 3.0)  OSS (Apache 2.0)  OSS (MPL 2.0)  OSS 
(Apache
-2.0) 

 

Management APIs, GUI, 
SDKs 

 CLI, GUI, 
APIs/SDKs 

 CLI, GUI, 
APIs 

 RESTful 
API, CLI, 
GUI, SDKs 

 APIs, CLI, 
SDKs 

 APIs, CLI, SDKs  RESTful API, 
CLI 

 CLI  

Table 17: Comparison of Cloud Instrumentation Tools



D2.4 SotA revision document v2 

 

59 

 

4.6.2 Progress within ElasTest 

The ElasTest platform and, in particular, the ElasTest Platform Manager (EPM) 

abstracts several cloud instrumentation technologies. Specifically, the EPM is an 

intermediate component within the whole platform that exposes a well-defined 

interface that is technological agnostic and that hides the actual binding with several 

cloud services. As a consequence, the EPM is able to deploy and to execute seamlessly 

cloud services in the target cloud infrastructures where the consumer of the EPM does 

not need to care about the underlying infrastructure. The EPM makes use of provided 

capabilities (e.g. autoscaling, healing functionalities, QoS) of certain cloud technologies 

whereas missing capabilities of those are compensated within the EPM. To make the 

EPM fully agnostic of the underlying infrastructure and technology in use, the 

information of deployed services is also abstracted and managed by means of a 

common information model. 

 

4.7 Dashboard Management 

The following sections survey the technological area of Dashboard Management. The 
area includes tools and frameworks supporting both the generation of charts from 
collected logs, and the reaction to the filtering/aggregation requests from the users. 

4.7.1 Baseline and comparative analysis 

As shown in Table 18, the most relevant dashboard management tools are: 
Prometheus/Grafana in Kubernetes environments and Honeycomb.io. We provide a 
short description of them in the following and a comparison of these tools in Table 19 . 

Prometheus/Grafana 

Prometheus is the defacto standard monitoring tool for Kubernetes clusters. It can 
ingest logs and metrics from the different applications and services running within the 
Kubernetes cluster. This information can be queried and visualized using Grafana, a 
dashboard tool with a good integration with Prometheus, although Prometheus also 
offers an interface to visualize this information. Main features of Grafana are: 

- Time-series oriented. Grafana is specifically designed to visualize time-series 
data, which is very appropriate for applications and services, and allows a 
proper visualization of the different events that happen in a running system. 

- Alerting: It visually defines alert rules for the most important metrics. Grafana 
continuously evaluates and sends notifications to systems like Slack, PagerDuty, 
VictorOps, OpsGenie. 

- Dynamic Dashboards: Create dynamic & reusable dashboards with template 
variables that appear as dropdowns at the top of the dashboard. 



D2.4 SotA revision document v2 

 

60 

 

- Explore Metrics: It allows: i) to explore data through ad-hoc queries and 
dynamic drilldown; ii) to split view and compare different time ranges, queries 
and data sources side by side. 

- Explore Logs: It allows the possibility of switching from metrics to logs with 
preserved label filters. It allows to quickly search through all logs or streaming 
them live. 

- Mixed Data Sources: Mix different data sources in the same graph. It is possible 
to specify a data source on a per-query basis. 

- Annotations: Annotate graphs with rich events from different data sources. 
Hover over events shows the full event metadata and tags. 

- Ad-hoc Filters: Ad-hoc filters allow creating new key/value filters on the fly, 
which are automatically applied to all queries that use that data source. 

Honeycomb 

Honeycomb is a tool for introspecting and interrogating the production system.It can 
gather data from any source: from the clients (mobile, IoT, browsers), vendored 
software, or the own code. Single-node debugging tools miss crucial details in a world 
where infrastructure is dynamic and ephemeral. Honeycomb is a new type of tool, 
designed and evolved to meet the real needs of platforms, microservices, serverless 
apps, and complex systems. Main features of Honeycomb are: 

- Instrumentation: It gives a quick start that automatically sends raw event data 
to Honeycomb and ingests structured log data.  

- Intuitive UI/UX: Makes it easy to proactively observe user impact as code is 
released. Dive in to investigate any production incident using interactive real-
time charts. 

- Rich, Blazing Fast Query: Gives incredible flexibility and customization to help 
rapidly find and understand problems by letting you ask any question. 

- Distributed Tracing Navigation: Efficiently navigate the full breadth of tracing 
data without missing crucial details that can help resolve issues. 

- BubbleUp: Delivers instant, automatic detection of often-hidden outliers that 
are behaving differently from the baseline. 

- Team Collaboration: Preserve and share how others have resolved problems 
previously, saving time and elevating everyone. 

 

 

Name URL Short Description License 

Prometheus / 
Grafana 

https://prometheus.io/ 
docs/visualization/grafana/ 

Prometheus is an open-source 
systems monitoring and 
alerting toolkit. 

Open 
source 
(Apache 
License 
2.0) 

HoneyComb https://www.honeycomb.io/ Honeycomb is a tool for 
introspecting and interrogating 
the production systems about 

- 



D2.4 SotA revision document v2 

 

61 

 

the log data stored in 
Elasticsearch clusters. 

Table 18: Dashboard Management Tools 

 

 

 
Prometheus/Gr

afana 

 
Honeycomb 

OS Any  - 

GUI Yes  Yes 

Test Language Scripting 
Language 

 - 

Extension 
Language 

Scripting 
Language 

 - 

Protocols HTTP, HTTPS, 
Socket 

 - 

Open Source Yes  No 

Detailed 
Documentation 

Yes  Yes 

Table 19: Comparison of Dashboard Management Tools 

 

4.7.2 Progress within ElasTest 

Most of the dashboard tools were thought to ingest and visualize metrics coming from 
a running system. However, in a continuous testing environment, these tools are not 
able to tell whether the metrics correspond to one test or another. ElasTest enables 
testers to segregate data depending on the test that was exercising the SUT. 

 

4.8 WebRTC Testing 

4.8.1 Baseline and comparative analysis 

A relevant tool for webRTC testing identified in this second review period is KITE tool4, 
which has been developed by Google and CoSMo. It is an open source testing engine 
that allows implementing automated interoperability tests for WebRTC. With KITE it is 
possible to implement tests using Java or Javascript and run them on almost any 
platform. KITE supports:  

- all web browser: Chrome, Firefox, Safari, Edge, Opera, on all OS (Linux, 
Windows, Mac, iOS and Android) 

- Mobile Native Apps on Android, iOS 
- Desktop Native Apps on Windows and MacOS 
- Electron Apps 

                                                      
4
 https://webrtc.org/testing/kite/ 



D2.4 SotA revision document v2 

 

62 

 

KITE also provides additional features such as: load testing; network instrumentation in 
the cloud or on premises, for all platforms (browser and native). KITE is intended to be 
a tool to help the user to implement its WebRTC test effortlessly. Table 20 and Table 
21 provide further details about KITE. 

Name URL Short Description License 

Kite https://github.com/ 
webrtc/KITE 

KITE is an open source test tool to test 
interoperability of WebRTC across 
browsers. KITE makes it easy to test 
interoperability of WebRTC applications 
and detect regressions early. 

Apache 
License 
Version 
2.0 

Table 20: WebRTC Testing Tools 

 Kite 

OS Linux, Windows, 
Mac, iOS and 
Android 

GUI No 

Support for Browser/Native 
Mobile 
Apps/Desktop 
Apps/Electron 
Apps 

Test Recorder No 

Load Testing Yes 

Test Language Java/Javascript 

Extension 
Language 

Java 

Open Source Yes 

Detailed 
Documentation 

Yes 

Table 21: KITE features 

4.8.2 Progress within ElasTest 

In addition to the information provided by KITE, ElasTest is also able to provide both 
QoE metrics, and a whole set of infrastructural measures (e.g. CPU, memory, or 
network traffic, etc.) for the SUT or any other device involved in the test. 

 

4.9 Cross-browser Testing 

4.9.1 Baseline and comparative analysis 

A cross-browser testing tool identified in the second review period is Browsersync56. It 
is an automation tool that makes web development faster, keeping multiple browsers 
and devices in sync when building websites. Main features of Browsersync are: 

                                                      
5
 https://www.browsersync.io/ 

6
 https://www.sitepoint.com/improve-workflow-browsersync-2-0/ 

https://github.com/


D2.4 SotA revision document v2 

 

63 

 

- Install and run anywhere: Built on Node.JS_ENTRY to support Windows, MacOS 
and Linux. It allows setup in less than 5 minutes. 

- Free to run and reuse: Browsersync is an open source project available to use 
under the Apache 2.0 License. 

- Build-tool compatible: Easily integrated with task runners like Grunt and Gulp, 
or included in other Node projects. 

- Network Throttle: It allows testing the website against a slower connection, 
even when devices are connected to wifi. 

- Interaction sync: Your scroll, click, refresh and form actions are mirrored 
between browsers while you test. 

- File sync: Browsers are automatically updated as you change HTML, CSS, 
images and other project files. 

- UI or CLI control: Run the new browser-based UI for quick control, or stick with 
the original command line usage. 

- Sync customisation: Toggle individual sync settings to create your preferred 
test environment. 

- URL history: Records your test URLs so you can push them back out to all 
devices with a single click. 

- Proxy server: If you’re already using a local web server or need to connect to a 
live website, you can start BrowserSync as a proxy server. Table 22 and Table 
23 show further details about Browsersync. 

 

Name URL Short Description License 

Browsersync https://www.browsersync.io/ Time-saving 
synchronised browser 
testing. 

Open 
source 
(Apache 
License 
2.0) 

Table 22: Cross Browser Testing Tools 

 Browsersync 

OS Any 

GUI Yes 

Test Recorder does not apply 

Test Language Javascript 

Extension Language Javascript 

Protocols HTTP, HTTPS 

Open Source Yes 

Detailed Documentation Yes 

Table 23: Browsersync features 

4.9.2 Progress within ElasTest 

ElasTest promotes the distributed adoption of cross-browser testing. As from our 
technical SoTA, browsersync only works locally. Differently, ElasTest cross-browser 
capabilities can be enacted on top of any distributed infrastructure, for example based 



D2.4 SotA revision document v2 

 

64 

 

on Docker or Kubernetes. Therefore, while testing with ElasTest, testers are able to 
plan and to emulate user actions in many different browsers at the time in the same or 
different machines. 

 

4.10 Mobile Testing 

This section reports about the technological area covering automated services and 
tools for in-depth functional tests of mobile apps. The area also includes solutions that 
allow for the validation/reactiveness of software systems against a variety of mobile 
devices. 

4.10.1 Baseline and comparative analysis 

The list of mobile testing tools has been updated with the new players on market, 
following the same strategy adopted in D2.2 [7]. In addition to the characteristics 
included in the comparison of mobile testing tools of D2.2 [7], the current version 
includes “Cloud version” as a new feature to take into account, according with the 
trends of the new tools for Mobile Testing. For completing this comparison there has 
been considered the rankings registered on “TOP 15 Best Mobile Testing Tools In 2019 
For Android & IOS”7, “14 Best Mobile App Testing Tools for Android & iOS (2019)”8 and 
“A Complete List of Mobile Application Testing Tools”9. Since the delivery of D2.2 [7], 
the mobile testing tools have been maturing and evolving from Open Source and on 
premise installation to more professionalized platforms, with on cloud versions and 
assuming the SAAS model of commercialization. The variants of the service are based 
on the number of devices, number of nominal or simultaneous users, the assignment 
of a dedicated lab or shared devices for mobile testing. All these parameters allow 
customizing the service to the requirement of every customer. 

The mobile testing tools identified in this second review period are: TestComplete; 
Experitest; Test IO; Kobiton; iOS UI Automation; UIAutomator (Android); 
KeppItFunctional (KIF). Table 24 shows an overview of these tools whereas Table 25 
provides a comparison among them. 

 

Name URL Short Description License 

TestComplete https://smartbear.co
m/product/testcompl
ete/mobile-testing 

It is a platform that allows creating and 
running repeatable and robust UI tests 
across native or hybrid mobile apps. It 
also allows for automation of UI actions 
or user scenarios on real devices or 
emulators using script-free record and 
replay or by creating automated scripts 
in different languages, such as Python, 

Proprietary 

                                                      
7
 https://www.softwaretestinghelp.com/best-mobile-testing-tools/ 

8
 https://www.guru99.com/mobile-testing-tools.html 

9
 https://www.edureka.co/blog/mobile-testing-tools/ 



D2.4 SotA revision document v2 

 

65 

 

VBScript, Jscript, and JavaScript. 

Experitest https://experitest.co
m/mobile-testing/ 

It is a platform for creating Appium 
tests with ease using a device 
reflection, test recorder, and object 
spy. It allows for automation tests for 
native, hybrid and web apps. It allows 
for exportation of Appium tests to any 
Appium client (e.g. Java, C#, Ruby, 
Python). It is integrated with any IDE 
and testing framework. 

Proprietary 

test IO https://get.test.io/ 
mobile-testing/ 

test IO is a leading SaaS platform for 
software crowd testing: it allows the 
continuous testing of web and mobile 
applications by skilled human testers 
using real devices on iOS, Android and 
web versions. 

Proprietary 

Kobiton https://kobiton.com/ Kobiton is a mobile device cloud 
platform that provides access to real 
devices for running manual and 
automated tests on native, web and 
hybrid Android/iOS apps. Built on top 
of the Appium open-source framework. 
It allows testing across devices without 
script modifications.  

Proprietary 

iOS UI Automation 
(iOS) 

https://help.apple.co
m/instruments/mac/c
urrent/ 

OS UI Automation is Apple’s open-
source test automation framework 
specifically for iOS apps. It helps to 
automate interface tests through test 
scripts. JavaScript programming 
interface is used to specify actions to be 
performed on device UI. It does not 
work well with other tools, 
methodology, and framework as it is a 
proprietary tool. It helps to reduce 
procedural efforts and time needed for 
software product development. 

Open Source 

UIAutomator 
(Android) 

https://developer.and
roid.com/training/tes
ting/#UIAutomator 

UI Automator is an open-source 
framework which allows testing the UI 
using automated functional test cases. 
Able to run against an app on one or 
more devices. The UI Automator API is 
packaged in the UI Automator.jar file 
under the /platforms/ directory. This 
API includes classes interfaces and 
exceptions. UI Automator framework 
uses the scripts that are written in 
JavaScript. 

Open Source 

KeepItFunctional 
(KIF) 

https://github.com/ki
f-framework/KIF 

KeepItFunctional (KIF) is an iOS 
integration test framework used for 
Functional Testing that builds and 
performs test cases using standard 
XCTest testing target. It is an Open-
Source framework designed to test 

Open Source 

https://get.test.io/


D2.4 SotA revision document v2 

 

66 

 

mobile app UI and allows easy 
automation testing of iOS apps. 

Table 24: Mobile Testing Tools 

 
Open 

Source 
iOS Android Native Hybrid 

Web 

Apps 

Cloud 

version 

Test Complete - + + + + + - 

Experitest - + + + + + + 

Test IO - + + + + + + 

Kobiton - + + + + + + 

iOS UI Automation 

(iOS) 

 

+ 

 

+ - 

 

+ - - 

 

- 

UIAutomator 

(Android) 

 

+ 

 

- 

 

+ 

 

+ 

 

+/- 

 

- 

 

- 

KeepItFunctional (KIF) + + - + - - - 

  
+: Available, -: Not Available, +/-: Partially 

available 

 

Table 25: Comparison of Mobile testing Tools 

4.10.2 Progress within ElasTest 

As it was mentioned in DoA [1], among the possible research directions covered by the 
ElasTest project there was the development of specific modules/components for 
Mobile Testing and to embed them into Elastest platform. However, as already 
clarified in the deliverable D2.2 [7], the evolution of Elastest with respect to Mobile 
Testing was temporarily suspended.  

In the period after the last project review meeting, the consortium decided to focus on 
improving all the features developed so far, thus the activities about Mobile Testing 
features were not resumed. In conclusion, the ElasTest project does not contribute to 
any progress in SotA regarding Mobile Testing, as the released platform does not 
include any dedicated component/module supporting these features. 

 

4.11 Cognitive Q&A Systems 

This section addresses a technological area that focuses on automatic recommender 
systems specifically conceived or trained in order to be applied in the context of some 
activity about software testing. Differently from the survey in other technological 
areas, a major evidence from the following analysis is that few industrial 
tools/frameworks have been actually identified. Indeed, most of the outcomes 
resulted from this survey were advanced research approaches or prototypes rather 
than well established solutions ready to be applicable. 



D2.4 SotA revision document v2 

 

67 

 

4.11.1 Baseline and comparative analysis 

Table 26 presents five tools developed after ElasTest project has commenced. All of 
them except for Aroma [18] target specifically testing domain. Aroma is designed for 
general code recommendation, and can be applied to test code. It has been included 
because its purpose is very similar to one of the functionalities implemented in 
ElasTest Test Recommendation Engine (ERE), namely using machine learning to 
retrieve relevant programming methods from a large repository. The core difference is 
that the input to Aroma is a code snippet written by a human user, whereas ERE asks 
for a natural language description of a test case, generates test code and then uses 
that generated code as a search query. In Table 27 these five tools have been 
compared according to the problem description, the used data and the implemented 
algorithm. 

Name URL Brief description License 

Aroma[18] https://ai.facebook.com/b
log/aroma-ml-for-code-
recommendation/ 

 

A tool for code 
recommendation via 
structural code search. It takes 
a code snippet as a query and 
searches an indexed source 
code repository for method 
bodies containing the query 
snippet. Clusters and 
intersects the results. 

Copyright hold by 
the authors 

TestDescriber[19] https://zenodo.org/recor
d/45120#.XUi8tZJKiqQ 

A tool that combines 
summarization approaches with 
code coverage information. It 
automatically generates test 
case summaries (natural 
language descriptions of JUnit 
test cases and the portion of 
the target classes they are going 
to test). 

MIT License 

Weak-Assert[20] http://congwang92.cn/w
eakassert/  

A weakness-oriented assertion 
recommendation toolkit for 
program analysis of C code. It 
matches abstract syntax trees 
of source code to pre-defined 
weakness patterns and inserts 
assertions into programs. 

Copyright held by 
the authors; third 
party CVE - 
copyright held by 
Mitre 

GuideGen[21] https://github.com/hoto
mski/guidegen 

 

https://youtu.be/4uXqP3
mwmAo 

A web application to support 
requirement management. It 
analyses changes in 
requirements, automatically 
generates guidance on how to 
adapt the affected acceptance 
tests and send notifications to 
subscribed users. 

Copyright held by 
the authors 

SoTesTeR[22] - A content-based recommender 
system that offers a ranking of 

Copyright held by 
the authors 

https://github.com/hotomski/guidegen
https://github.com/hotomski/guidegen


D2.4 SotA revision document v2 

 

68 

 

software testing techniques 
based on a target project 
characterization and evaluation 
of testing techniques in similar 
projects. 

Table 26: Cognitive Q&A Tools 

 

 Aroma  TestDescriber Weak-Assert GuideGen SoTesTeR 

Problem  
Description 

Given a partial code 
snippet, search a 
large source code 
repository and 
return code 
representing 
idiomatic coding 
patterns to 
extend/complete 
the snippet. 

 Improve 
readability of 
automatically 
generated 
unit test 
cases. 

Given the code, 
recommend 
appropriate 
assertion  
patterns and 
where to insert 
the recommended 
assertions. 

Given a 
requirement 
change, adapt 
associated 
acceptance 
tests. 

Given project 
characteristics, 
recommend 
most 
appropriate 
testing 
techniques. 

Data Large source code 
repositories 

 Code under 
test 

Code under  
test 

A collection of 
existing 
requirements 
and  
acceptance 
tests 

Characterization 
scheme for 
software testing 
techniques as 
similarity 
attributes and 
performance 
attributes; 
Repository 
storing 
characterized 
techniques and 
historical 
projects. 

Algorithm Search based on 
human-engineered 
features; Prune and 
re-rank (Jackard 
distance as the 
similarity metric); 
Cluster and 
intersect.  

 Test 
generation 
using a 
chosen 
external 
automation 
tool; 
Test coverage 
analysis  
based on 
Cobertura; 
Summary 
generation 
based on 
SWUM 
(Software 
Word Usage 
Model).  

Parse code to 
extract abstract 
syntax trees  
(using an  
external 
 library); Match 
manually  
crafted  
assertion  
patterns to  
nodes in ASTs.  

Sentence- and 
word-level 
analysis of  
the 
requirements 
to identify 
modifications/
deletions/ 
additions, 
using off-the-
shelf NLP  
tools 
(Stanford 
CoreNLP, 
Text_Diff, 
SyntaxNet); 
Rule-based 
algorithm for 
determining 

Characterize 
new target 
project: Ranking 
elaboration: 
TOPSIS method 
for determining 
similarity 
between the 
target project 
and historical 
projects – use 
weighted 
similarity 
attributes kNN 
to select k 
similar projects; 
use 
performance 
attributes for 



D2.4 SotA revision document v2 

 

69 

 

relevance and 
generating 
guidance. 

final ranking: 
Characterize 
instantiated 
techniques to 
provide 
feedback. 

Table 27: Comparison of Cognitive Q&A Tools 

4.11.2 Progress within ElasTest 

A recent systematic review on recommender systems applied to testing [23] shows 
that the solutions designed to support test cases creation are concerned with finding 
existing code suitable for reuse rather than with generating new code. One exception 
is a system [20] (developed after ElasTest project commencement) generating 
template-based code snippets that implement weakness-oriented assertions. The main 
limitations of this solution are the narrow scope of application: only assertion 
statements are supported, and only those that match predefined, human-crafted 
patterns.  

ElasTest Recommendation Engine (ERE) generates complete implementations of unit 
test cases based on short descriptions in natural language. To our knowledge, there is 
no existing tool offering this type of support. Rather than using predefined templates, 
ERE leverages deep learning to generate unseen code token by token. The core of ERE 
is Neural Translation Model which can be trained on vast amounts of data stored in 
online software repositories, and also fine-tuned to the needs of a specific project.  

Furthermore, ERE solution offers a novel way of recommending existing reusable test 
code. While other systems determine similarity of code by measuring token overlap or 
finding longest common subsequence of tokens, ERE learns deep vector 
representations (embeddings) of test cases and computes the distance between them 
in the semantic vector space. Such vector representations reflect not only individual 
tokens or fixed sequences of tokens, but are able to capture subtle patterns and broad 
context of tokens and sequences. 

5 Summary of ElasTest Outcomes, Progresses and Benefits 

This section presents the main outcomes, progresses and benefits of ElasTest with 
respect to the SotA. Specifically, Section 5.1 summarizes for each technologic area 
addressed in the project, the main project outcome and the progress of ElasTest for 
that specific area. Section 5.2 shows the overall main benefis of ElasTest. 

5.1 ElasTest Outcomes and Progresses 

Table 28 presents for each technological area addressed during the overall project 
duration, the ElasTest outcome and progress with respect to the SotA. Finally, the last 
column of the table reports references to more detailed information of ElasTest 
outcomes and progresses. 



D2.4 SotA revision document v2 

 

70 

 

Technological Area   ElasTest Outcome ElasTest Progress 
Evidences and 
further 
nformation 

Continuous  

Integration 

ElasTest eases the application of 
continuous testing principles inside CI 
platforms. Specifically, ElasTest  
exposes the whole set of its 
functionalities for managing tests by 
means of an open API.In this sense, the 
ElasTest Jenkins Plugin is a dedicated 
module of ElasTest that directly  
enables the interaction between any 
Jenkins CI instance with ElasTest. 

ElasTest is providing an 
Open API that other 
servers, or plugins can 
make use of in order to 
integrate ElasTest 
functionality into their 
core. 

D2.3 [25] 

Performance 

 Testing 

ElasTest Orchestration Engine (EOE) 
supports  configuration management 
mechanisms and  allows the parallel 
combination of test cases so that to 
achieve the execution of test cases in 
realistic operative testing scenarios. 

Testing SiL by running 
different conditions 
(configurations) and 
comparing the results 
among them. 

D2.3[25] D4.3[26] 

Security Testing ElasTest Security Services (ESS) 
supports security testing of  
cloud-based web applications. It 
supports the identification of common 
web application weaknesses and 
provides advanced functionalities such 
as automatic attack page generation. 

Detection of 
sophisticated attack 
classes and Cross-Origin 
State Inference (COSI) 
attacks. 

D5.1[28] 

Monitoring ElasTest Monitoring Service (EMS)  
used for inspecting executions of a 
System Under Test. Elastest  
Monitoring Platform (EMP) allows to 
monitor the health of various 
components of ElasTest platform as 
well as  correlated queries aiding the 
fault location within the platform in  
an optimized manner. 

Monitoring solution 
capable of handling 
both metric data as 
well as log streams. 
Tracing nowadays 
strongly demanded 
solutions in ICT such as 
microservices, or 
serveless architectural 
styles. 

D5.1[28] D3.1[31] 

IoT Testing ElasTest Device Emulator Service (EDS) 
offers capability of emulating sensors, 
actuators and smart devices on all  
types of IoT SUTs. 

Device emulation as  
an open source 
implementation 
leveraging OpenMTC. 

D5.1[28] 

Cloud  
Instrumentation 

ElasTest Platform Manager (EPM) 
allows to deploy and execute 
seamlessly cloud services in the target 
cloud infrastructure. It provides an  
interface between ElasTest  
components and the cloud 
infrastructure where ElasTest is 
deployed by abstacting and managing 
the information of deployed services by 
means of a common information 
model. 

Full abstraction of the 
underlying 
infrastructure and 
cloud 
instrumentation 
technologies.  

D3.1[31] 

Dashboard 
Management 

ElasTest Tests Manager (ETM)  provides 
a dashboard with charts generated by 

ElasTest enables  
testers to segregate 

 D5.1[28] 



D2.4 SotA revision document v2 

 

71 

 

metrics and logs gathered during test 
execution. 

data depending on the 
test that was  
exercising the SUT. 

WebRTC Testing ElasTest User Impersonation Service 
(EUS) provides GUI automation basing 
on open source paradigms and enables  
also the evaluation of the perceived 
quality of users on relevant  scenarios  
such  as  real-time  multimedia 
applications. 

WebRTC Testing 
solution able to 
simulate different 
WebRTC network 
topologies; addressing 
interoperability issues 
for the SUT or any 
other device involved in 
the test. 

[17] 

Cross-browser Testing ElasTest User Impersonation Service 
(EUS) provides capability to  
impersonate  browsers  and  mobile  
devices. 

Emulation of user 
actions in many 
different browsers at 
the time in the same or 
different machines. 

[17] 

Mobile Testing The released ElasTest platform does  
not include any dedicated 
component/module supporting  
mobile testing. 

ElasTest did  not 
advance in mobile 
testing domain. 

- 

Cognitive Q&A 
Systems 

ElasTestTest Recommendation Engine 
(ERE), asks for a natural language 
description of a test case, generates 
test code and then uses that generated 
code as a search query. 

Full implementation  
of unit test cases  
based on short 
descriptions in natural 
language. Learning of 
deep vector 
representations 
(embeddings) of test 
cases and computation 
of the distance 
between them in the 
semantic vector space. 

D4.2[30] 
D4.4[27] 

Test Orchestration ElasTest Orchestration Engine (EOE), 
which is responsible of selecting, 
ordering, and executing a group  
of tests in ElasTest. 

Test augmentation 
consisting in 
introducing new TJobs 
to the original one to 
reproduce custom 
operational conditions 
of the SUT. This allows 
to test, in addition to 
functional features of 
the SUT, other non-
functional attributes 
(such as performance, 
scalability or reliability). 

D4.3 [26] 

Data Ingestion ElasTest Data Manager (EDM) is 
responsible for installing, managing, 
and uninstalling the different 
persistent services available for  
ElasTest platform. 

Providing a  
persistence layer  
and a big data 
processing layer 
supporting data-
agnostic caching and 
stable persistence 

D2.3[25] 



D2.4 SotA revision document v2 

 

72 

 

service bundle with 
auto-scaling facility. 

Test Execution & 
Visualization 

ElasTest Orchestration Engine (EOE), 
which is responsible for selecting, 
ordering, and executing a group  
of tests in ElasTest. 
ElasTest Tests Manager (ETM)  
provides facilities for the test case 
visualization and comparison  
after their execution. For example, 
 ETM enables the 
visualization/comparison of 
infrastructural measures such as CPU, 
memory and IO consumption of  
the SuT as well as  to inspect all the logs 
gathered during test execution. 

Supporting  
visualization of the 
execution of tests in 
the large (TiLs) as well 
as simultaneous 
playback of video 
recordings and logs. 

D4.3 [26] 

Test Management ElasTest Tests Manager (ETM) gives 
users the ability to manage the 
execution of end to end tests in order 
to verify complex distributed 
applications. 

Automatic collection  
of logs and metrics 
during test case 
execution. Comparison 
of different test 
executions. 

D4.3 [26] 

Testing Framework ElasTest Tests Manager (ETM)  
also gives users the ability to create 
new execution context for test cases 
(i.e. TJobs) and to instantiate them by 
configuring parameters referring both 
the execution context and test case 
internal set-ups. 

Reusability of test  
code in different  
tests cases and easy 
parameterization of 
tests. 

D4.3 [26]  

Virtualization Elastest Platform Manager (EPM) 
provides the ability to instantiate 
execution entities (like docker 
containers or virtual machines).  
Elastest itselfs has been developed in 
order to be deployed over several kinds 
of virtualization technologies. 
Specifically, the platform is currently 
available for: Docker, Amazon Web 
Services, Kubernetes. 

Compatibility and 
adaptability to the 
most popular 
virtualization solutions. 

D3.1 [31] 

Table 28: Summary of ElasTest Progresses and Outcomes 

 

5.2 ElasTest Main Benefits 

The technical analysis of the SotA (see Section 4) evidenced a lot of tools addressing 
test automation. Most of them provide advanced facilities such as test annotation 
while testing, archiving of complete test sessions recording, customizable dashbords 
and test tracking. ElasTest integrates the advanced facilities of these tools, and 
provides a new testing solution aiming to improve the efficiency and effectiveness of 
the testing process of large software systems, leveraging cloud resources. The main 
goal of ElasTest is to provide a holistic and comprehensive integrated end-to-end 



D2.4 SotA revision document v2 

 

73 

 

testing platform to test distributed large systems. Differently from existing testing 
tools, the very motivation behind ElasTest is to improve the software testing process 
as a whole, rather than improving the cost-effectiveness of one specific functional or 
not functional testing approach. Indeed, ElasTest represents a solution for test 
automation all along the test process, including: SUT deployment, test execution, SUT 
monitoring during test execution, and test reporting. 

ElasTest offers an open source cloud-based testing service platform OS independent, 
very flexible and compatible with current Continuous Integration (CI) tools and 
methodologies so that testers/developers can use it without disrupting their common 
practices. It is easy to deploy and easy to use and offers capabilities to test end-to-end 
different types of applications including web, mobile, real-time video communications 
and Internet-of-Things. The tests can be done under different configurations and 
environments allowing testers to reproduce real world conditions. ElasTest aims to 
provide advanced testing capabilities to increase the scalability, robustness, security 
and quality of experience of large distributed systems. It allows gathering information 
from the tests and the software under test and presenting the information unified and 
integrated, enabling easy comparison of tests results from different executions, 
analysis of the logs, and compatibility of the tested applications with different 
browsers. ElasTest offers observability and visibility for every test integrating end-to-
end tests and monitoring options to automatically and continuously identify different 
bugs in the software system.  

Moreover, the innovation pillars of the project with respect to existing testing 
platforms are: i) test orchestration, namely the definition of a general test 
orchestration topology notation and orchestration rules applied to large systems; ii) 
test recommendation, namely the ability of supporting personalized recommender 
system able to recommend the tester with the specific T-Job combinations to be 
included into a TiL.  

From a practical point of view, the main benefits that testers can have using ElasTest 
deal with the many facilities that the platform provides for the validation of the SUT 
behaviour when interacting with different 3rd party clients or services. Specifically, the 
main ElasTest benefits for testers can be summarized as: 

- Reduction of the time invested from QA team to-fix any software bug. This is 
achieved by the ElasTest observability capabilities that allow for reducing bug 
localization time by performing log collection and analysis, aggregation of large 
volumes of events, comparison with previous executions (previous tests run) as 
well as metrics collection and comparison. 

- Shorten time-to-market. ElasTest allows easy and fast writing of complex tests 
leveraging the ElasTest support services.  

- Improve communication in QA teams. ElasTest allows the instantaneous 
availability of all the information for the QA teams, developers and managers. 
This is supported by log and metrics collection, test session recording, signaling 
of errors by logs. 



D2.4 SotA revision document v2 

 

74 

 

6 Research projects related to ElasTest: an overview 

The following section reports a collection of research projects overlapping with one or 
more topics covered by ElasTest. Specifically, for each project are reported: its main 
fact-sheet information (e.g., Official Title, URL, Founding Schema, and Period), a brief 
description of its main objectives, and some highlights on its relation with the ElasTest 
project and related technologies. 

Among the others, the interactions documented among the ElasTest dissemination 
activities (see D8.2 [29]) remark the evidence of the relation between ElasTest and the 
STAMP, the FI-WARE, and the GAUSS projects. 

6.1 CodeSan 

Title: CodeSan: Code Sanitization for Vulnerability Pruning and Exploitation 

Mitigation 

URL: https://cordis.europa.eu/project/rcn/225307/factsheet/en 

Founding Schema: ERC Starting Grant 

Period: March 2020 - February 2025 

Brief description: CodeSan proposes a comprehensive approach to improve code 

quality. CodeSan sanitises software by automating bug discovery during 

development through software testing and by protecting deployed software 

through the activation of smart runtime checks only where they are actually 

needed. CodeSan complements formal approaches by protecting software that is 

currently out of reach due to its size, or complexity. In this sense, CodeSan 

promotes automatic test case generation strategies increasing testing coverage 

for large programs without the need for pre-existing test cases. 

Relation with ElasTest: Both CodeSan and ElasTest aim to improve the efficiency 

and effectiveness of the testing process of large and complex software systems. 

ElasTest could offer to CodeSan a suitable testing platform for launching and 

governing the execution of the test suites automatically generated by means of 

the strategies that CodeSan investigates. 

6.2 GAMMA 

Title: The Artificial Intelligence Code Analysis & Recommendation Engine to drive 

software development speed & reliability for global corporations 

URL: https://cordis.europa.eu/project/rcn/223522/factsheet/en 

Founding Schema: EIC Short SME Financing 

Period: June 2019 - November 2019 



D2.4 SotA revision document v2 

 

75 

 

Brief description: The Gamma Recommendation Engine is an (AI)-based platform 

for software engineers. Gamma can scan source code repositories detecting a 

very wide range of software bugs in real-time and immediately proposing fixes 

for them.  

Relation with ElasTest: As in the Gamma project, the ElasTest platform provides 

specific components leveraging both cognitive computing and machine learning 

mechanisms. Such components are able to generate testing recommendations 

(e.g. propose structure for test cases) or to answer natural language questions 

about the testing process. The specific technological results from both the 

projects could be potentially combined in order to enhance the traditional 

software testing processes by identifying issues and possibly prevent faults 

before they appear. 

6.3 SENECA 

Title: Software ENgineering in Enterprise Cloud Applications systems 

URL: https://cordis.europa.eu/project/rcn/193968/factsheet/en 

Founding Schema: Marie-Curie 

Period: January 2015 - December 2018  

Brief description: The SENECA project aimed to address key issues in the 

software engineering of cloud-based systems, including a disciplined approach to 

their development and operation. Specifically, the project investigated cloud-

based development process and it proposed related tools for quality assurance. 

Relation with ElasTest: Both the projects propose solutions aiming at assessing 

the quality of cloud-based systems. On the one hand, the SENECA project could 

benefit from the ElasTest platform in order to deploy a cloud-based system and 

testing it while producing real-world operational conditions. On the other hand, 

as ElasTest itself is a cloud platform, the ElasTest project could benefit from 

some of the QA approaches for cloud environments investigated within the 

SENECA project. 

6.4 TEFIS 

Title: TEstbed for Future Internet Services 

URL: https://cordis.europa.eu/project/rcn/96812/factsheet/en 

Founding Schema: FP7-ICT 

Period: June 2010 - February 2013 



D2.4 SotA revision document v2 

 

76 

 

Brief description: TEFIS provided an open platform to support experimentation 

at large-scale of resource demanding Internet services in conjunction with the 

so-called Future Internet networking technologies and user-oriented living labs.  

Relation with ElasTest: Both the projects aim at significantly improving the 

efficiency and effectiveness of the testing process by means of an extensible 

testing platform that could combine testing services on-demand and that could 

take into account realistic operational conditions. Despite the similar long term 

vision, the wide gap in time between the two projects would possibly limit the 

actual technological compatibility between the proposed solutions. 

6.5 SWITCH 

Title: Software Workbench for Interactive, Time Critical and Highly self-adaptive 

cloud applications 

URL: https://cordis.europa.eu/project/rcn/194122/factsheet/en 

Founding Schema: H2020 ICT-RIA 

Period: February 2015 - January 2018 

Brief description: The SWITCH project addresses the industrial need for 

developing and executing time critical applications in Clouds. Specifically, 

SWITCH aims at improving the existing development and execution model of 

time critical applications by considering aspects of QoS/QoE, together with the 

programmability and controllability of the Cloud environments, since the early 

stage of the applications lifecycle.  

Relation with ElasTest: As the SWITCH project, ElasTest investigated tools and 

methods for the software development of critical applications running in the 

cloud. In this sense, potential follow-up from the SWITCH project could refer the 

ElasTest platform for its capabilities to reproduce real-world operational 

conditions. For example, the ElasTest platform could be used in order to assess 

the QoS/QoE contacts of a time critical application by means of specific built-in 

services acting on the testing process. 

6.6 STAMP 

Title: Software Testing AMPlification 

URL: https://cordis.europa.eu/project/rcn/206167/factsheet/en 

Founding Schema: H2020 ICT-RIA 

Period: December 2016-November 2019 

Brief description: Leveraging advanced research in automatic test generation, 

STAMP aims at pushing automation in DevOps one step further through 



D2.4 SotA revision document v2 

 

77 

 

innovative methods of test amplification. It will reuse existing testing artefacts, 

in order to generate more test cases and test configurations each time the 

application is updated. Acting at all steps of development cycle, it will bring 

amplification services at unit level, configuration level and production stage. 

Relation with ElasTest: Both the projects aim to enhance automation in 

software testing by proposing solutions that can be combined within CI/CD 

pipeline. In this sense, the test artefacts generated with some of the approaches 

developed within the STAMP project can be managed and launched by means of 

the ElasTest platform. 

6.7 ADVANCE 

Title: Addressing Verification and Validation Challenges in Future Cyber-Physical 

Systems 

URL: https://cordis.europa.eu/project/rcn/219168/factsheet/en 

Founding Schema: Marie-Curie  

Period: January 2019 - December 2022 

Brief description: The ADVANCE project investigates new approaches to support 

the Verification and Validation (V&V) of Cyber-Physical Systems (CPS). In 

particular, it will focus on techniques that can both collect evidence useful for 

V&V techniques in CPS, and also analyze data of the system under analysis.  

Relation with ElasTest: The ElasTest platform includes capabilities for the 

instrumentation of the Software under Test so that observe and properly react 

to evidence from the testing session. Reaction can include changes on the testing 

environments or the decisions about the next test to execute. Furthermore, the 

ElasTest platform includes native services for device/sensor emulation, logs 

ingestion and analysis, and for testing observability in general. All these features 

could be fruitfully exploited during the ADVANCE project. 

6.8 PRECRIME 

Title: Self-assessment Oracles for Anticipatory Testing 

URL: https://cordis.europa.eu/project/rcn/216587/factsheet/en 

Founding Schema: ERC Advanced Grant 

Period: January 2019-December 2023 

Brief description: The PRECRIME project promotes a new and disruptive view on 

testing, called anticipatory testing and aimed at fixing bugs before they even 

manifest themselves in the field. The goal of anticipatory testing is to anticipate 

any failure that might occur in the field due to unexpected execution contexts. 



D2.4 SotA revision document v2 

 

78 

 

Relation with ElasTest: The ElasTest platform could be referred by the 

PRECRIME project as operative platform where to explore the behaviour of a 

SUT in several alternative configurations or environments. Also whenever a self-

assessment oracle suggests a deeper testing for monitored execution context, 

the ElasTest platform could be used in order to resume specific configuration 

observed in the field, and then starting to test the SUT from there, by exploring 

uncovered states. 

6.9 NOBUGS 

Title: Toward Zero-Defect Software Through Automatic Cooperative Self-

Improvement 

URL: https://cordis.europa.eu/project/rcn/102167/factsheet/en 

Founding Schema: ERC Starting Grant 

Period: February 2012-January 2018 

Brief description: NOBUGS investigates techniques and formalisms for 

automatically recouping and aggregating information from everyday software 

use. Such information is then turned into tests and proofs that aim to 

automatically assess the correct behaviour of a system, and to explore 

behaviours for which information is lacking.  

Relation with ElasTest: Potential follow-up from the NOBUGS project could refer 

the ElasTest platform as operative platform where to explore the behaviour of a 

SUT in several alternative configurations or environments. Also, the ElasTest 

platform could be used in order to resume specific configurations observed in 

the field, and then starting to test the SUT from there, by exploring behaviours 

potentially uncovered from previous testing activities. 

6.10 FI-WARE 

Title: Future Internet Core Platform 

URL:  

 https://cordis.europa.eu/project/rcn/99929/factsheet/en 
 https://www.fiware.org/ 

Founding Schema: FP7-ICT Collaborative project 

Period: May 2011 - December 2014 

Brief description: The goal of the FI-WARE project will be an open architecture 

and a reference implementation of a novel service infrastructure, building upon 

generic and reusable building blocks developed in earlier research projects. 



D2.4 SotA revision document v2 

 

79 

 

Relation with ElasTest: One of the vertical demonstrators adopted for the 

validation of the ElasTest platform concerned the Fraunhofer FOKUS 

Open5GCore toolkit. The results from the application of the ElasTest 

technologies in the context of 5G environments suggest that similar testing 

campaign could be also developed and applied in the context of the FI-WARE 

infrastructure. 

6.11 TESTOMAT 

Title: The Next Level of Test Automation  

URL: https://www.testomatproject.eu/ 

Founding Schema: ITEA 3 Call 3 

Period: October 2017-September 2020 

Brief description: The TESTOMAT project supports software teams to strike the 

right balance by increasing the development speed without sacrificing quality. 

The project will ultimately result in a Test Automation Improvement Model, 

which will define key improvement areas in test automation, with the focus on 

measurable improvement steps. 

Relation with ElasTest: The TESTOMAT project has a tool-intensive approach to 

test automation. In this sense, the ElasTest platform could be referred to as a 

public available open-source platform so that to be possibly exploited in one of 

the activities of the TESTOMAT Project. 

6.12 GAUSS 

Title: Governing Adaptive and Unplanned Systems of Systems 

URL: http://www.lta.disco.unimib.it/GAUSS/ 

Founding Schema: Italian MIUR PRIN 2015 Project 

Period: September 2017 - January 2020 

Brief description: The GAUSS project investigates methodological enablers 

required to identify, integrate, and manage emergent System-of-Systems (eSoS). 

These require dynamic and opportunistic engineering due to their intrinsically 

variable nature tied to their scale and heterogeneity. GAUSS developed a set of 

integrated techniques in order to address these engineering problems of eSoS at 

run-time, when specific execution contexts may invalidate design-time 

solutions.  

Relation with ElasTest: The specific domain of investigation addressed by the 

GAUSS project often requires for modular CI/CD pipelines that could be injected 

with feedback observed from the field. In this sense, the techniques from the 



D2.4 SotA revision document v2 

 

80 

 

GUASS project could benefit from the ElasTest platform in order to deploy a 

cloud-based system and testing it while injecting/reproducing in-vitro real-world 

operational observations. 

 

7 Market Analysis 

This section is a brief update of the market analysis presented in D2.2 [7]. It provides 
quantitative and qualitative assessment of the IT market for the present year 2019 and 
some trends and predictions for 2020. It investigates the key trends in software testing 
market showing its volume and value, potential growth, customer segments, and the 
key competition. The main goal is to identify the various areas of the market in which 
ELasTest can later create impact and be sold, in order to ensure ElasTest sustainability. 

The main trends of the market related to testing activities are: i) more automation of 
regression testing; ii) digital transformation with agile; iii) continuous integration to 
ensure the best quality of the software; iv) increasing adoption of Devops; v) artificial 
intelligence offering new opportunities for services; vi) shortening Delivery Cycle with 
Selenium; vii) microservices architecture. Moreover, the cloud testing market is 
growing fast.  According to a recent report [8], published in October 2019, the cloud 
testing market worldwide is projected to grow by US$8.3 Billion, driven by a 
compounded growth of 13.1%. The testing platforms and tools represent one of the 
key segments analyzed that foresee the potential to grow at over 11.8%. Poised to 
reach over US$8.5 Billion by the year 2025, testing tools/platforms will bring in healthy 
gains adding significant momentum to global growth. In Europe, which continues to 
remain an important element in the world economy, Germany will add over US$337.4 
Million in the next 5 to 6 years. Over US$396.5 Million worth of projected demand in 
the region will come from the rest of the European markets. As the world’s second 
largest economy and the new game changer in global markets, China exhibits the 
potential to grow at 13% over the next couple of years and add approximately US$1.5 
Billion in terms of addressable opportunity for the picking. 

Another important aspect to be considered in the market analysis is the growing 

number of software developers in terms of potential ElasTest users. As shown in Figure 

15, the number of programmers is growing in different speeds and places. A report by 

Evans Data Corporation states that last year there were 23 millions of software 

developers in 2018, this number is expected to be 26,4 millions by the end of 2019 and 

27,7 millions by 2023. On top of this, according to IDC calculations [9], in 2018 the 

number of software developers in the world grew to 22,3 million, while in 2014 there 

were only 18,5 million of programmers. And according to Stack Overflow, the number 

of software developers in Europe was reported to stand at 4,7 millions in 2016, which 

in 2018 reached 5,5 millions. According to these data and considering that ElasTest 

aims to be released and maintained totally open source, the potential of usage for 

ElasTest end-to-end testing platform is huge.  

https://www.idc.com/getdoc.jsp?containerId=US44363318


D2.4 SotA revision document v2 

 

81 

 

In order to focus on the main ElasTest market position, we revise in the following of 

this section: the IT budget allocated to testing; the trends in ICT and cloud market 

considering the agile and devOps development; the challenges in test automation and 

finally the expectations from the market. Finally, we show how ElasTest is aligned with 

the key trendy tools and technological advancements of the market and will define the 

market perspectives for ElasTest.  

 

Figure 15: Number of developers in the world 

 

7.1 IT budget allocated to testing 

        The aim of software testing is to detect any error in the development of high quality 

software products and validate the software components in a given system before 

launching them to the market. The software testing process allows for validating that 

software products behave as these were planned: that is the application gives the user 

what it is designed for and that the QA team ensures that the quality of the system is 

stable enough to be massively used. For supporting developers there are many 

software testing tools, solutions, and services used across a range of industry verticals 

to build high-quality software. The importance of testing is clear and every year IT 

budget allocated to testing grows. In fact, a recent report [11] says that 25% of budget 

within companies is allocated to the testing and by 2025, it may be around 33%.  

 

 



D2.4 SotA revision document v2 

 

82 

 

 

Figure 16: Portion of the testing budget allocated to QA testing (including testing process, tools and resources) 

 

        Figure 16 clearly shows that the 23% is steadily a percentage of the total testing 

budget allocated from organizations to QA testing which accounts for testing process, 

tools and resources. However, as new efficient tools are introduced, the testing 

process is becoming more efficient and costs are reduced. Therefore, OSS tools such 

ElasTest present an opportunity to consider for this purpose.   

        The factors influencing the portion of IT budget dedicated to testing are shown in 

Figure 17. This figure evidences a tendency in having more focus on the number of 

developments and releases with an almost 6% (5.47% out of 7%, 7 being the 

maximum/most important value). Other important factors are: the need to have agile 

and devOps methodologies causing more and more test iterations cycles in the 

software testing process (5.39%), followed by the increased challenges in test 

environments (5%). ElasTest tackles these challenges supporting testing of IoT, 

webRTC or web applications among the others.  

        Moreover, according to 451 Research annual report “Top 10 IT trends for 2019” [13], 

most of the IT investment in the coming decade will be focused on automation. 

Specifically, this report identifies the following four top trends for the IT market:  1) 

Cloud native takes center stage; 2) Successful organizations will be data driven; 3) 

Focus in digital procurement shifts to optimization; and finally, the most relevant for 

ElasTest 4) A new Age of Automation. In fact they claim: “Since the financial crisis of 

2008 much of IT investment has been focused on the emancipation of software from 

the underlying hardware. Most of the investment in the coming decade will be focused 



D2.4 SotA revision document v2 

 

83 

 

on automation, building on this virtualized software layer. A large range of 

technologies, from robotic process automation (RPA) through to Machine Learning to 

will drive this and Digital Automation Platforms will be the platforms used to build 

applications that can adapt to change quickly”.   

 

 

Figure 17: Factors influencing the portion of IT budget dedicated to testing 

 

7.2 ICT market  

        The ICT market is expected to continue to grow. IDC report [32] forecasts that the 

worldwide dollar-valued ICT spending will grow. It will grow up to $4,453,711 billion 

dollar by 2022, and during 2019 to $4,099,343.  Figure 18 shows the worldwide ICT 

spending in $ millions whereas Table 29 shows the ICT spending forecast per 

technology. 



D2.4 SotA revision document v2 

 

84 

 

 

Figure 18: Worldwide ICT Spending 2016-2020 

Technology 

Spending $M 

2018  

Spending 

2018  

Growth 

2019  

Spending 

2019 

Growth 

Hardware $1.033.759 4% $1.053.959 2% 

Software $512.237 7% $550.567 7% 

Services $1.009.573 4% $1.048.654 4% 

Telecom  $1.431.128 1% $1.446.164 1% 

Traditional ICT $3.986.977 3% $4.099.343 3% 

New Technologies $825.978 16% $961.173 16% 

Total ICT $4.812.974 5% $5.061.106 5% 

Table 29:Spending Forecast for technology (Billions of U.S. Dollars) 

 

        Another report from IDC about automated Software Quality Forecast, 2018–2022 [12]: 

states that the growth will be driven by continuous testing and DevOps demand.  This 

IDC report suggests that during 2018–2022 automated software quality market will 

grow. They also acknowledge the impact of open source software usage and 

integration by vendors like Selenium (used also in ElasTest) and for example 

Cucumber. Moreover, the need for testing of IoT applications and the rising 

importance of DevOps and Agile are factors which are driving the market and continue 

to grow in adoption as well as quality assurance (QA). 

7.3 Cloud Market  

The cloud market continues to become mainstream within most organizations. 

According to Markets and Markets report published in early 2019 [33], the total cloud 

computing market size is expected to grow from USD 272.0 billion in 2018 to USD 

623.3 billion by 2023, at a Compound Annual Growth Rate (CAGR) of 18.0% during that 

period as shown in Figure 19. There are many and different aspects driving this growth 



D2.4 SotA revision document v2 

 

85 

 

such as the increasing volume of data gathered from all the services/devices, from 

websites and/or mobile apps, and the tendency to deliver customer-centric 

applications for driving customer satisfaction. As showed in Table 30, Infrastructure as 

a service (IaaS), based on the cloud system infrastructure, seems to be the fastest-

growing market segment which is forecast to grow of 27.5 percent in 2020 to reach 

$49.1 billion, up to $76.6 billion in 2022. The second-highest growth rate of 21.8 

percent will be achieved by cloud application infrastructure services, or platform as a 

service (PaaS). 

 

 

Figure 19: Cloud market prediction 

 2018  2019  2020 2021 2022 
Cloud Business Process 
Services (BPaaS) 

45.8 49.3 53.1 57.0 61.1 

Cloud Application 
Infrastructure Services 
(PaaS) 

15.6 19.0 23.0 27.5 31.8 

Cloud Application 
Services (SaaS) 

80.0 94.8 110.5 126.7 143.7 

Cloud Management and  
Security Services  

10.5 12.2 14.1 16.0 17.9 

Cloud System 
Infrastructure Services 
(IaaS) 

30.5 38.9 49.1 61.9 76.6 

Total Market 182.4 214.3 249.8 289.1 331.2 

Table 30:Public Cloud Service Revenue Forecast (Billions of U.S. Dollars) 

 

https://www.gartner.com/en/newsroom/press-releases/2019-02-27-gartner-says-nearly-50-percent-of-paas-offerings-are-


D2.4 SotA revision document v2 

 

86 

 

These data show that there are different and attractive opportunities in the cloud 

market. This cloud market will grow further in North America and Europe, whereas it is 

expected to hold a significant growth rate in Asia and Latin America. Furthermore, the 

factors that are expected to drive the market growth are: increased automation and 

agility, need to deliver enhanced customer experience, and increased cost savings and 

return on investment. 

7.4 Devops 

A report published by Research and Markets [34] predicts a global investment of $19 
Billion in Automation Testing market for the period 2018-2023. The global automation 
testing market size foresees to grow from USD 8.52 Billion in 2018 to USD 19.27 Billion 
by 2023, at a Compound Annual Growth Rate (CAGR) of 17.7% during the forecast 
period. This report indicates DevOps methodology as one of the main factors driving 
this grows. Indeed, they claim that: “The major factors that are expected to drive the 
growth of the market include the increasing adoption of mobile devices and 
technologies, increasing adoption of the DevOps methodology, and transforming 
testing by digital transformation”.  

The report in [16] offers good recommendations for those organizations supporting 
wider agile and DevOps adoption such as: i) build a smart and connected testing eco-
system deploying intelligent analytics; ii) introduce security testing early in the lifecycle 
— during design; iii) expand AI-related skillsets within the test team by onboarding 
data science, statistics, mathematics, and more; iv) re-imagine test automation as a 
platform; v) raise awareness and visibility of test environments; vi) adopt a center of 
excellence approach for test data management. 

In addition, Mark Buenen, Global Leader, Digital Assurance and Quality Engineering for 
the Capgemini Group said [38]:  “We are continuing to see Testing and QA move from a 
discrete area within an organization to one that is more fundamental to enterprise 
operations and business outcomes. At the same time, change brings its own challenges 
– two of the most important being orchestration of Testing and QA in agile and DevOps 
development and access to the required skillsets. To stay ahead, organizations need to 
embrace new approaches, including a connected and holistic approach to testing, 
raising organizational awareness of test environments, and adopting a center of 
excellence approach to test data management.” 

Considering the API Testing (as it is done in ElasTest by the REST API), a report from 
Research and Markets [14], it reveals that the global API testing market size is 
estimated to grow from USD 447.4 Million in 2017 to USD 1,099.1 Billion by 2022. 
Moreover, the current evolving adoption of both Devops and Agile in software 
development and the strategies in companies to use open APIs are key factors driving 
API testing market.  

7.5 Test automation  

The test automation demand in the market is augmenting more and more every year. 
In fact, according to the report by markets and market [15], the automation testing 



D2.4 SotA revision document v2 

 

87 

 

market is expected to grow from USD 8 billion in 2018 to USD 60.4 billion by 2026, at a 
Compound Annual Growth Rate (CAGR) of 33.4% during the forecast period. The 
functional testing segment is expected to have a larger market size from 2019-2024, 
and the prediction reflects an increase in all areas, not only in Europe, as shown in 
Figure 20. 

 
Figure 20: Functional Testing Trend 

 

To address the challenges of testing many organizations are looking for more dynamic 
ways to test their processes and systems and this makes automation very relevant. 
Moreover, as the competition among market players is increasing and the information 
is freely available for the users, customers are becoming more empowered. They can 
choose from a wide array of options. This encourages companies to deploy advanced 
testing tools and services able to increase the response time and provide a better 
experience to their customers. The automation testing services are key factors for 
industry and these cover and fulfill the growing need of QA. These services help 
increase the efficiency and effectiveness of applications, replicate testing across 
different platforms, minimize manual intervention, and reuse test scripts in various 
testing scenarios. Automated testing services include: suitable test tools; identification 
of test scenarios; test script maintenance; and generation of automated test reports. 

The report in [16] says that test automation has delivered many benefits including: 
improved control and transparency of test activities (63%), better detection of defects 
(56%), and reduction of test costs (56%). When asked about the technical challenges 
the developers face in developing applications: the 63% respondents say that there’s a 
“lack of end-to-end automation from build to deployment”, up from 55% in last year’s 
survey.  

 



D2.4 SotA revision document v2 

 

88 

 

 
Figure 21: Main challenges faced while achieving test automation 

 

 

They say at the same time there’s a need for more use of automation and artificial 
Intelligence in some organizations. From the respondents, 41% identified a ‘lack of 
proper skills for QA & Testing’ as a technical challenge. Moreover, 58% of organizations 
that took part in the survey looked for external AI expertise, either because it’s not 
part of their core business (23%), or they needed AI knowledge fast (24%) or it was a 
requirement for a limited amount of time (11%). 

Figure 21 shows main challenges about achieving test automation. Among them, there 
are the lack of automation tools and difficulties due to tracing of test data and 
environment changes. In this context, ElasTest is able to address most of these 
challenges and then provide a good value in the market. Indeed, it supports realistic 
operative testing scenarios and allows the logs and metrics visualization as well as test 
data recording and management. 

 

7.6 Expectations from the market 

The report published by CapGemini [16] surveys different organisations and predicts 
what are the trends in software quality. The authors of [16] consider most important 
(almost 6%, 6 out of 7 scale, 7 being the maximum) the investments in testing IT 
systems. For that, there is a huge need of robust end-to-end software testing tools. 
However, one of the testing strategy goals is end-user satisfaction. The report claims 
that testing must consider customer satisfaction and should be aligned with business 
goals to ensure market share in companies.  Also, it shows that 99% of respondents 
use DevOps in at least some of their projects. Therefore, more automation is required 
to speed-up the testing process. Indeed, the report reveals that automation is the 
biggest bottleneck that is holding back QA and testing today. The idea is how to 



D2.4 SotA revision document v2 

 

89 

 

optimise testing that needs to be done, in order to shorten test cycles while increasing 
their effectiveness and ensure software quality. This can be reached by: tools 
extracting information from application lifecycle management; end-to-end testing 
tools such as ElasTest; monitoring systems; production monitoring systems; processing 
of information in a timely manner. 

Moreover, there’s a huge room for investigations and innovation on applying AI to QA, 
as well as testing AI algorithms and products. The World Quality Report [35] finds that 
a lot of organizations are experimenting how AI can be applied in the whole testing 
and QA process. In addition, 55% of respondents are struggling with identifying where 
and how to apply AI, whereas 51% say they have experienced difficulty integrating AI 
with their existing applications. Figure 22 shows the percentage of projects addressing 
artificial intelligence and machine learning for 2019 in the different software 
development areas. Specifically, 38% of these artificial intelligence and machine 
learning projects address quality assurance. This implies a set of additional challenges, 
namely that AI tester must master an additional set of highly technical and 
mathematical skills, such as mathematical optimization, and algorithmic knowledge. 

ElasTest is in line with the application of artificial intelligence and machine learning to 
testing and may have for this a good place in the future testing market. Indeed, one of 
the ElasTest key advancements is the investigation and implementation of new 
algorithms of artificial intelligence for tests generation and recommendation.  

 

 

 
Figure 22: Artificial intelligence and machine learning projects for 2019. 

 



D2.4 SotA revision document v2 

 

90 

 

7.7 Comparison of ElasTest with trendy tools 

This section provides a comparison of ElasTest with key trendy tools according to their 
similarity and/or relevance to ElasTest, focusing on specific market aspects, such as 
ease of use, business model and cost. Table 31 shows an overview of these tools 
compared to ElasTest and provides an update of the analysis of similar tools to 
ElasTest, performed in D2.2 [7]. As in D2.2, we performed this comparison in terms of: 
strengths and weaknesses of the tool, percentage of similar functionalities with 
ElasTest, deployment model, automation, type of application under test, acceptance 
by market/developers, numbers of users and customers, number of tests, target 
market, ease of installation and use, finally business model and cost. Many of these 
tools were already identified in the first review and we provide in this document an 
update of their information, other tools such as Scope and Honeycomb have been 
identified in this second review period. These tools aim to solve only a part of the 
problems covered by ElasTest. Moreover, some of them such as Jenkins and TestLink 
have been successfully integrated with ElasTest. 

 

 

 



D2.4 SotA revision document v2 

 

91 

 

 
ElasTest 

 

 Test 

Complete
10

 

 

 Tricentis 

Qtest
11

 

 

 PractiTest
12

 

 

 TestLink
13

 

 

 HP ALM 

Quality 

Center
14

 

 

 Jenkins
15

 

 

 Travis CI
16

 

 

 EasyQA
17 

 

Scope
18 

 

Honeycomb
19 

 

Value 
Proposition 
(strength)  

ElasTest: 
bringing 
observabilit
y to your 
test and 
making  
complex 
tests 
simple. 
Improving 
the 
efficiency, 
productivity 
and code 

 Gives 
testers 
the ability 
to create 
automate
d tests in 
Windows, 
Web & 
Android 
and IOs. 
Screen 
capture to 
create 
scripts 

 Simple 
and 
intuitive 
to use. 
Tricentis 
qTest 
streamline
s software 
testing in 
agile and 
DevOps 
environm
ents and 
centralize

 PractiTest is 
an end-to-
end QA and 
Test 
management 
solution. 
Solution for 
Agile Testing, 
Regression 
Testing, 
MicroService
s and 
DevOps. 
Reports and 

 Open 
Source Test 
Manageme
nt 
Application
. Testlink is 
one of the 
best and 
useful test 
tracking 
tools 

 The software 
quality 
management 
component of 
the highly 
renowned HP 
application 
lifecycle 
management 
(ALM) software 
suite 

 The leading 
open 
source 
automation 
server, 
Jenkins 
provides 
hundreds of 
plugins to 
support 
building, 
deploying 
and 
automating 

 Travis CI is a 
leading 
provider of 
continuous 
integration and 
delivery 
services and 
empowers 
software 
development 
teams to test 
and deploy 
their 
applications 

 EasyQA offers 
test 
management 
tools for IT 
Development 
teams to 
improve 
software quality. 
Manage the 
testing process, 
run up to 50 
projects 
simultaneously, 
manage 3 

Test 
management 
and monitoring 
platform. 

Tool designed 
for debugging  
and 
understanding 
complex 
systems, 
microservices, 
distributed 
systems, 
including the 
data layer, with 
the industry's 
only DB-agnostic 
raw query 

                                                      
10

 https://smartbear.com/product/testcomplete/ 
11

 https://www.tricentis.com/products/agile-dev-testing-qtest/ 
12

 https://www.practitest.com/ 
13

 http://testlink.org/ 
14

 https://saas.hpe.com/en-us/software/quality-center 
15

 https://jenkins.io/ 
16

 https://travis-ci.org/ 
17

 https://geteasyqa.com/ 
18

 https://scope.dev/ 
19

 https://xebialabs.com/technology/honeycomb-io/ 



D2.4 SotA revision document v2 

 

92 

 

reusability 
of the 
testing 
process in 
large 
complex 
distributed 
applications 

Easy 
debug 
scripts. 
1,500 
mobile 
and 
desktop 
browsers 
in more 
than 65 
operating 
systems 

s testing 
efforts 
across the 
enterprise
. Easy-to-
use UI and 
low ramp-
up time. 
Records 
every step 
and 
screen of 
testing 
execution 

dashboards 
are very 
customizable 
so to create 
metrics  

any project. 
A vibrant 
DevOps 
Automation 
Community 

with 
confidence. 

different 
platforms within 
one project and 
have 50 
organizations in 
one account 

analyzer 

Weakness  
of the tool 

Integration 
complexity 

 None. 
In fact it 
was 
awarded/ 
leader 
best  
tool in 
2020  
by 
G2.com

20
 

 Can’t call 
tests from 
other 
projects.
Manual 
configurat
ion.UI 
needs 
simplificat
ion 

 Hard to 
integrate 
questions.Op
tion to copy 
and paste 
tests and 
ability of 
batch editing 
tags. 
Dashboard 
customizatio
n 

 The design 
and 
ergonomic 
is old 

 None  None  None  None It is necessary 
to wait for 
access to be 
given in order 
to try 

Cannot launch 
executions 

% Similarity 
with ElasTest 

N/A  80%  80%  70%  70%  70%  70%  70%  50% 15% at least 30% 

Deployment Cloud, Saas  Cloud,  Cloud,  Cloud, Saas  OS Web-  Cloud, SaaS  Cloud, SaaS  Cloud, SaaS  Cloud, SaaS, - - 

                                                      
20

 https://www.g2.com/products/testcomplete/reviews 

https://www.g2.com/products/testcomplete/reviews


D2.4 SotA revision document v2 

 

93 

 

model Saas Saas based tool Web 

Automated 
Test platform 

Yes  Yes  Yes  Yes (SaaS)  Yes  Yes  Yes  Yes  Yes (SaaS) Yes (SaaS) No 

Application 
under test 

web, 
mobile apps 

 web, 
mobile 
apps 

 web, 
mobile 
apps 

 web, mobile 
apps 

 web, 
mobile 
apps 

 web, mobile 
apps 

 web, 
mobile apps 

 web, mobile 
apps 

 Windows 

desktop, web, 

mobile apps 

 

Windows 
desktop, web, 
mobile apps 

Any 

Acceptance 
by 
market/deve
lopers  

 

Low 

 Niche  Very High  Very High  Very High  Very High  Very High  Very High  Very High Very High Very High 

Statistics  
Of usage, 
numbers of 
users  

 
N/A 

 300,000 
users 
worldwid
e 

 No info  No info  No info  No info  15.8 
million of 
developers 
use Jenkins  

 >900k open 
source projects 

 No info No info No info 

Nº of test 
run 

33 commits  >10 
million 
tests 

 No info  >2.5 million 
tests run on 
customers 
>450K test 

cases 

 No info  No info  >148.416 
installations
. 1,000 
plugins.>6 
million 
build jobs 
on Jenkins 

 >200K 
active projects 

 No info No info No info 

Nº 
customers 

N/A  >6 million 
individual 
developer
s 

 >500 
customers 

 No info  More than 
25 years. 
No info on 
number of 
users 

 No info  No info  >700k users  No info No info There are not 
much info, but 
at least 12 
companies 

Targeted 
Market 

Developers, 
Community 

 Companie
s, SMEs, 

 SMEs, 
Large and 

 Technical 
teams, 

 Manager, 
QA teams, 

 Companies, 
SMEs, Large 

 Developers, 
SMEs, Large 

 Developers, 
Startups, SMEs, 

 QAs, Developers, No info Developers, 
Companies, 



D2.4 SotA revision document v2 

 

94 

 

Testers, 
Designers, 
Students, 
SMEs 
 

Large and 
medium 
enterprise
s, 
IT 
professio
nals, 
Developer
s and QA 
teams 

medium 
enterprise
s,QA 
teams, 
Developer
s 

Developers, 
Public 
administratio
n 

Developers and medium 
enterprises, 
Free users 

and 
medium 
enterprises 
 

Big 
corporations 

and PMs.  SMEs, Large and 
medium 
enterprises 

Ease  
of 
installation 
and use 

Mid-user 
friendly 

 Easy to 
setup and 
run. Easy  

to use, 
help desk 
very 
active 

 Easy to 
setup and 
run 

 Not really  Mid-user 
friendly 

 Easy to setup 
and run 

 Very easy  
to use 

 Travis CI is  
simple to use 

 Mid-user friendly No info Mid-user 
friendly 

Business 
model  

Open 
Source 
+ free 

 License 
and 
maintena
nce fees. 
Pay per 
use 

 Free 
License 
+Hosting 
Pay per 
use 

 Pay per use + 
hosting 

 Open 
Source 
+ free 

 Open Source 
+ hosting 
License, Pay 
per use 

 Open 
Source 
+ hosting 

 High  Pay per use No info Free limited 
used + pay per 
use 

Cost Not yet 
defined 

 $1,250 
(year) 

 $29/user/
month 

 $39 
Professional 
Tester 
/user/month 
 49$ 
Enterprise 
testeruser/m
onth 

 Upon 
request  

 $9,000 per seat 
license 

 Free  Various prices 
$69/hosted/ 
month 
for hobby 
projects 
on-premises 
4000$ (per 10 
pack users) 

 $10/user/month No info Professional 
starts @ 
$70/month 
Enterprise  
starts @ 
$24,000/YEAR 



D2.4 SotA revision document v2 

 

95 

 

Developer 
$15 
user/month 

 

 

Table 31: ElasTest vs key tools 

 



D2.4 SotA revision document v2 

 

96 

 

7.8 Main stream technologies related to ElasTest  

ElasTest is currently aligned with the technological advancements of the market. It 
uses and integrates the modern datacentre technologies as well as the most popular 
tools such as Kubernetes, Jenkins and TesLink as described below. 

7.8.1 Kubernetes  

Kubernetes21 is a cluster and container management tool that lets deploying 
containers to clusters, namely a network of virtual machines. It works with different 
containers, including Docker22. According to a survey of November 2019 [36], by 
Stackrock, 86% of respondents are using Kubernetes.  ElasTest uses Kubernetes in 
order to deploy and execute seamlessly cloud services in the target cloud 
infrastructure. ElasTest itselfs has been developed in order to be deployed over 
clusters controlled by means of Kubernetes. 

7.8.2 Jenkins and TestLink 

Jenkins23 is the de-facto CI leader in the market. According to the analyst firm 
Datanyse [37], Jenkins is the most adopted CI server in the market with 70% of the 
market share. It accounts with more than 100M installations all over the world. 
ElasTest exposes the whole set of its functionalities for managing tests by means of an 
open API. In this sense, it is fully compatible with current Continuous Integration (CI) 
tools and methodologies commonly used in QA processes. Specifically, the ElasTest 
Jenkins Plugin is a dedicated module of ElasTest that directly enables the interaction 
between any Jenkins CI instance with ElasTest. Moreover, ElasTest has been integrated 
with TestLink24 , which is the most widely used open source tool for test management. 

 

7.9 Market Perspective for ElasTest 

Nowadays, end-to-end testing of software and distributed applications requires a lot of 
investments in terms of time and effort and in some cases it is done mostly manually. 
The market analysis showed a clear tendency to continuos budget allocation for 
testing. More and more investments are devoted to software testing for quality 
assurance, fasten time to market and to ensure better quality of software products. 
The market trends outline that agile methodologies for building software and 
compatibility with the most used continuous integration environments are adopted by 
development teams for ensuring quality assurance of products. Also, DevOps, 
observability and monitoring tools for software development represent key factors 
that are driving the market. The market analysis outlines that the cost of the 
management of test environments within companies still remains a challenging task 

                                                      
21

 https://kubernetes.io/ 
22

 https://www.docker.com/ 
23

 https://jenkins.io/ 
24

 http://testlink.org/ 



D2.4 SotA revision document v2 

 

97 

 

and that companies have an increased need of tools to support developers and QA 
teams in making proper software testing and improving software quality products. In 
this context, ElasTest which offers an efficient and effective platform for the entire 
testing process and it is able to improve the quality of large cloud software systems 
has good market opportunities. Specifically, the following market opportunities are 
detected for the ElasTest results: 

- ElasTest offers a cloud-based platform and may have a good penetration in the 
IT market to allow creation of a new generation of software testing services. 
The platform fully satisfies the cloud and ICT market needs to allow higher 
quality software. 

- Elastest platform has been natively conceived to be integrated with any Agile 
process, continuous Integration platforms, and DevOps practices. This allow the 
easy and fast adoption of the ElasTest results in the development environments 
governed by such key development aspects. 

- ElasTest offers observability to the tester and a unique flexible testing platform 
able to perform rapid and accurate end-to-end testing, reducing the possibility 
of failures and bugs and at the same time increasing the quality of the resulting 
software product. The capability of ElasTest of reducing the time-to-market of 
the software products makes it a very competitor platform in the market of 
test automation. 

- ElasTest project promotes an open cloud platform for software testing. This 
allows the definition of reusable testing components/services. ElasTest 
platform has been hosted at GitHub as open source code under the Apache 2.0 
license. This ensures a good path for sustainability and enables the adoption of 
ElasTest services by many stakeholders fostering new business models and 
market penetration.  

- ElasTest has been successfully demonstrated on four different types of 
applications, including web, 5G mobile, real-time video communications and 
Internet-of-Things. This represents a good starting point for a future uptake of 
ElasTest in the market related to these areas. 

 

8 Conclusions 

This deliverable presented an update of the analysis of the state of the art performed 
in the second review period.  

The first part of the document covers a systematic review on the literature about cloud 
testing. Its main objective was to identify and classify all the documents and 
information belonging to informal sources (such as blogs, videos, white papers and 
web-pages) that are different from the academic ones addressed in D2.2 [7]. The 
results from the systematic survey of the grey literature showed a growing attention in 
the last years for testing in the cloud. With respect to the systematic review of the 
scientific literature presented in D2.2 [7] and [6], the primary studies of our grey 



D2.4 SotA revision document v2 

 

98 

 

literature review revealed a great interest for the test perspectives and test domains 
as well for testing services and tools mainly devoted in validating performance aspects. 
The intent of the analyzed studies is to identify practical issues in the development and 
usage of cloud testing focusing on test execution and test evaluation. These outcomes 
evidence the different audience of the grey literature (i.e., practitioners, and software 
developers) with respect to that of the scientific literature (i.e., researchers mostly 
from academia). These results also confirmed that ElasTest is in line with the trends 
and goals of the current software development environments. Indeed, the 
comprehensive ElasTest cloud platform is able to address several of the dimensions 
highlighted by the grey literature survey; among the others there are the capabilities 
to manage test configuration and execution in the cloud and to validate performances 
and other non-functional properties such as reliability, security and scalability.  

As expected, the review of the technical SoTA during this second observation period 
did not raise a large number of tools: neither new or that presented major updates. In 
addition, there were also technological areas that did not spot any new contribution 
with respect to what already presented in D2.2 [7]. For the sake of completeness, 
Table 28 recaps, for each technological area, the overall contribution that ElasTest 
brought to the technical SotA. Specifically, the table reports an overview of all the 
project outcomes and progresses covered by both D2.2 [7], and this deliverable. As a 
general outcome from the analysis of the technological areas, the SotA evidenced a 
lack of a comprehensive platform aimed to end-to-end testing of large complex cloud 
applications. ElasTest fills this lack by providing such a general platform for automating 
testing all along the test process cycle, including SUT deployment, test design and 
execution, SUT monitoring during test run, and reporting of test results, as well as 
considering different domain such as web applications, mobile, WebRTC, and so on. 

The overview of the research projects related to ElasTest revealed several effective 
and potential relations with other projects. In particular, the scientific and 
technological outcomes from both ElasTest and its related projects could be 
potentially combined in order to enhance the efficiency and effectiveness of 
automation in the testing process. Moreover, the open-source features of the ElasTest 
platform are public available and they could be fruitfully exploited by other 
researchers, companies, and practitioners involved in other research projects. 

Finally, market analysis in this second review period revealed increasing investments in 
testing of IT systems which demand for competitive automated solutions in cloud 
testing. These aspects can positively impact on the exploitation of ElasTest results. 

 

9 References 

[1] ElasTest project Description of Action (DoA) – part B. Amendment 1. Reference 
Ares (2017)343382. 23 January 2017. 



D2.4 SotA revision document v2 

 

99 

 

[2] Garousi, Vahid, Michael Felderer, and Mika V. Mäntylä. Guidelines for including 
grey literature and conducting multivocal literature reviews in software 
engineering. Information and Software Technology, 106 (2019): 101-121. 

[3] B. Kitchenham and S. Charters. Guidelines for performing Systematic Literature 
Reviews in Software Engineering. 2007. 

[4] Q. Li. A novel likert scale based on fuzzy sets theory. Expert Systems with 
Applications 40 (5) (2013) 1609-1618. 

[5] W. J. Tastle, M. J. Wierman. Consensus and dissention: A measure of ordinal 
dispersion. International Journal of Approximate Reasoning 45 (3) (2007) 531- 545. 

[6] Antonia Bertolino, Guglielmo De Angelis, Micael Gallego, Boni García, Francisco 
Gortázar, Francesca Lonetti, Eda Marchetti. A Systematic Review on Cloud Testing. 
ACM Comput. Surv. 52(5): 93:1-93:42 (2019) 

[7] ElasTest Project. D2.2 SotA revision document v1 (06/30/18) 
https://elastest.eu/deliverables.html 

[8] Cloud Testing - Market Analysis, Trends, and Forecasts Report. Global Industry 
Analysts, Inc. ID: 4804261 October 2019. 
https://www.researchandmarkets.com/publication/mzrqiu6i7/4804261 

[9] Arnal Dayaratna. IDC's Worldwide Developer Census. 2018: Part-Time Developers 
Lead the Expansion of the Global Developer Population. October 2018. 
https://www.idc.com/getdoc.jsp?containerId=US44363318 

[10]  Stackoverflow. https://es.stackoverflow.com/ 
[11]  Global Software Testing Services Market Size, Status and Forecast 2019-2025 
[12] Melinda-Carol Ballou. Worldwide Automated Software Quality Forecast, 2018–

2022: Growth Driven by Continuous Testing and DevOps Demand. IDC Market 
Forecast. June 2018 https://www.idc.com/getdoc.jsp?containerId=US42652718 

[13]  451 Research. Top 10 Trends for 2019. https://go.451research.com/Top-10-IT-
Trends-For-2019.html 

[14]  API Testing Market by Component (API Testing Software/Tools and API Testing 
Services), Deployment Type (Cloud Based and On-Premises), Vertical, and Region - 
Global Forecast to 2022"  
https://www.marketsandmarkets.com/PressReleases/api-testing.asp 

[15]  MarketsandMarkets. Automation Testing Market by Component, Services, 
Endpoint Interface, Organization Size, Vertical And Region - Global Forecast to 
2024. September 2019. https://www.reportlinker.com/p05377128/Automation-
Testing-Market-by-Technology-Testing-Type-Service-Endpoint-Interface-And-
Region-Global-Forecast-to.html?utm_source=PRN 

[16]  Capgemini. World Quality Report 2019-20. The future of quality assurance and its 
role in maximizing growth. https://www.capgemini.com/research/world-quality-
report-2019/ 

[17] Boni García, Francisco Gortázar, Micael Gallego and Eduardo Jiménez. User 
Impersonation as a Service in End-to-End Testing. Proceedings of the 6th 
International Conference on Model-Driven Engineering and Software Development 
(MODELSWARD 2018), pp. 707-714 

https://elastest.eu/deliverables.html
https://www.researchandmarkets.com/publication/mzrqiu6i7/4804261
https://www.idc.com/getdoc.jsp?containerId=US44363318
https://es.stackoverflow.com/
https://www.idc.com/getdoc.jsp?containerId=US42652718
https://go.451research.com/Top-10-IT-Trends-For-2019.html
https://go.451research.com/Top-10-IT-Trends-For-2019.html
https://www.marketsandmarkets.com/PressReleases/api-testing.asp
https://www.capgemini.com/research/world-quality-report-2019/
https://www.capgemini.com/research/world-quality-report-2019/


D2.4 SotA revision document v2 

 

100 

 

[18] S. Luan, D. Yang, K. Sen, and S. Chandra. Aroma: Code Recommendation via 
Structural Code Search. ArXiv181201158 Cs, Dec. 2018. 

[19] S. Panichella. Summarization techniques for code, change, testing, and user 
feedback (Invited paper). In Proc. of IEEE Workshop on Validation, Analysis and 
Evolution of Software Tests (VST), 2018, pp. 1–5. 

[20]  C. Wang, Y. Jiang, X. Zhao, X. Song, M. Gu, and J. Sun. Weak-Assert: A Weakness-
Oriented Assertion Recommendation Toolkit for Program Analysis. In Proc. of  
IEEE/ACM 40th International Conference on Software Engineering: Companion 
(ICSE-Companion), 2018, pp. 69–72. 

[21] S. Hotomski and M. Glinz. GuideGen: a tool for keeping requirements and 
acceptance tests aligned. In Proc. of the 40th International Conference on 
Software Engineering Companion Proceedings - ICSE ’18, Gothenburg, Sweden, 
2018, pp. 49–52. 

[22] R. Ibarra and G. Rodriguez. SoTesTeR: Software Testing Techniques’ Recommender 
System Using a Collaborative Approach. In Information Management and Big Data, 
2019, pp. 289–303 

[23] Magda Kacmajor, Francesca Lonetti. Recommender systems applied to software 
testing: A systematic literature review. To be submitted to Journal of Systems and 
Software. 

[24] Cheers, Boni García, Francesca Lonetti, Micael Gallego, Breno Miranda, Eduardo 
Jiménez, Guglielmo De Angelis, Carlos Eduardo Moreira Dos Santos, Eda Marchetti. 
A Proposal to Orchestrate Test Cases. QUATIC 2018: 38-46 

[25] ElasTest Project. D2.3 ElasTest requirements, use-cases and architecture v1 
(06/30/18) https://elastest.eu/deliverables.html 

[26] ElasTest Project. D4.3 Test Orchestration basic toolbox v2 (31/12/19) 
https://elastest.eu/deliverables.html 

[27] ElasTest Project D4.4 Test recommendation engines v2 (31/12/19) 
https://elastest.eu/deliverables.html 

[28] ElasTest Project D5.1 ElasTest Test Support Services v1 (06/30/18) 
https://elastest.eu/deliverables.html 

[29] ElasTest Project D8.2 ElasTest dissemination plan and activities v1 (06/30/18) 
https://elastest.eu/deliverables.html 

[30] ElasTest Project D4.2 Test recommendation engines v1 (06/30/18) 
https://elastest.eu/deliverables.html 

[31] ElasTest Project D3.1 ElasTest Platform cloud modules v1 (06/30/18) 
https://elastest.eu/deliverables.html 

[32] ICT Spending Forecast. 2018 - 2022 Forecast. https://www.idc.com/promo/global-
ict-spending/forecast 

[33] Cloud Computing Market.  Cloud Computing Market by Service Model 
(Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a 
Service (SaaS)), Deployment Model (Public, Private, and Hybrid), Organization Size, 
Workload, Vertical, and Region - Global Forecast to 2023. 
https://www.marketsandmarkets.com/Market-Reports/cloud-computing-market-
234.html 

https://elastest.eu/deliverables.html
https://elastest.eu/deliverables.html
https://elastest.eu/deliverables.html
https://elastest.eu/deliverables.html
https://elastest.eu/deliverables.html
https://elastest.eu/deliverables.html
https://elastest.eu/deliverables.html
https://www.idc.com/promo/global-ict-spending/forecast
https://www.idc.com/promo/global-ict-spending/forecast
https://www.marketsandmarkets.com/Market-Reports/cloud-computing-market-234.html
https://www.marketsandmarkets.com/Market-Reports/cloud-computing-market-234.html


D2.4 SotA revision document v2 

 

101 

 

[34] Automation Testing Market. Automation Testing Market worth $28.8 billion by 
2024.https://www.marketsandmarkets.com/PressReleases/automation-esting.asp 

[35] World Quality Report 2019-20. The future of quality assurance and its role in 
maximizing growth. https://www.capgemini.com/research/world-quality-report-
2019/ 

[36] Gartner Report: Kubernetes and Container Security and Adoption Trends. 
https://www.stackrox.com/kubernetes-adoption-and-security-trends-and-market-
share-for-containers/ 

[37] Datanyze Universe https://www.datanyze.com/market-share/ci/jenkins-market-
share 

[38] Capgemini. World Quality Report. Lack of alignment between business goals and 
quality ambitions impedes Agile and DevOps adoption. 31 October 2019 
https://www.capgemini.com/news/world-quality-report-19/ 

 

https://www.capgemini.com/research/world-quality-report-2019/
https://www.capgemini.com/research/world-quality-report-2019/
https://www.stackrox.com/kubernetes-adoption-and-security-trends-and-market-share-for-containers/
https://www.stackrox.com/kubernetes-adoption-and-security-trends-and-market-share-for-containers/
https://www.datanyze.com/market-share/ci/jenkins-market-share
https://www.datanyze.com/market-share/ci/jenkins-market-share
https://www.capgemini.com/news/world-quality-report-19/

