

 D2.5
Version 1.1

Author TUB

Dissemination PU

Date 31-12-2019

Status FINAL

D2.5 ElasTest requirements, use-cases and
architecture v2

Project acronym ELASTEST

Project title ElasTest: an elastic platform for testing complex distributed
large software systems

Project duration 01-01-2017 to 31-12-2019

Project type H2020-ICT-2016-1. Software Technologies

Project reference 731535

Project website http://elastest.eu/

Work package WP2

WP leader TUB

Deliverable nature PUBLIC

Lead editor Varun Gowtham

Planned delivery date 31-12-2019

Actual delivery date 27-12-2019

Keywords Open source software, cloud computing, software
engineering, operating systems, computer languages,
software design & development

Funded by the European Union

http://elastest.eu/

D2.5 ElasTest requirements, use-cases and architecture v2

2

License

This is a public deliverable that is provided to the community under a Creative
Commons Attribution-ShareAlike 4.0 International License:

http://creativecommons.org/licenses/by-sa/4.0/

You are free to:

Share — copy and redistribute the material in any medium or format.

Adapt — remix, transform, and build upon the material for any purpose, even
commercially.

The licensor cannot revoke these freedoms as long as you follow the license
terms.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license,
and indicate if changes were made. You may do so in any reasonable manner,
but not in any way that suggests the licensor endorses you or your use.

ShareAlike — If you remix, transform, or build upon the material, you must
distribute your contributions under the same license as the original.

No additional restrictions — You may not apply legal terms or technological
measures that legally restrict others from doing anything the license permits.

Notices:

You do not have to comply with the license for elements of the material in the
public domain or where your use is permitted by an applicable exception or
limitation.

No warranties are given. The license may not give you all of the permissions
necessary for your intended use. For example, other rights such as publicity,
privacy, or moral rights may limit how you use the material.

For a full description of the license legal terms, please refer to:

http://creativecommons.org/licenses/by-sa/4.0/legalcode

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/legalcode

D2.5 ElasTest requirements, use-cases and architecture v2

3

Contributors

Name Affiliation

Francisco Gortázar Bellas URJC

Micael Gallego Carrillo URJC

Orlando Avila García ATOS

Varun Gowtham TUB

Eduardo Jiménez URJC

Version history

Version Date Author(s) Description of changes

0.0 11-10-2019 Orlando Avila
García,

Francisco
Gortázar
Bellas,

Varun
Gowtham

Final ToC

0.1 27-11-2019 Varun
Gowtham

Add initial content

0.2 02-12-2019 Eduardo
Jiménez

Release mappings and high-level to
technical requirements mapping.

0.3 11-12-2019 Varun
Gowtham

Add requirements table

0.4 12-12-2019 Francisco
Gortázar

Add architecture diagrams. Conclusions.
High level requirements.

0.5 16-12-2019 Varun
Gowtham

Formatting and editing

0.6 18-12-2019 Francisco
Gortázar
Bellas,

Micael Gallego
Carrillo

Internal deliverable review

1.0 27-12-2019 Varun
Gowtham

Formatting and editing

1.1 27-12-2019 Varun
Gowtham

Formatting and preparation of final
version.

D2.5 ElasTest requirements, use-cases and architecture v2

4

Table of contents

1 Executive summary ... 8

2 Introduction .. 8
2.1 Core Concepts and design principles ... 9
2.2 Structure of the document... 9

3 Methodology .. 10
3.1 ElasTest Architecture (Functional Architecture) .. 11
3.2 Roadmap .. 15
3.3 Traceability ... 23

4 Use cases and requirements .. 24

5 Architecture .. 35

6 Conclusion .. 38

7 References .. 39

8 ANNEX .. 40

List of figures

Figure 1 ElasTest agile methodology ... 10

Figure 2 Conceptual representation of the ElasTest architecture and its relation with the SuT.
 ... 12

Figure 3 Functional architecture overview of the ElasTest platform. ... 13

Figure 4 Architecture reference - support systems overview ... 35

Figure 5. ElasTest Mini architecture diagram.. 36

Figure 6. ElasTest EK architecture diagram ... 37

Figure 7. ElasTest HEK architecture diagram .. 38

Figure 8. A TJob deployed through two different nodes (worker1 and worker2) 38

List of tables

Table 1 Building blocks of ElasTest. ... 14

Table 2 ElasTest roadmap summary ... 17

Table 3 Internal to public release mapping ... 23

Table 4 High level requirements table provided by vertical demonstrators 26

Table 5 Technical Requirements List - ElasTest Core Components .. 40

Table 6 Technical requirements list - ElasTest Test Support Services... 64

Table 7 Technical requirements list - ElasTest Test Engines ... 73

Table 8 Technical requirements list - ElasTest Integrations with External Tools 81

D2.5 ElasTest requirements, use-cases and architecture v2

5

Glossary of acronyms

Acronym Definition

CI (Continuous Integration) This refers to the software development practice
with that name.

FOSS (Free Open Source
Software)

This refers to software released under open source
licenses.

IaaS (Infrastructure as a Service),
PaaS (Platform as a Service),
SaaS (Software as a Service),

MaaS (Mobile as a Service) and

Baas (Browser as a Service).

This refers to different models of exposing cloud
capabilities and services to third parties.

Instrumentation This refers to extending the interface exposed by a
software system for achieving enhanced
controllability (i.e. the ability to modify behavior
and runtime status) and observability (i.e. the
ability to infer information about the runtime
internal state of the system).

QoS (Quality of Service) and QoE
(Quality of Experience)

In this proposal, QoS and QoE refer to
nonfunctional attributes of systems. QoS is related
to objective quality metrics such as latency or
packet loss. QoE is related to the subjective quality
perception of users. In ElasTest, QoS and QoE are
particularly important for the characterization of
multimedia systems and applications through
custom metrics.

SiL (Systems in the Large) A SiL is a large distributed system exposing
applications and services involving complex
architectures on highly interconnected and
heterogeneous environments. SiLs are typically
created interconnecting, scaling and orchestrating
different SiS. For example, a complex microservice-
architected system deployed in a cloud
environment and providing a service with elastic
scalability is considered a SiL.

SiS (Systems in the Small) SiS are systems basing on monolithic (i.e. non
distributed) architectures. For us, a SiS can be seen
as a component that provides a specific functional
capability to a larger system.

SuT (Software under Test) This refers to the software that a test is validating.
In this project, SuT typically refers to a SiL that is
under validation.

TO (Test Orchestration) The term orchestration typically refers to test

D2.5 ElasTest requirements, use-cases and architecture v2

6

orchestration understood as a technique for
executing tests in coordination. This should not be
confused with cloud orchestration, which is a
completely different concept related to the
orchestration of systems in a cloud environment.

TORM (Test Orchestration and
Recommendation Manager)

Is an ElasTest functional component that abstracts
and exposes to testers the capabilities of the
ElasTest orchestration and recommendation
engines.

TJob (Testing Job) We define a TJob as a monolithic (i.e. single
process) program devoted to validating some
specific attribute of a system. Current Continuous
Integration tools are designed for automating the
execution of TJobs. TJobs may have different
flavors such as unit tests, which validate a specific
function of a SiS, or integration and system tests,
which may validate properties on a SiL as a whole.

TiL (Test in the Large) A TiL refers to a set of tests that execute in
coordination and that are suitable for validating
complex functional and-or non-functional
properties of a SiL on realistic operational
conditions. We understand that a TiL can be
created by orchestrating the execution of several
TJobs.

Test Support Service (TSS) We define a TSS as a tool which aides in the
implementation of tests in different contexts.

ETM (ElasTest Tests Manager) A core component of ElasTest.

EPM (ElasTest Platform
Manager)

A core component of ElasTest.

ESM (ElasTest Service Manager) A core component of ElasTest.

EDM (ElasTest Data Manager) A core component of ElasTest.

EIM (ElasTest Instrumentation
Manager)

A core component of ElasTest.

ECE (ElasTest Cost Engine) A test engine provided by ElasTest.

ERE (ElasTest Recommendation
Engine)

A test engine provided by ElasTest.

EQE (ElasTest Question &
Answer Engine)

A test engine provided by ElasTest.

EOE (ElasTest Orchestration
Engine)

A test engine provided by ElasTest.

EUS (ElasTest User Emulator
Service)

A test support service provided by ElasTest.

D2.5 ElasTest requirements, use-cases and architecture v2

7

EDS (ElasTest Device Emulator
Service)

A test support service provided by ElasTest.

ESS (ElasTest Security Service) A test support service provided by ElasTest.

EBS (ElasTest Big-Data Service) A test support service provided by ElasTest.

EMS (ElasTest monitoring
Service)

A test support service provided by ElasTest.

ET (ElasTest ToolBox) A toolbox provided to deploy ElasTest with
external tools.

EJ (ElasTest Jenkins Plugin) A plugin provided for integration of ElasTest
Jenkins CI System.

CRUD (Create Read Update
Delete)

Standard operations that can be performed on/to
a software.

DoA (Description of Action) A document which lists and described the actions
to be performed in a project.

FMC (Fundamental Modelling
Concepts)

Framework that provides comprehensive
description of software intensive systems.

UML (Unified Modelling
Language)

A general purpose, developmental, modelling
language in the field of software engineering.

AWS (Amazon Web Services) A cloud services platform.

AAA (Authentication,
authorization and accounting)

Is a framework for intelligently controlling access
to computer resources, enforcing policies, auditing
usage and providing the information to bill for
services.

API (Application Programming
Interface)

A set of functions and procedures that allow the
creation of applications which access the features
or data of an operating system, application, or
other service.

UI (User Interface) and

GUI (Graphical User Interface)

The UI is an information device which a user can
use to interact with a machine. Similarly, GUI is a
type of UI that allows users to interact with
electronic devices through graphical icons and
visual indicators.

OAI (Open API Initiative) An effort to standardize the description of REST
API.

Release Management Meeting
(RMM)

Face to face meeting held by the consortium at the
end of a 4 month agile development cycle.

D2.5 ElasTest requirements, use-cases and architecture v2

8

1 Executive summary

ElasTest is a cloud platform designed for helping developers to test and validate large
software systems while maintaining compatibility with current continuous integration
practices and tools. The platform embraces a microservice like architecture,
collectively providing facilities for the tester to deploy testing processes as separate
entities. A combination of such testing processes can be leveraged or reused to form a
larger testing process which counters the monolithic testing approach.

This deliverable, outlines the efforts invested as part of tasks 2.2 and 2.3 during the
second term of the project and extends the previous deliverable D2.3 presented at
M18. Emphasis has been given to document traceability of requirements that has
enriched the platform. An updated architecture diagram of the platform is presented.

2 Introduction

Nowadays, complex large software systems are proliferating due to the commodity of
cloud and the need of elastic applications which pushes developers towards resilient
software architectures like microservices. In this project, we concentrate on testing
large software systems (i.e. SiL) created by the orchestration of simple components
(i.e. SiS). Typically, those software systems are validated using CI tools and
methodologies. This approach provides some minimal guarantees in relation to the
correctness of the functional properties of the software, but it has very relevant
limitations when evaluating other attributes of a software system in real production
environments. For example, whenever developers want to validate non-functional
features such as scalability, fault-tolerance or data consistency; they need to create
complex testing architectures customizing the cloud orchestration mechanisms and
managing test scalability by themselves. Things become even more complex when
trying to reproduce real-world operational conditions. For example, tasks such as
finding out how the system performs in real-networks (e.g. congestion, packet loss,
latency, etc.) or evaluating how latency and other QoE parameters degrade with the
number of users are relevant challenges. This becomes even more complex when
systems manage special types of traffic such as sensor data or multimedia
communications, which may follow complex binary protocols with real-time
requirements and where the evaluation of QoS and QoE requires complex data
processing.

ElasTest is an elastic cloud platform designed for helping developers to test and
validate SiL (see definitions above), while maintaining compatibility with current CI
practices and tools. For this, ElasTest bases on three principles:

- Instrumentation of SuT: ElasTest offers the facility to instrument the SuT
based on the tester requirements. Such SuTs can be deployed on a native
machine or on a cloud.

- Test Orchestration: ElasTest provides the facility to orchestrate one or more
TJobs that assess the SuT. The orchestration is at the heart of the platform able

D2.5 ElasTest requirements, use-cases and architecture v2

9

to apply novel techniques to form Test in Large (TiL) as a combination of TJobs.
Furthermore, it exploits the reuse of TJobs.

- Test Recommendation: To ease the tester’s job, ElasTest offers a novel solution
of recommending tests to a user. This feature optimizes the tester productivity.

These principles are complemented by a set of tools aimed at supporting testing on
different contexts:

- Browsers as a service, for UI testing.
- Emulators and actuators as a service, for testing of IoT applications.
- Security as a service, for assessing the security properties of large software

systems.
- Monitoring as a service, for providing dynamic probes in a domain specific

language capable of capturing the high level behaviour of the system and
raising alarms.

- Big Data as a service, for capturing and processing all the data of the different
services.

2.1 Core Concepts and design principles

The microservice in the context of ElasTest and the rest of the document is referred to
as component, this is due to the fact that we do not follow the microservice
architecture closely, and favor flexibility over formality. The platform is dynamic in
nature in which the composition of the platform depends on which components that
are active at any given time depending on the testing process (TJob) that is running.

The nomenclature of components and the relevance to ElasTest is detailed in Section
3.1. In this subsection we describe the basic principles used when designing the
individual components of ElasTest.

We followed a requirements-driven development in the project. The initial set of use
cases were taken as the basis to provide technical requirements for the components.
The Release Management Meetings (RMMs) which took place every 4 months in the
course of the project, helped to steer further requirements, based on agile
development methodology. The requirements generally were collected at two levels:

1. Platform level requirements provided by vertical demonstrators and end users
of the platform. The project also adopted requirements on prevailing
technologies in the market.

2. Technical requirements in general, aided in development of features from the
components such that one or more such technical requirements could address
a platform level requirement.

The RMMs enabled the consortium to align and plan development efforts until the
next RMM. This method of approach lead to the present architecture, as result of
series of evolution steps during the project.

2.2 Structure of the document

The rest of the document summarizes the efforts of objectives T2.2 and T2.3 together.
Section 3 elaborates on the agile methodology, together with explaining the resulting
evolution of the architecture based on decisions taken during periodic RMMs. Section

D2.5 ElasTest requirements, use-cases and architecture v2

10

4 documents the platform level and technical requirements. Section 5 documents the
architecture of the platform at month 36. Section 6 concludes the document with
emphasis on future research and lessons learned. Section 7 provides list of references
and section 8 provides the complete set of technical requirements of the components.

3 Methodology

Figure 1 shows the ElasTest agile methodology and its applications on the work
packages.

Figure 1 ElasTest agile methodology

The agile methodology selected is based on executing incremental iterations on a
Build-Measure-Learn feedback loop which validates that the implemented technology
is valuable and responds to real needs. On every of these iterations, the built
technologies are discussed between the technical WPs (WP3, WP4, WP5) and the
vertical demonstrators (WP7) in order to refine their roadmap.
The cycles have a duration of 4 months, we call each of these cycles a Release (R), a
total of 9 releases have been planned during the project duration. The development
tasks until R6 shall provide the platform validated in a lab, while the last 3 shall
demonstrate it through the vertical demonstrators.
During the first cycle we have focused on developing, based on our initial component
designs, proof and concepts as well as performing adaptations to the previous baseline
technologies/components in order to identify and start solving the integration issues
that the consortium were able to anticipate at this stage. Hence, in an initial stage
most components only implement a small subset of the requirements depicted in
section 4.2. Within the second cycle, and once the CI environment was ready, we have
focused mainly on providing value to the platform users by implementing the required
component functionalities while at the same time we organized regular meetings
keeping an eye on the market and vertical demonstrators needs, in order to maintain
the project aligned with the industry requirements. At month 18, we were able to

D2.5 ElasTest requirements, use-cases and architecture v2

11

cover four of these incremental cycles which include the release of the first integrated
version of the platform (Milestone5).
At month 36, we were able to cover the rest of the 5 release cycles, totally covering
nine release cycles.
In order to achieve our goals, common conventions and approaches have been agreed
within the consortium. You can find below the most relevant conventions:

- Fundamental Model Concept (FMC) has been selected to provide
understandable block diagrams of the platform as well as for each of the
submodules that constitutes the platform.

- Unified Modeling Language (UML) is the general-purpose modeling language
selected to define the Data Model diagrams and Sequence diagrams across the
components.

- Discussions are promoted across technical WPs in order to ensure that all
components have the same level of understanding on the platform. The
discussions have been organized in the following small working groups:

o Persistence Working Group
o Monitoring Working Group
o Test Management Working Group
o Data Management Working Group

- To facilitate the communication across developers, different Slack channels (#)
are used in the project.

- For the fine-grained management of the previous and ongoing tasks each WP
leader manages a Trello board.

- The platform is designed as a Service Oriented Architecture (SOA) where the
direct interaction between software modules uses to be synchronous through
REST APIs, however for certain cases the systems within ElasTest will be able to
react asynchronously based on events forwarded by other modules or systems
of the platform.

- The interactions and the information exchanged between components have
been captured early during the design phase through the specification of the
interfaces exposed by the components following the OpenAPI initiative.

- Software components releases follow Semantic Versioning approach which
proposes a simple set of rules and requirements that dictate how version
numbers are assigned and incremented.

3.1 ElasTest Architecture (Functional Architecture)

For the purpose of fluency in understanding, a functional architecture of the platform
is provided. A detailed architecture reference can be found in section 5.

ElasTest is a cloud platform designed for helping developers to test and validate large
software systems while maintaining compatibility with current continuous integration
practices and tools. For this, ElasTest bases on three principles:

1) Instrumentation of the software under test through observability and
controllability agents so that it reproduces real-world operational behavior.

2) Test orchestration combining intelligently testing units for creating a more
complete test suite.

D2.5 ElasTest requirements, use-cases and architecture v2

12

3) Test recommendation using machine learning and cognitive computing
techniques for recommending testing actions and providing testers with
friendly interactive facilities for decision making.

ElasTest enables developers to test large software systems through complex test suites
created by orchestrating simple testing units (so-called TJobs). This orchestration
mechanism is one of the main novelties of the ElasTest project and its precise
conception, formalization and consolidation is one of our main research objectives.
From the perspective of the tester, a TJob is software that, upon execution, performs
some testing actions against the software under test. From this perspective, the TJob is
a “testing unit”. In order of not to constrain the freedom and flexibility of the tester,
we do not assume any kind of property for the TJob neither from the technological (i.e.
language, framework, etc.) nor from the semantics perspective (i.e. model, behavior,
etc.) Our only assumption is that the TJob accepts some input parameters and that,
upon execution, generates an outcome (i.e. output parameters). The expected values
of such outcome constitute the TJob oracle.

The conceptual representation of the ElasTest architecture is shown in Figure 2.This
conceptual representation, created at the time of the proposal, was the starting point
of our architecture design. It consists of a number of software modules that testers
can install into public or private clouds.

Figure 2 Conceptual representation of the ElasTest architecture and its relation with the SuT.

A more detailed overview of the functional architecture of the ElasTest platform is
shown in Figure 3. The intermediate architecture design presented within this
document has been produced after accomplishing the procedures defined in the
methodology described in section 4.3 of this report. Both figures, the conceptual

D2.5 ElasTest requirements, use-cases and architecture v2

13

representation and the functional architecture overview are based on the
Fundamental Model Concept (FMC) which primarily provides a framework for the
comprehensive description of software-intensive systems. It is based on a precise
terminology and supported by a graphical notation which can be easily understood. In
order to know how to interpret the block diagrams and their communications, please
refer to the FMC cheat sheet [2].

Figure 3 Functional architecture overview of the ElasTest platform.

Table 1 illustrates the building blocks of the ElasTest system; the individual software
components of the platform maps with the blocks depicted in the aforementioned
figure, each of them constitutes a fine-grained SOA.

We envisaged the ElasTest platform to be implemented as a distributed and scalable
system, which allows the testing of large software systems created by the
orchestration of simple components. Nowadays, those large systems are mainly
validating the correctness of the software under evaluation using CI tools and DevOps
methodologies among other available options. Despite this, very relevant limitations
exist when we try to evaluate other attributes of the software such as non-functional
features in real production environments or real-world operational conditions.
ElasTest is a cloud platform designed for helping developers to test and validate large
software systems while maintaining compatibility with current continuous integration
practices and tools.

The resultant components are categorized as follows:
- ElasTest Core Components: These components constitute the enablers of the

platform. They have the responsibility of providing management mechanism
for the platform, the tests jobs and the software under evaluation.

- ElasTest Test Engines: The engines offer additional capabilities that can be used
by the platform or the test support services, thanks to our modular
architecture different engines may be plugged.

D2.5 ElasTest requirements, use-cases and architecture v2

14

- ElasTest Test Support Service (TSS): These comprise reusable cloud services
used to support the testing of the software under evaluation.

- ElasTest Integrations with External Tools: These comprise of the tools and
plugins used for integration of ElasTest with external tools.

Table 1 Building blocks of ElasTest.

Component Name Role

Core Components

Test Manager (ETM) It is the brain of ElasTest and the main entry point
for developers.

Platform Manager (EPM) It is the interface between ElasTest components
and the cloud infrastructure.

Platform Monitoring (EMP) It is a service that monitors the core components
of ElasTest platform.

Service Manager (ESM) It delivers, on request/demand, service instances
of particular service types.

Data Manager (EDM) It provides the persistence layer services for all
components.

Instrumentation Manager (EIM) It controls and orchestrates the agents that are
deployed on the software under test.

 Test Engines

Cost Engine (ECE) It estimates the cost to make developers cost
aware of running a test.

Recommendation Engine (ERE) It is a cognitive system designed to leverage
recommendations based on learned knowledge.

Question & Answer Engine (EQE) It accepts questions asked in natural language and
tries to identify user’s intentions and needs.

Orchestrator Engine (EOE) It orchestrates and executes in coordination a set
of TJobs for creating more complex test suite.

 Test Support Services

User Impersonation Service (EUS) It is devoted to provide the mechanism for
emulation of users in end-to-end tests.
Specifically, it provides web browsers to tests.

Device Emulator Service (EDS) It emulates devices used in Internet of Things (IoT)
applications.

Security Service (ESS) It facilitates the security testing of the software
under test.

Big-Data Service (EBS) It provides a scalable computing engine based on

D2.5 ElasTest requirements, use-cases and architecture v2

15

big-data technologies

Monitoring Service (EMS) It provides a monitoring service suitable for
inspecting the execution of the software under
test.

ElasTest Integrations with
External Tools

ElasTest Jenkins plugin It is devoted to provide the mechanism for using
ElasTest via Jenkins CI system.

ElasTest Toolbox This provides tools to install and configure
ElasTest in the easiest way possible.

The current architecture reference diagram can be found in a later diagram.

3.2 Roadmap

Release Management Meetings (RMM) were held at the end of every 4-month release
cycle. During the meeting, emphasis was laid on to discuss the learning from the
retrospective and came up with a roadmap for the next release. The roadmap took
into account the requirements from the vertical demonstrators within the project, and
the requirements from industries and market external to the project. Through the
course of RMMs, we were able to steer the project based on requirements through the
agile development methodology as shown in Figure 1. During the RMM and also
through our internal Slack communication channels, we were able to prioritize the
development of features based on the mandatory requirements for vertical
demonstrators and market. All in all, the second period revolved around three
different pillars:

 Support for verticals: in order to guarantee a proper evaluation of the project,
we paid special attention to the needs from our verticals. This involvement
allowed us to carefully plan the features needed in order to have everything in
place by the time the validation activities started (see D7.2 for a detailed
explanation of the different validation activities carried on.) It is worth noting
that manual testing is a big feature not considered in the project DoA but
developed in the context of the project to meet requirements of one of the
verticals.

 Elasticity: we focused on building elasticity within the platform. We steered
from building our own scheduler, to delegating to Jenkins to finally resorting to
Kubernetes.

 Observability and analytics: since the very beginning ElasTest was able to
gather data from the different services involved during the testing process.
However, we were lacking actionable visualizations of such data. During this
second period we focused on building an actionable UI that allowed end-users
to fast and easily find the cause of an error when tests failed. The term
observability has gained momentum in highly distributed systems to describe

D2.5 ElasTest requirements, use-cases and architecture v2

16

the availability of information that can be used to understand the system
behavior at runtime. We adapted and used it in the context of testing, and we
gave several talks about how ElasTest brings observability to the testing
process at different events (European Testing Conference, February 2019,
TestBash Brighton, April 2019, ExpoQA, June 2019, or Fuseco Forum, November
2019, among others).

A brief summary of the roadmap can be found in Table 2. The table summarizes the
following:

1. Document type: Specifies whether the directions towards a decision were
made available through the medium of meeting minutes of RMM or as an
internal communication.

2. Pivot or Persevere: During Release Management Meeting (RMM), the
consortium identifies if it is required to change direction by pivoting or pursue
in the given direction by method of persevering. It can be seen that in some
cases, both pivot and persevere directions appear.

3. Decision on architecture: Describes briefly what changes were introduced as a
consequence of agreeing on a pivot or persevere direction.

Table 2 ElasTest roadmap summary

Serial
Number

Document Date Pivot or Persevere Decisions on architecture Remarks

1 KO Meeting - Madrid 26th - 27th January 2017

 WP2 Requirements Initial architecture planning:
ElasTest platform requirements:
1.deploy and manage, T-Jobs
and TSSs.
2.Initial planning on service
manager to deploy TSS on
demand by the TJobs.
3. Uses Docker.

2 RMM-1 - Berlin 4th - 5th May 2017 Pivot - Use Docker and
hence microservice like
REST API approach

1. Components named per work
package.
2. Fix API for component.
3. CI system used to build the CI.
4. License badges and coverage
report.
5. Documentation on Github.

3 Roadmap - R2 25th August 2017 Initial integrated platform,
integrated core components,
TSS and engines.

https://docs.google.com/document/d/1IzO-XuQ9tJyRwUhVsN06EzL1LnwsieQ_zA3jhMxLJ_c/edit
https://docs.google.com/document/d/1ccUvlj-1ZpjRUbl4xVf-jdePwzQMKUlNssgUBdPhN0I/edit
https://docs.google.com/document/d/1GHCzs-8t14vR9yqHzjO3vL1NAJeksfbNz4YlyuZCm-A/edit
https://docs.google.com/document/d/18r9bCSzz-jwgfqvRuhDa2JlzivRVi5cpsN-TA0-Myp4/edit#heading=h.azkqmzkbon81

D2.5 ElasTest requirements, use-cases and architecture v2

18

4 RMM-2 - Madrid 5th – 6th September 2017 Persevere - Work on
integration

1. EPM integration with ETM,
ESM and EMP.
2. Monitoring integration
3. EBS integration
4. Persistence integration.
5. ESM integrates TSS using
elastestservice.json
6. Engines integration

5 Roadmap - R2.5 25th September 2017 Persevere - Lite version
to have demonstrable
platform by December
2017

Platform features:
1. Web browsers
2. Log analysis
3. Jenkins integration
4. TJobs

ElasTest-Lite available.

6 Roadmap - R3 29th November 2017 Persevere - Work on
full-fledged platform

Assign specific tasks to each
component towards complete
integration.

Beta versions
published in R3,
focusing on
development in
shorter mini-cycles.

7 RMM-3 - Pisa 10th – 11th January 2018 Persevere -
1. Components improve
pending action points

1. Suggestion, if EMS can be
used for TJob orchestration.
2. Components show their

https://docs.google.com/document/d/1UYr8r6uFSR0NPYx0DwPgioX2bsUQhhnKAg-lWtP3Wek/edit#heading=h.gjdgxs
https://docs.google.com/document/d/18r9bCSzz-jwgfqvRuhDa2JlzivRVi5cpsN-TA0-Myp4/edit#heading=h.cqobyvqg9v43
https://docs.google.com/document/d/18r9bCSzz-jwgfqvRuhDa2JlzivRVi5cpsN-TA0-Myp4/edit#heading=h.nc9m3fhvp2r
https://docs.google.com/document/d/1sfG_M9WeLTZ5wByXbBARq87sRdZOXbKwr3zdEpN1ia0/edit#heading=h.gjdgxs

D2.5 ElasTest requirements, use-cases and architecture v2

19

2. EPM to plan on
clusterization.

Pivot -
1.Test Link integration
for ATOS vertical
2. EOE planning on
supporting FOKUS
vertical.
3. Toolbox

working on nightly.
3. Proposal for AAA from ESM.

8 RMM-4 Madrid 3rd – 4rd May 2018 Pivot:
1. Test orchestration
2. Test link and Jira
integration?
3. JMeter

1. AAA proposal and discussion
2. Multitenancy proposal
3. EMS integration
4. ECE cost model integration

9 RMM-5 Barcelona 27th – 28thSeptember 2018 Pivot:
1. Platform testing 2
phases. Plan Jenkins
integration and
empirical survey
2. Map tests with
requirements
3. Test orchestration
4. Test prioritization

1. Plugins as a collective name
for services and engines.
2. EOE configurations and high
level management of TJobs.
3. EPM proposal for
clusterization.

1. More tests needed
because requirements
are not covered.

https://docs.google.com/document/d/1Nj9VIVrdESsa1f9qki1-o3cSCItlFxaYrti33PJmh5g/edit#heading=h.gjdgxs
https://docs.google.com/document/d/1dlSpS-J-nX5xPiaCvR03HVK_Qsn8I22SZxigF45zRoE/edit

D2.5 ElasTest requirements, use-cases and architecture v2

20

5. Mandatory features
for QoE for Naevatec

10 Roadmap - R6 28th November 2018 Pivot - Initial efforts on
Kubernetes cluster

EPM initial efforts on
Kubernetes.

11 RMM-6 Madrid 15th – 16th January 2019 Pivot - Towards
Kubernetes in the
requirements

Component demo shown in
preparation for QE.

11 Roadmap - R7a 7th February 2019 1. Include all project
components in ElasTest 1.0
2. Document all user-visible
components
3. ElasTest available in 3 flavors:
mini, singlenode and cluster
(multi-node and kubernetes)

12 Roadmanp - R7b 10th April 2019 1. SuT deployment as
Kubernetes app.
2. Deploy ElasTest as
Kubernetes cluster using helm
charts similar to Docker
compose.
3. Compare several independent

https://docs.google.com/document/d/18r9bCSzz-jwgfqvRuhDa2JlzivRVi5cpsN-TA0-Myp4/edit#heading=h.ffo70jhbenjc
https://docs.google.com/document/d/1h9FKxoWxlIB5aXJ_0u3_kjr08p_zJfUcBM9LRzGboHA/edit
https://docs.google.com/document/d/18r9bCSzz-jwgfqvRuhDa2JlzivRVi5cpsN-TA0-Myp4/edit#heading=h.rohjymb0ttci
https://docs.google.com/document/d/18r9bCSzz-jwgfqvRuhDa2JlzivRVi5cpsN-TA0-Myp4/edit#heading=h.uj7ku56wvrg4

D2.5 ElasTest requirements, use-cases and architecture v2

21

executions - required by 5G
vertical.
4. Send test container start and
end events to ECE.
5. Allow using EMS with
external SuT
6. Stop saving metrics in
external SuT when TJob has
finished its execution.
7. TestLink integration
8. EUS - exploring WEBRTC QoE
support (delayed)
9. EPM : polish management of
elastic Kubernetes cluster,
decide on EPM API to deploy
docker-compose TSS in
Kubernetes or not, execute
some load tests to show
elasticity.

13 RMM-7 Athens 22nd – 23rd May 2019 Persevere - EPM
Kubernetes integration
with ETM, ESM

1. Key improvements to
platform esp. log analyzer and
usability.

14 RMM-8 Madrid 3rd - 4th September 2019 Persevere – Kubernetes
integration

1. Platform features frozen
2. Elasticity in progress and

https://docs.google.com/document/d/1h9FKxoWxlIB5aXJ_0u3_kjr08p_zJfUcBM9LRzGboHA/edit
https://docs.google.com/document/d/14pXDEnfn0gbujKclwCemXYIgu-uaELod9qq2o0KlnZM/edit

D2.5 ElasTest requirements, use-cases and architecture v2

22

components to adopt to
Kubernetes
3. Planned for final review

The envisioned 9 release (R1-R9) cycles have been finished at the end of month 36.
These releases were mainly referred to as the internal releases. However, during the
course of the certain internal release cycles were provided as public releases. The
public release documentation can found online on ElasTest website1. A mapping of
internal releases with public release during the second period is provided in the
following table.

Table 3 Internal to public release mapping

Internal Release Number Public Release Number Release date

R5 0.9.1 09/05/2018

R5 1.0.0-beta1 12/09/2018

R6 1.0.0-beta2 04/10/2018

R6 1.0.0-beta3 31/10/2018

R6 1.0.0-beta4 03/12/2018

R6 1.0.0-beta5 20/12/2018

R7a 1.0.0-beta6 23/01/2019

R7a 1.0.0-beta7 31/01/2019

R7a 1.0.0 13/02/2019

R7b 1.0.1 19/02/2019

R7b 1.1.0 01/03/2019

R7b 1.2.0 07/03/2019

R7b 1.3.0 20/03/2019

R7b 1.3.1 28/03/2019

R7b 1.4.0 08/04/2019

R7b 1.4.1 09/04/2019

R7b 1.5.0 29/04/2019

R8 2.0.0 15/10/2019

R8 2.0.1 22/10/2019

R8 2.1.0 14/11/2019

At the end of month 36, the project has completed all milestones available in the
Description of Action (DoA). A more detailed explanation can be found in deliverables
of WP6 [3].

3.3 Traceability

In a nut shell, the development efforts carried out in the project, used a requirement
driven approach. In other words, that is any feature available in the platform can be
traced to a set of one or more requirements. The requirements can be classified as
follows:

1 https://elastest.io/docs/releases/

D2.5 ElasTest requirements, use-cases and architecture v2

24

1) High-level requirements: These requirements are related to the platform in
general, typically requested from end users of the platform such the vertical
demonstrators, stakeholders and market trends. Therefore, we can further sub-
divide the high level requirements into:

a. Requirements from vertical demonstrators: Platform features
requested by the 4 vertical demonstrators in the project for carrying out
validation experiments in WP7.

b. Requirements from stakeholders and market: Platform features added
or requested from outside the project. These requirements were
collected from external users interested in the project or added by the
project based on the market trends.

2) Low-level technical requirements: A set of one or more low-level requirements
drive the implementation details of a high-level requirement. A single low-level
requirement also called as component requirement is specific to a component,
which enhances the features offered by a component.

While it is possible to provide features corresponding to a requirement, either at
platform or component level, it is also important to validate such features. To this end,
we used a common requirements spreadsheet in cooperation with WP6 and WP7.
Component owners were able to build specific tests and validate the component
requirements through tests developed as part of efforts from WP6. From WP7, the
vertical demonstrators were able to validate the availability of the requested high level
requirements. Furthermore, the validation of high-level requirements from market
was validated internally.

Fine grained details of traceability of requirements can be found in section 4.

4 Use cases and requirements

In the earlier phases the use cases listed in section 3 of D2.3, served as a generic set of
use cases for the platform, defining a framework that enables end-user interaction
with the platform. Based on the explanation given in subsection 3.3, in this section we
document the requirements collected in the duration of the project, which were
collected in the form of tables and coordinated in the consortium using a common
spreadsheet. SMART criteria2 was used in documenting the requirements such that
they are specific and measurable. A general structure of table for requirements
documentation is provided below:

1) Column [1]: ID: A unique identification string given to each requirement. Using
this unique string it is possible to trace the origin of the requirement. For
example, ETM1, is the 1st requirement of the ETM core component of ElasTest.

2) Columns [2-5]: User Story: The user story is presented as title on column 2,
followed by columns 3 to 5, explaining user story in 3 parts which are; which
type of user, what goal is to be achieved and for what reason.

2 SMART criteria, https://en.wikipedia.org/wiki/SMART_criteria

D2.5 ElasTest requirements, use-cases and architecture v2

25

3) Column [6]: Status: Specifies the status of requirement which can be assigned
one of the following status:

a. AVAILABLE: The requirement was made available as feature and
adopted into the platform.

b. BACKLOG: The requirement is planned to be made available in the
future.

c. PROGRESS: The requirement is currently in the phase of
implementation.

d. DROPPED: The requirement, though documented, may not be
important and therefore has been dropped.

4) Column [7]: Release: Specifies which internal release, the feature specified by
the requirement is made available or will be made available, corresponding to
the value in the column [6] Status.

5) Column [8]: Technical Requirement ID: This is a special column that
differentiates between technical requirements and high level requirements. It
lists one or more identification strings of the technical requirements of
components, that make the requested feature available in the platform. The
high level requirements which are not available are marked, “Not
implemented” in Table 4.

We present the following requirements tables:

1) Table 4: Requirements from vertical demonstrators: This table lists
requirements from the four vertical demonstrators. The requirement ID strings
can be shortly summarized as follows:

a. Requirements ID from IIoT demonstrator from TUB, starts with the
string “IIoT”.

b. Requirements ID from WebRTC demonstrator from NAEVATEC, starts
with the string “NAEVA”.

c. Requirements ID from online banking demonstrator from ATOS, starts
with the string “ATOS”.

d. Requirements ID from 5G demonstrator from FOKUS, starts with the
string “FOKUS”.

2) Table 5: Requirements provided by core component owners to enable features
in the platform.

3) Table 6: Requirements provided by component owners of the test support
services (TSSs), to enable features required to configure TJobs.

4) Table 7: Requirements provided by the component owners of the test engines
(TEs), to enable features into the platform.

5) Table 8: Requirements from component owners which enable integrations with
external tools such as Jenkins.

Table 4 High level requirements table provided by vertical demonstrators

ID Title As a <type of user> I want <some goal> so that <some
reason>

Status Expected
Release

Technical
Requirement
ID

IIoT-1 Provide a variety of basic
sensors

ElasTest
User

a manifest of emulated
sensors

I can use them in
my application
towards building
an IIoT
application

AVAILABLE R3 EDS9

IIoT-2 Provide device models ElasTest
User

a method to change the
behavior of the devices

I can test my IIoT
application with
varying inputs in
run time.

AVAILABLE R3 EDS11

IIoT-3 Keep the SuT initiated by
ElasTest alive instead of
terminating it on termination
of TJob

ElasTest
User

a way to keep a live SuT
initiated by ElasTest

I can use the
same SuT across
multiple TJobs
initiated across
different
timelines.

BACKLOG - Not
implemented

IIoT-4 Ability to launch multiple TJobs
on a single SuT

ElasTest
User

a way to launch multiple
TJobs on a single SuT in
ElasTest

I can test
different
methods on the
same SuT
simultaneously.

BACKLOG - Not
implemented

D2.5 ElasTest requirements, use-cases and architecture v2

27

ID Title As a <type of user> I want <some goal> so that <some
reason>

Status Expected
Release

Technical
Requirement
ID

IIoT-5 Provide the ability to request
devices

ElasTest
User

the ability to request
emulated devices

I can use them in
my IIoT
application.

AVAILABLE R4 EDS3

IIoT-6 Provide the ability to form IIoT
applications with emulated
devices

ElasTest
User

the ability to wire the
emulated devices

I can use them
with an
application logic

AVAILABLE R4 EDS4

IIoT-6 Provide ability to dynamically
reconfigure the behavior of
emulated devices during run
time

ElasTest
User

the ability to dynamically
reconfigure the
emulated devices during
run time

I can inject faults
into the system
dynamically.

AVAILABLE R4 EDS11

NAEVA-Web-
01

Copy TJobs from one project to
another

ElasTest
User

Copy TJobs from one
project to another

So I can even
reuse the whole
TJob

BACKLOG - Not
implemented

NAEVA-Web-
02

Browser and version selection ElasTest
User

to select from the TJob
Matrix the Browsers and
versions to tests

I can reuse one
single TJob and
TestSuite to test
multiple
configurations
and
compatibilities.

AVAILABLE R4 ETM32

D2.5 ElasTest requirements, use-cases and architecture v2

28

ID Title As a <type of user> I want <some goal> so that <some
reason>

Status Expected
Release

Technical
Requirement
ID

NAEVA-Web-
03

Compare TJob execution
against different SuTs

ElasTest
User

to select in the TJob
Matrix the Sut against
which the TJob should be
executed

I can compare
the tests results
against different
configurations
or versions of
the same SW

AVAILABLE R7a ETM28

NAEVA-Sec-
01

Parallel security analysis ElasTest
User

when ESS is selected in a
TJob, run security tests
on the request, forms,
etc,

I can get security
testing over the
running TJobs,
taking
advantage of the
possible
complex
navigation or
interaction with
the SW that can
be necessary to
reach parts of
the application.

AVAILABLE R5 ETM9, ETM40

NAEVA-Gen-
01

Export TJob results ElasTest
User

to export TJob results,
logs, files and videos

I can share them
with clients or
being used into
automatic

AVAILABLE R1-R2 ETM46

D2.5 ElasTest requirements, use-cases and architecture v2

29

ID Title As a <type of user> I want <some goal> so that <some
reason>

Status Expected
Release

Technical
Requirement
ID

reports

NAEVA-
WebRTC-01

Adapt behavior and result of
the TJob to webRTC statistics

ElasTest
User

some mechanism for
dynamically interact with
the WebRTC stats within
the test and the TJOB

I can set for
example
thresholds on
the WebRTC
statistics.

AVAILABLE R5 EUS7

NAEVA-
WebRTC-02

Simulate network conditions. ElasTest
User

to simulate network
conditions. Network
types network changes
or even connection
losses

I can test how a
real-time
application
behaves under
different
conditions.

AVAILABLE R8 EIM14,
EIM15, EIM16

NAEVA-
WebRTC-03

Load and stress tests (JMeter
like)

ElasTest
User

the possibility of
integrate Load an stress
tests (JMeter) on a
ElasTest Project

I can really have
all my tests in
one place

AVAILABLE R9 EUS11,ETM43

ATOS-Web-
01

Browser and version selection
for test plan execution

ElasTest
User

to be allowed to select
which Browser and
Version to use for an
specific test plan

I can execute my
test plan against
different
platforms

AVAILABLE R7a ETM31

D2.5 ElasTest requirements, use-cases and architecture v2

30

ID Title As a <type of user> I want <some goal> so that <some
reason>

Status Expected
Release

Technical
Requirement
ID

execution

ATOS-Web-
02

Browser synchronization
testing

ElasTest
User

the possibility to
perform browser
synchronized testing in
several browsers
simultaneously
(https://browsersync.io/)

I can manually
test in several
browsers at the
same time

AVAILABLE R8 ETM44

ATOS-Web-
03

Security ElasTest
User

to have a kind of security
catalog that could be
selected for each TJob

activated
security tests
are executed
when I am
running
functional TJobs

AVAILABLE R8 ETM45

ATOS-Web-
04

Semi-Automated exploratory
testing / Automated Steps
(Snippets) for manual testing
support

ElasTest
User

to be able to record /
execute some steps
automatically when
manually testing

I can perform
regressions or
exploratory
testing much
faster

BACKLOG - Not
implemented

D2.5 ElasTest requirements, use-cases and architecture v2

31

ID Title As a <type of user> I want <some goal> so that <some
reason>

Status Expected
Release

Technical
Requirement
ID

ATOS-Web-
05

Integration with TestLink ElasTest
User

to be able to define test
cases using TestLink

all my
information
regarding testing
is inside the ame
tool

AVAILABLE R4 ETM12

ATOS-Web-
06

Integration with Jira ElasTest
User

to be able to raise new
bugs in JIRA from
Elastest

traceability of
bugs and test
cases exist

BACKLOG - Not
implemented

ATOS-Web-
07

Execution of manual test cases
in different versions of
browsers

ElasTest
User

to be able to do manual
testing in a browser and
version I specifically
choose

I can reproduce
bugs raised by
final users in the
specific web
browser and
version

AVAILABLE R7a ETM13

ATOS-Web-
08

Execution of automated test
cases in different versions of
browsers

ElasTest
User

to be able to do
automated testing in a
browser and version I
specifically choose

I can reproduce
bugs raised by
final users in the
specific web
browser and
version

AVAILABLE R4 ETM6

D2.5 ElasTest requirements, use-cases and architecture v2

32

ID Title As a <type of user> I want <some goal> so that <some
reason>

Status Expected
Release

Technical
Requirement
ID

ATOS-Web-
09

Execution of automated test
cases concurrently for
performance test:
To take advantage of
automated test cases with
Selenium (test cases already
automated) it would be good
to be able to run those test
cases simultaneously in
different browsers just to
check the time required to
execute each one of those test
case when several instances of
that test case are running at
the same time.

ElasTest
User

to be able to do
performance test using
end2end tests defined in
Selenium

I can ensure the
SuT is able to
work properly
when several
concurrent users
are working at
the same time

BACKLOG R6-Final Not
implemented

ATOS-Web-
10

Execution of performance test
similarly to Jmeter executions

ElasTest
User

to be able to import my
own JMeter projects and
run them from Elastest

I can have all
tests running in
the same
platform

BACKLOG - Not
implemented

ATOS-Web-
11

Execution of basic security test ElasTest
User

to be able to execute
basic security testing

my websites
have always a
minimum
security

AVAILABLE R7a ESS1

D2.5 ElasTest requirements, use-cases and architecture v2

33

ID Title As a <type of user> I want <some goal> so that <some
reason>

Status Expected
Release

Technical
Requirement
ID

validations

FOKUS - 1 Openstack SUT integration ElasTest
User

to be able to deploy
Elastest on Openstack

that we can
more easily have
cloud
deployments
integration

AVAILABLE R5 EIM11

FOKUS - 2 External SUT Monitoring ElasTest
User

to be able to monitor
external SuTs

that it is easier
to write
performance
conditioned
tests

AVAILABLE R5 ETM25

FOKUS - 3 Test Orchestration ElasTest
User

to be able to orchestrate
tests (sequential and/or
parallel)

that it's easier to
compare
different SuTs
and have
conformance
test suites

AVAILABLE R6 EOE1/EOE2

FOKUS - 4 Openbaton Integration ElasTest
User

to be able to deploy SuT
via Elastest-OpenBaton
integration

it's easier to
deploy and
manage Cloud

BACKLOG - Not
Implemented

D2.5 ElasTest requirements, use-cases and architecture v2

34

ID Title As a <type of user> I want <some goal> so that <some
reason>

Status Expected
Release

Technical
Requirement
ID

SuTs

FOKUS - 5 Data export ElasTest
User

to be able to export
monitoring data

it's easier to
disseminate and
exploit testing
data

AVAILABLE R8 EJ11/EJ12

FOKUS - 6 E2E Elastest support services
integration

ElasTest
User

to be able to use all
support services

the tester has
increased
productivity and
better feedback

AVAILABLE R7b ETM9

FOKUS – 7 Standard-aligned test
description

ElasTest
User

to be able to write
standardized tests

it's easier to use
the Platform as
a standard
aligned testing
tool

BACKLOG - Not
implemented

5 Architecture

During the first reporting period, D2.3, architecture of the platform and specifications
of the components were presented (see Figure 4). The component specifications
presented in D2.3 are relevant for the second reporting period as well. In this version
of deliverable, we are going to address the evolved architecture of the platform. For a
more detailed understanding the evolution of architecture of components, we refer
the reader to the corresponding deliverables of technical work packages WP3, WP4
and WP5 [4][5][6][7].

As Table 2 explains, the architecture was evolved during the second period. We
discussed, and even explored, different approaches to make the architecture elastic.
Initially, we explored the possibility of making an even deeper integration with Jenkins,
and allowing Jenkins orchestrate TJobs, thus relying on the distributed nature of this CI
server. However, soon it was clear that distributed applications were moving to
Kubernetes. This idea was reinforced by JenkinsX (an open source project that was
working on adapting Jenkins to the Kubernetes context) being included as part of the
Jenkins ecosystem. Therefore, we decided to design an architecture suitable for
Kubernetes.

As a result, we ended up with the following four deployment modes, two for plain
Docker support, two with specific support for Kubernetes:

 ElasTest Mini

 ElasTest Singlenode

 ElasTest EK (ElasTest mini on Kubernetes)

 ElasTest HEK (Highly scalable ElasTest on Kubernetes)

Figure 4 Architecture reference - support systems overview

The ElasTest Singlenode deployment was demonstrated at the first review, and its
architecture corresponds to that ofFigure 4. ElasTest Mini was in development during

D2.5 ElasTest requirements, use-cases and architecture v2

36

the first review and was released by September 2018. The main differences with the
Singlenode deployment was its reduced memory footprint that made ElasTest suitable
for being installed on 8Gb machines. This was key to foster adoption of the tool.
Although this deployment mode is not suitable for production, allowed end-users to
try out the product and see if it fitted well for them. The reference architecture of the
ElasTest Mini mode is shown in Figure 5. Note that the EPM, ESM and the EUS are
included within the ETM component, as modules, instead of running as independent
services. Also, on the persistence side (see EDM below the ETM), we skipped
completely ElasticSearch, and wrote a Logstash to MySQL adaptor that ingests logs and
metrics directly into MySQL. ElasticSearch was one of the components requiring more
memory, and this reduced enormously the memory requirements, at the cost of
slightly lengthier searches, and losing the elastic nature of ElasticSearch.

Figure 5. ElasTest Mini architecture diagram

The ElasTest EK mode depicted in Figure 6 is basically the ElasTest Mini mode deployed
on top of Kubernetes. We had to rewrite completely the way ElasTest is deployed to
comply with the deployment mechanisms of Kubernetes. We also had to rethink the
concepts of TJob and associated services (TSS) and SUTs in order to comply with how
Kubernetes manages networks and services. This required a lot of efforts, mainly on
the ETM side (see D4.3) and the toolbox (see D6.4) responsible for the deployment of
ElasTest. Note how the ETM talks to the Kubernetes cluster through the EPM (included
in this mode as part of the ETM itself) to start and stop services and doing the
monitoring. In this mode, we made use of Kubernetes namespaces that enables
isolation of resources. Each TJob and related services are deployed in their own
namespace (yellow dotted box around TJobs.) This avoids unwanted interactions
between TJobs and allows services within a namespace talk to each other by name
instead of IP address.

D2.5 ElasTest requirements, use-cases and architecture v2

37

Figure 6. ElasTest EK architecture diagram

Finally, we developed the ElasTest HEK mode, standing for Highly-scalable ElasTest on
Kubernetes, where ElasTest was deployed in a fully elastic mode. This mode resembles
the Singlenode mode, but components deployments are elastic. For instance, the
ElasticSearch can span through several nodes in the cluster, thus scaling as needed.
Other core components can also be started on any node in the cluster, depending on
availability, and everything works as if they were running on a single node, i.e., it is
transparent to the end-user where in the Kubernetes cluster their jobs are running.
The architecture diagram for ElasTest HEK mode is depicted in Figure 7. Note that the
ESM, EPM and EUS are no longer within the ETM, but they run independently. ElasTest
core components (EPM, ETM, EIM, ESM, EDM) and Test Engines (TEs) all share the
same namespace. This namespace is known to any other ElasTest service (TSS, TJobs,
SUTs) so that every component can talk with ElasTest core components.

Regarding elasticity, Figure 8 shows how different TJobs can span through several
nodes. In the figure, a first TJob (TJob1) with its corresponding SUT (SUT1) is deployed
within worker1 (a node of the Kubernetes cluster). However, for a second TJob (TJob2),
only the SUT could be started in worker1, due to lack of resources, and the remaining
services needed for the TJob (namely, the test itself, TJob2, and the EUS), were
deployed on worker2, a second Kubernetes node. This happened in a transparent way
for the ElasTest end-user, and the TJob worked as usual, independently of where the
resources were deployed.

D2.5 ElasTest requirements, use-cases and architecture v2

38

Figure 7. ElasTest HEK architecture diagram

Figure 8. A TJob deployed through two different nodes (worker1 and worker2)

6 Conclusion

On a research perspective, there’s still room for improvement. Modern distributed
systems raised many challenges from a testing perspective. Early Kubernetes adopters,
for instance, are starting to claim that this container orchestrator put a lot of
complexity on the deployment side. Kubernetes is a complex system of systems, and
this complexity is being faced by the teams that deploy their applications on top of it.
Simplifying the testing process, and providing accurate and actionable information
about this process, is key for testing Kubernetes-enabled applications.

D2.5 ElasTest requirements, use-cases and architecture v2

39

Furthermore, testing in production is becoming more and more popular. This approach
consists on deploying a new version of the application and routing a small percentage
of actual traffic to the new version and see what happens. Some proponents say that
this is the only way to know if your application will behave properly under real
conditions: by exposing it to real traffic. Paraphrasing Robert Meany on Twitter: “If
you’re not testing in production then your users are testing in production.”

However, when testing in production is sometimes difficult to know how the system is
behaving. ElasTest could develop specific tools aimed at segregating actual traffic that
belongs to the testing in production process, from any other kind of traffic, and helping
to better identify the problems when they appear.

Several lessons have been learnt by the partners during the lifetime of the project.
First, and most important, is that there are lots of schedulers for running tasks out
there. At the beginning of the project we resorted to build our own CI server, capable
of running TJobs defined as Docker containers. That was a mistake. No end-user will
migrate their job definitions in whatever the CI server they have to ElasTest. We
should have delegated that to Jenkins and focus on what was more interesting for
those that were curious about ElasTest: observability and analytics. During the second
period we have built interesting features like the log comparator, and we did a
complete rewrite of the user interface, to make it more task focused so that it could
highlight interesting events. The idea of evolving the architecture towards Kubernetes
has been a big success, making some companies interested in the project, like Zooplus
and Okteto. Only the future will tell what the use cases of these companies will turn
ElasTest into.

7 References

[1] ElasTest project Description of Action (DoA) – part B. Amendment 3.

[2] Compositional Structures, Block diagrams – reference sheet, http://www.fmc-
modeling.org/download/notation_reference/Reference_Sheet-Block_Diagram.pdf

[3] ElasTest Public Deliverable D6.3, ElasTest CI & validation system v2
[4] ElasTest Public Deliverable D3.2, ElasTest Platform cloud modules v2
[5] ElasTest Public Deliverable D4.3, Test Orchestration v2
[6] ElasTest Public Deliverable D4.4, Test Recommendation Engines v2
[7] ElasTest Public Deliverable D5.2, ElasTest Test Support Services v2
[8] Bertolino, A., 2007, May. Software testing research: Achievements, challenges,

dreams. In 2007 Future of Software Engineering (pp. 85-103). IEEE Computer
Society.

[9] Apache 2.0 license terms. https://www.apache.org/licenses/LICENSE-2.0. Accessed
on 07 March 2017.

[10] Grant Agreement number: 731535 - ELASTEST - H2020-ICT-2016-2017/H2020-ICT-
2016-1. EUROPEAN COMMISSION. Communications Networks, Content and
Technology. 11 November 2016.

https://www.apache.org/licenses/LICENSE-2.0

8 ANNEX

Table 5 Technical Requirements List - ElasTest Core Components

ID Component Title As a <type
of user>

I want <some goal> so that <some reason> Status Release

ETM1 ETM Manage projects ElasTest user CRUD operations on
projects

create, edit, remove and
update test projects to group
TJobs and SuTs

AVAILABLE R1-R2

ETM2 ETM Create SuTs ElasTest user to create SuTs I can specify how to start a SuT
with the following options:
Deployed by ElasTest (Docker,
Docker-compose, commands)
or Deployed Elsewhere.

AVAILABLE R3

ETM3 ETM Manage SuTs ElasTest user CRUD operations on SuTs I can create, edit, remove and
update SuTs

AVAILABLE R3

ETM4 ETM Create TJobs ElasTest user to create TJobs I can specify what SuT should
be tested and how to execute
tests against it

AVAILABLE R3

ETM5 ETM Manage TJobs ElasTest user CRUD operations on TJobs I can create, edit, remove and
update TJobs

AVAILABLE R3

ETM6 ETM Execute TJobs ElasTest user to execute a TJob logs, metrics and tests results
can be recorded for further

AVAILABLE R3

D2.5 ElasTest requirements, use-cases and architecture v2

41

ID Component Title As a <type
of user>

I want <some goal> so that <some reason> Status Release

inspection

ETM7 ETM Dashboard ElasTest user to see projects and last TJob
executions in a single
screen

I can have an overview of the
status of the platform

AVAILABLE R3

ETM8 ETM Review TJob
executions

ElasTest user to review finished TJob
executions

I can see what happened,
especially in executions with
failed tests

AVAILABLE R3

ETM9 ETM Test Support
Services

ElasTest user to specify what TSSs must
be ready to use when a
TJob is executed

tests in TJob can use selected
TSS when testing the SuT

AVAILABLE R1-R2

ETM10 ETM Log analyzer ElasTest user to analyse, filter and mark
logs gathered during TJob
execution

troubleshooting a problem is
easier than looking to plain log

AVAILABLE R3

ETM11 ETM Test case execution ElasTest user to review easily all
information gathered
during one specific test
(logs, events and files)

I can focus on information
related to a test (possible
failed)

AVAILABLE R4

ETM12 ETM TestLink info
management

ElasTest user to see TestLink projects,
test cases, suites, builds and
test plans in ElasTest
interface

I can see that information
integrated with other TJobs
and projects

AVAILABLE R4

D2.5 ElasTest requirements, use-cases and architecture v2

42

ID Component Title As a <type
of user>

I want <some goal> so that <some reason> Status Release

ETM13 ETM TL Test plan
execution

ElasTest user to execute TL Test plans
using browsers provided by
ElasTest and recording all
information from SuT and
browsers

I can associate all that
information to a bug report in
case of test failure

AVAILABLE R4

ETM14 ETM Test Engines ElasTest user to start, use and stop a Test
Engine

I can start the engine only
when needed

AVAILABLE R4

ETM15 ETM Show platform
information

ElasTest
admin

to see the version and
compilation date of ElasTest
components

I can see if platform is updated
or not

AVAILABLE R3

ETM16 ETM Core components
integration

ElasTest user to see core components'
GUI integrated in the main
ElasTest GUI

I can see the platform
integrated

AVAILABLE R4

ETM17 ETM TSS Definition TSS Creator to know how to create the
metadata file for TSSs

the TSS can be included in the
list of available TSSs in the GUI

BACKLOG

ETM18 ETM Show logs and
metrics in real-time

ElasTest user to see logs and metrics
from SuT and Tests
execution

I can know what happened
with SuT and Tests in case I
want to solve any problem

AVAILABLE R1-R2

ETM19 ETM ESM Integration ETM
developer

to use ESM services I can manage lifecycle of TSS AVAILABLE R1-R2

D2.5 ElasTest requirements, use-cases and architecture v2

43

ID Component Title As a <type
of user>

I want <some goal> so that <some reason> Status Release

ETM20 ETM EPM Integration ETM
developer

to use EPM services BACKLOG

ETM21 ETM ElasTest micro ElasTest user a reduced version of
ElasTest

I can try it with a very reduced
resources requirements

BACKLOG

ETM22 ETM Update to
Angular7

ElasTest user a latest version of Angular AVAILABLE R7a

ETM23 ETM Start EUS in
singlenode mode
when starting ETM
and enable
WebBrowsers
section in this
mode (Actually the
test of this test is
implemented in
the EUS e2e tests)

ElasTest user to start browsers manually I can interact with a browser
and watch the recording later

AVAILABLE R7a

ETM24 ETM Add auto-refresh
to GUI Dashboard

ElasTest user to refresh TJob Executions
tables

I can see the status of the
executions without having to
refresh the page manually

AVAILABLE R7a

ETM25 ETM Instrumentalize a
SuT in the EIM only
during the

ElasTest user to obtain monitoring traces
of an External SuT

I can get monitoring traces of
an external SuT during
execution and stop receiving

AVAILABLE R7a

D2.5 ElasTest requirements, use-cases and architecture v2

44

ID Component Title As a <type
of user>

I want <some goal> so that <some reason> Status Release

execution of a TJob them if there is no execution in
progress.

ETM26 ETM Use the EUS
started when
starting ElasTest
for all runs in
singlenode mode

ElasTest user to reduce waiting time at
the start of each TJob run
and resource consumption
in singlenode mode

I can use Web Browsers in my
tests initiated by the same
instance of EUS

AVAILABLE R7a

ETM27 ETM Establish new
modes of
execution of
ElasTest (mini and
singlenode)

ElasTest user to have different options
depending on the system I
use

I can use ElasTest whatever
the technical specifications of
my system.

AVAILABLE R7a

ETM28 ETM Executions
Comparator

ElasTest user to be able to select two or
more executions and
compare

I can see the differences
between the selected
executions of a Job and
compare their logs

AVAILABLE R7a

ETM29 ETM Configure an
External
ElastiSearch for a
SuT

ElasTest user to retrieve the SuT logs and
metrics from an external
Elasticsearch

I can see the logs and metrics
for an external SuT retrieving
them from an external
Elasticsearch

AVAILABLE R7a

ETM30 ETM Add hosts to
browsers used for

ElasTest user to add a list of host
necessaries for the browser

I can access to a SuT with an
unknown name

AVAILABLE R7b

D2.5 ElasTest requirements, use-cases and architecture v2

45

ID Component Title As a <type
of user>

I want <some goal> so that <some reason> Status Release

a manual test of TL used in a manual test

ETM31 ETM Select browser for
manual test
execution
(TestLink)

ElasTest user to show the list of available
browsers

I can select the browser that I
want for my test

AVAILABLE R7b

ETM32 ETM Multi Axis TJob Elastest user to allow TJobs to have
several configurations

with a single execution of a
TJob will run once per
configuration. You will be able
to compare executions with
different configurations
between them.

AVAILABLE R7a

ETM33 ETM Run a TJob with
parameters

ElasTest user to be able to execute a TJob
with parameters and be
able to edit its values for
each execution

I can achieve different results AVAILABLE R3

ETM34 ETM Add attachments
to a TJob execution

ElasTest user to be able to add new
evidences to a TJob
execution using the ETM's
API

I can store additional data
apart from those
 generated by the ETM

AVAILABLE R7b

ETM35 ETM Elasticsearch
Indices
Management

ETM
developer

to be able to remove
indices in red state

I can fix the problems with the
logs in singlenode

AVAILABLE R7b

D2.5 ElasTest requirements, use-cases and architecture v2

46

ID Component Title As a <type
of user>

I want <some goal> so that <some reason> Status Release

ETM36 ETM Deploy ElasTest
Mini on
Kubernetes (EK)

ETM
developer

to be able to deploy
ElasTest Mini on k8s

I can provide elasticity to
ElasTest

AVAILABLE R7b

ETM37 ETM Deploy ElasTest
Mini on
Kubernetes (EK)
from the ElasTest
Platform

ETM
developer

to be able to deploy
ElasTest Mini on
Kubernetes using
the platform and the EPM

I can configure ElasTest and
ask the EPM for a k8s
cluster to deploy Elastest

IN
PROGRESS

ETM38 ETM Run TJobs on
Kubernetes

ETM
developer

to be able to deploy a TJob
on Kubernetes

ElasTest can use more
resources if doesn't have
enough

AVAILABLE R7b

ETM39 ETM Runt SuTs on
Kubernetes

ETM
developer

to be able to deploy a SuTs
on Kubernetes

ElasTest can use more
resources if doesn't have
enough

AVAILABLE R7b

ETM40 ETM Deploy TSSs on
Kubernetes in EK

ETM
developer

to be able to deploy a TSSs
on Kubernetes

ElasTest can use more
resources if doesn't have
enough

AVAILABLE R7b

ETM41 ETM Deploy TEs on
Kubernetes in EK

ETM
developer

to be able to deploy a TEs
on Kubernetes

ElasTest can use more
resources if doesn't have
enough

AVAILABLE R7b

ETM42 ETM Deploy Integrated ETM to be able to deploy the ElasTest can use more AVAILABLE R7b

D2.5 ElasTest requirements, use-cases and architecture v2

47

ID Component Title As a <type
of user>

I want <some goal> so that <some reason> Status Release

Jenkins on
Kubernetes and
create Kubernetes
examples

developer Jenkins integrated
on Kubernetes and also run
Jobs on Kubernetes

resources if doesn't have
enough

ETM43 ETM Deploy ElasTest
Singlenode on
Kubernetes (HEK)

ETM
developer

to be able to deploy
ElasTest Singlenode on
Kubernetes

I can provide elasticity to
ElasTest singlenode

IN
PROGRESS

ETM44 ETM TL Crossbrowser ElasTest user to be able to execute a Test
plan with multiple browsers
at once, synchronizing
actions

I can save time in running a
test

AVAILABLE R8

ETM45 ETM ESS in TL ElasTest user to be able to use ESS in a
Test plan execution

 AVAILABLE R8

ETM46 ETM Export logs &
metrics

ElasTest user to be able to download the
results information

I can inspect them in different
tools/perform specific analysis

AVAILABLE R8

EDM1 EDM Provide MySQL
Relational
Database

ElasTest
component

to store my data in a
relational database

I can persist and query my
structured data

DROPPED

EDM2 EDM Provide
Elasticsearch

ElasTest
component

to index my data in an
Elasticsearch instance

I can index and search my
unstructured data

DROPPED

EDM3 EDM Provide HDFS ElasTest to store my file data in a I can safely store and retrieve AVAILABLE R1-R2

D2.5 ElasTest requirements, use-cases and architecture v2

48

ID Component Title As a <type
of user>

I want <some goal> so that <some reason> Status Release

component scalable, fault tolerant
filesystem

my file data

EDM4 EDM Provide Kibana ElasTest
component

to have access to a
visualization tool

I can create and store
visualizations of my data

DROPPED

EDM5 EDM Provide Alluxio ElasTest
component

to be able to store my file
data in various backend
filesystems (on premise or
cloud) and retrieve the data
at memory speeds

I can change backend
filesystems transparently
depending on my needs

DROPPED

EDM6 EDM Provide Cerebro ElasTest
component

to have access to a
monitoring tool

I can monitor my Elasticsearch
instance

DROPPED

EDM7 EDM Provide a REST API
for backup/restore

ElasTest
component

to be able to
backup/restore all my data
using a REST API

I can backup my data when I
uninstall the Elastest platform
and restore it later if I need to

DROPPED

EDM8 EDM Provide
CloudFormation to
deploy in AWS

Admin to deploy EDM in AWS with
elasticity

I can use the needed resources BACKLOG

EDM9 EPM Provide Heat script
to deploy in
OpenStack

Admin to deploy EDM in
OpenStack with elasticity

I can use the needed resources BACKLOG

EDM10 EDM EDM should be Admin to know the EDM health I can check if services are BACKLOG

D2.5 ElasTest requirements, use-cases and architecture v2

49

ID Component Title As a <type
of user>

I want <some goal> so that <some reason> Status Release

monitored working

ESM1 ESM Create a support
service instance

TORM to create a service instance additional test functionality
can be used

AVAILABLE R1-R2

ESM2 ESM Info on instance TORM to get a list of my service
instances

I can reuse and understand
what I have running

AVAILABLE R1-R2

ESM3 ESM Delete instance TORM to delete a service instance I don't get charged for it AVAILABLE R1-R2

ESM4 ESM Configure instance TORM to configure a service
instance with new or
updated parameters

the software can run as
desired by end user

AVAILABLE R6

ESM5 ESM Register TSS offer TORM to register a TSS I can offer my software as a
service to the TORM

AVAILABLE R1-R2

ESM6 ESM Update TSS offer TORM to update a TSS's technical
and business description

I can change my offer AVAILABLE R1-R2

ESM7 ESM Delete TSS offer TORM to delete a TSS I do not offer it anymore AVAILABLE R1-R2

ESM8 ESM Register service
instance with
monitoring

ESM to register the service
instance endpoint with a
monitoring service

the TSS provider can ensure
guarantees offered to the
TORM/end-user are met and
adjustments can be made to
ensure this

AVAILABLE R6

D2.5 ElasTest requirements, use-cases and architecture v2

50

ID Component Title As a <type
of user>

I want <some goal> so that <some reason> Status Release

ESM9 ESM Public catalog to
allow end users to
"install" and
"unsinstall"
services in a
current ElasTest
instance

User to install a TSS from a public
catalog/registry

new TSSs can be installed in an
ElasTest instance

AVAILABLE R7b

ESM10 ESM Allow deployment
of services with
Kubernetes
template

TORM to register a service with a
Kubernetes YAML
description

Kubernetes and docker-
compose can be supported by
the ESM

AVAILABLE R7b

EIM1 EIM Non-Intrusive ElasTest user instrumentation agents to
be as less intrusive as
possible

produce low overhead of the
instrumentation on the
software under test (SuT).

AVAILABLE R1-R2

EIM2 EIM Lightweight ElasTest user instrumentation agents to
be as lightweight as
possible

deploy them within the
software under test (SuT).

AVAILABLE R1-R2

EIM3 EIM Configuration
Management

ElastTest
component
(TORM)

to deploy automatically
instrumentation agents in
the target infrastructure

 achieve automated
installation of instrumentation
agents across target compute
environments, such as bare
metal, VMs, cloud instances
(IaaS such as AWS or

AVAILABLE R3

D2.5 ElasTest requirements, use-cases and architecture v2

51

ID Component Title As a <type
of user>

I want <some goal> so that <some reason> Status Release

OpenStack) and container
platforms (such as
Kubernetes).

EIM4 EIM Interoperability ElasTest user to maintain interoperability
across different operating
systems (OS) and
distributions

the agents should be designed
to consume well-established
operating system interfaces to
guarantee interoperability;
supporting Linux systems at
least.

AVAILABLE R1-R2

EIM5 EIM Agent
management

ElastTest
component
(TORM)

to perform CRUD
operations to manage the
lifecycle of instrumentation
agents

EIM offers northbound
interfaces which controls and
orchestrates the operation of
instrumentation agents.

AVAILABLE R3

EIM6 EIM Persistence ElastTest
component

to store configuration data
in structured database
(MySQL-like)

I can persist and query my
structured data about the
agents. (R3 only support
MongoDB).

AVAILABLE R7a

EIM7 EIM Observability ElasTest user to extend the interface
exposed by a software
system for archiving
enhanced observability of
the software under test

I can have the ability to collect
the logs and metrics and
performance data from the
software under test (SuT)
through the instrumentation

AVAILABLE R7a

D2.5 ElasTest requirements, use-cases and architecture v2

52

ID Component Title As a <type
of user>

I want <some goal> so that <some reason> Status Release

(SuT) agents.

EIM8 EIM Portability ElastTest
component

to be able to install the
instrumentation agents and
manager across different
compute environments.

To enable the installation,
configuration and provisioning
of the EIM along the rest of
the ElastTest platform, and its
instrumentation agents in the
supported SuT environments.

AVAILABLE R5

EIM9 EIM Scalability ElastTest
component

to provide a scalable
solution to the
instrumentation of the
software under test for
both observability and
controllability

To avoid the degradation of
test (and the overall ElastTest
platform) performance when
running an increasing number
of intrumentalized SuTs.

AVAILABLE R5

EIM10 EIM Allow instrument
AWS resources

ElasTest user to tnstrument AWS
resources (VM, RDS, S3...)
using native AWS
monitoring capabilities
(CloudWatch)

I can inspect what happens in
those resources from ElasTest
when execute tests against
that AWS SuT

DROPPED

EIM11 EIM Allow instrument
OpenStack
resources

ElasTest user to instrument OpenStack
resources (VMs,
ObjectStorage, networking)
using native OpenStack
monitoring capabilities

I can inspect what happens in
those resources from ElasTest
when execute tests against
that OpenStack SuT

BACKLOG

D2.5 ElasTest requirements, use-cases and architecture v2

53

ID Component Title As a <type
of user>

I want <some goal> so that <some reason> Status Release

(Ceilometer)

EIM12 EIM Allow instrument
Kubernetes
resources

ElasTest user to instrument kubernetes
resources (Pods, services,
containers, nodes) using
native Kubernetes
monitoring capabilities
(Prometheus)

I can inspect what happens in
those resources from ElasTest
when execute tests against
that Kubernetes SuT

BACKLOG

EIM13 EIM Provide fine grain
configuration of
Beats agents

ElasTest user to configure the event
stream names

I can recognize the events in
ElasTest GUI

BACKLOG

EIM14 EIM Controllability of
CPU overload

ElasTest user to achieve enhanced
controllability of the stress
level of the CPU

I can simulate a rise in the
load/use of the CPU of the
machine running a software
under test (SuT)

AVAILABLE R7b

EIM15 EIM Controllability of
Network failures

ElasTest user to achieve enhanced
controllability of the stress
level of the network
interface

I can simulate network packet
loss of the machine running a
software under test (SuT)

AVAILABLE R7b

EIM16 EIM Controllability of
Container failures

ElasTest user to control the failures
(breakdown) of
containerized software
components

I can simulate failures of some
or all replicas of some or all
components of a software
under test (SuT)

AVAILABLE R7

D2.5 ElasTest requirements, use-cases and architecture v2

54

ID Component Title As a <type
of user>

I want <some goal> so that <some reason> Status Release

EPM1 EPM Abstraction of
underlying
virtualization
technologies

ElasTest
Component
(TORM, Test
Support
Services, etc.)

to be able to orchestrate
and manage virtualized
resources (compute,
network, storage) on any
virtualization technology
under consideration

the consumer does not need
to care about the target
virtualization technology but
can define needed resources
in a generic way. Finally, the
EPM can easily support various
virtualization technologies by
making use of an adapter
mechanism which will be used
by the EPM in order to
communicate with the
virtualization technology of
interest.

AVAILABLE R1-R2

EPM2 EPM Providing
Northbound API

ElasTest
Component
(TORM, Test
Support
Services, etc.)

to interact with the EPM the consumer can make use of
the EPM via a ReSTful API

AVAILABLE R1-R2

EPM3 EPM Providing SDKs ElasTest
Component
(TORM, Test
Support
Services, etc.)

to interact with the EPM developers of other
components can easily
integrate with the EPM by
making use of SDKs (libraries)
provided for different

AVAILABLE R1-R2

D2.5 ElasTest requirements, use-cases and architecture v2

55

ID Component Title As a <type
of user>

I want <some goal> so that <some reason> Status Release

languages (e.g. java, python)

EPM4 EPM Image operations ElasTest
Component
(TORM, Test
Support
Services, etc.)

to retrieve information and
manage images in the
target virtualization
environment

the EPM can check that images
exist already and pull the
image if needed

AVAILABLE R1-R2

EPM5 EPM Instance lifecycle
operations

ElasTest
Component
(TORM, Test
Support
Services, etc.)

to be able to execute
lifecycle operations such as
start/stop, remove
instances and retrieving
information of the instance
at runtime

the consumer of the EPM has
full flexibility of executing
lifecycle operations with the
virtualized instances for a
proper management at
runtime

AVAILABLE R1-R2

EPM6 EPM Instance
management
operations

ElasTest
Component
(TORM, Test
Support
Services, etc.)

to be able to execute
operations such as
executing commands inside
the instances and
downloading/uploading
files

the consumer of the EPM has
full flexibility of accessing and
interact with the virtualized
instances

AVAILABLE R1-R2

EPM7 EPM Platform - Linux
support

User to run the EPM in Linux as
the OS with native Docker

the user of ElasTest has the
free choice of the underlying
OS where ElasTest is running

AVAILABLE R3

EPM8 EPM Platform - Mac User to run the EPM in Mac OS the user of ElasTest has the AVAILABLE R1-R2

D2.5 ElasTest requirements, use-cases and architecture v2

56

ID Component Title As a <type
of user>

I want <some goal> so that <some reason> Status Release

support as the OS with Docker for
Mac

free choice of the underlying
OS where ElasTest is running

EPM9 EPM Platform -
Windows support

User to run the EPM in Windows
with Docker toolbox as the
OS and Docker for Windows

the user of ElasTest has the
free choice of the underlying
OS where ElasTest is running

BACKLOG

EPM10 EPM Containers
monitoring

ElasTest
Component
(TORM, Test
Support
Services, etc.)

to monitor instances
managed by the EPM

the consumer is able to
retrieve monitoring
information for further
evaluation and
troubleshooting

AVAILABLE R1-R2

EPM11 EPM Log forwarding ElasTest
Component
(TORM, Test
Support
Services, etc.)

to forward logs to the
configured endpoint

other parties can access those
logs which can be used for
further troubleshooting and
debugging

AVAILABLE R1-R2

EPM12 EPM Support for Docker ElasTest
Component
(TORM, Test
Support
Services, etc.)

to be able to allocate,
manage and terminate
Containers via Docker

the consumer can make use of
Docker as a virtualization
technology

AVAILABLE R1-R2

EPM13 EPM Support for
Docker-compose

ElasTest
Component

to be able to use Docker-
compose templates

the consumer of the EPM can
make use of docker-compose

AVAILABLE R3

D2.5 ElasTest requirements, use-cases and architecture v2

57

ID Component Title As a <type
of user>

I want <some goal> so that <some reason> Status Release

(TORM, Test
Support
Services, etc.)

files provided in a package
which will be used for resource
management in a Docker
environment

EPM14 EPM Platform Elasticity User/ElasTest
Component
(TORM, Test
Support
Services, etc.)

elasticity provided by the
EPM

either other ElasTest
components can be scaled
dynamically or the virtualized
resources requested by other
ElasTest components themself

AVAILABLE R5

EPM15 EPM Support for
OpenStack

ElasTest
Component
(TORM, Test
Support
Services, etc.)

to be able to allocate,
manage and terminate VMs
via OpenStack

the consumer can make use of
OpenStack as a virtualization
technology

AVAILABLE R5

EPM16 EPM Kubernetes Cluster
on Openstack

ElasTest
Component
(TORM, Test
Support
Services, etc.)

to be able to deploy
Kubernetes in OpenStack

the consumer of the EPM want
to deploy SUTs on top of
Kubernetes

AVAILABLE R7a

EPM17 EPM Support for AWS User,
ElasTest
Component
(TORM, Test

to be able to allocate,
manage and terminate VMs
via AWS

the consumer can make use of
AWS as a virtualization
technology

AVAILABLE R5

D2.5 ElasTest requirements, use-cases and architecture v2

58

ID Component Title As a <type
of user>

I want <some goal> so that <some reason> Status Release

Support
Services, etc.)

EPM18 EPM Management of
external machines

ElasTest
Component
(TORM, Test
Support
Services, etc.)

to be able to manage
external machines which
are not deployed by the
EPM itself

the EPM can manage those
machines via ssh in order to
execute certain lifecycle
operations to integrate them
in the testing procedures

AVAILABLE R4

EPM19 EPM Kubernetes Cluster
Management

ElasTest
Component
(TORM, Test
Support
Services, etc.)

to be able to manage a
Kubernetes Cluster

the ElasTest platform can
allocate virtual resources in an
EPM on demand managed
Kubernetes Cluster.

AVAILABLE R7a

EPM20 EPM Deployment of an
OpenStack
environment

User to be able to deploy
OpenStack on a physical
machine

the ElasTest platform can
allocate virtual resources in an
OpenStack environment
through the EPM

DROPPED

EPM21 EPM Kubernetes Cluster
Scaling

ElasTest
Component
(TORM, Test
Support
Services, etc.)

a scalable Kubernetes
cluster

EPM can manually scale out
and in of workers

AVAILABLE R7a

EPM22 EPM Support for Open User to be able to deploy an I can make use of OpenBaton DROPPED

D2.5 ElasTest requirements, use-cases and architecture v2

59

ID Component Title As a <type
of user>

I want <some goal> so that <some reason> Status Release

Baton external SUT via OpenBaton as an Orchestrator

EPM23 EPM Automatic start of
adapter

ElasTest
Component
(TORM, Test
Support
Services, etc.)

to be able to request
provisioning of resources
without starting an adapter

the EPM can seamlessly
provision resources

BACKLOG

EPM24 EPM Support for Ansible User to be able to use Ansible
play

I can make use of Ansible to
deploy Kubernetes

AVAILABLE R7-Final

EMP1 EMP Monitoring spaces complex
application /
system
developer /
integrator

to be able to specify a
separate monitoring space
for the overall application

i can get easy, properly
segregated access to my
overall metric / log data

AVAILABLE R1-R2

EMP2 EMP monitoring
subspaces

complex
application /
system
developer /
integrator

to be able to further
separate metric and log
stream of an application
sub-component /
microservice from rest of
the components

I can easily locate the data
stream coming from one
component versus looking at a
large set of data points from
all possible metric generation
sources in my large application
(possibly distributed)

AVAILABLE R1-R2

EMP3 EMP API authentication
and authorization

monitoring
system user

my access to be
authenticated and properly

no one else to be able to
access the data streams from

AVAILABLE R1-R2

D2.5 ElasTest requirements, use-cases and architecture v2

60

ID Component Title As a <type
of user>

I want <some goal> so that <some reason> Status Release

logged for safety as well as
auditing purposes

my services as they may
contain sensitive data

EMP4 EMP Receive system
metric streams

ElasTest
platform
operator /
and or any
monitoring
user

to be able to send relevant
system metrics into the
monitoring system

I can analyze data trends later
or in real time

AVAILABLE R1-R2

EMP5 EMP Persist system
metric streams

ElasTest
platform
operator /
and or any
monitoring
user

my data points to be stored
for a specified period in
time

I can do detailed offline
analysis of trends and / or
investigate bottlenecks /
problem areas with my
application

AVAILABLE R1-R2

EMP6 EMP receive application
log streams

ElasTest
platform
operator /
and or any
monitoring
user

to use same service
preferably to send my log
messages too

I can do a proper correlation
study of service degradation as
observed from logs and the
environment metric data

AVAILABLE R7

EMP7 EMP Persist application
log streams

ElasTest
platform
operator /

my data points aka log parts
to be stored for a specified

I can do offline / historical data
analysis

AVAILABLE R7

D2.5 ElasTest requirements, use-cases and architecture v2

61

ID Component Title As a <type
of user>

I want <some goal> so that <some reason> Status Release

and or any
monitoring
user

period of time

EMP8 EMP Data query
capability

monitoring
user

to be able to see stored
data points

I can analyze data trends and
observe system trends

AVAILABLE R1-R2

EMP9 EMP Metric visualization monitoring
user /
application
developer /
operator

to be able to see charts /
graphs visualizing data
points in a meaningful way

I can comprehend quickly
trends over time from metric
streams from my services

AVAILABLE R4

EMP10 EMP Cross
space/subspace
correlated query
capability

monitoring
user /
application
developer /
operator

to perform advance inter-
space/domain data query

I can gain insight into
correlation among various
services on each other’s
performance

IN
PROGRESS

EMP11 EMP Health check
capability

application
developer /
operator

to be able to monitor the
liveness of set of target
services

I know as soon as possible
when a service is down in
order to react in a timely
manner for restoring it

AVAILABLE R3

EMP12 EMP Alerting capability operator to be alerted if one of my
services becomes dead

I can react quickly to restore
the service

AVAILABLE R3

D2.5 ElasTest requirements, use-cases and architecture v2

62

ID Component Title As a <type
of user>

I want <some goal> so that <some reason> Status Release

EMP13 EMP Online expression
evaluation against
metric data stream

operator to ensure that the minimum
service availability and
contracts with my users are
supported at all times and if
any violation is notified to
me as soon as possible

I satisfy my service level
agreement terms

DROPPED

EMP14 EMP RESTful APIs monitoring
user /
application
developer /
operator

easily integrate with the
monitoring service with
clearly defined interfaces

I can send metrics and perform
control operations through my
application code logic rather
than interacting with the
monitoring service in a
standalone detached mode

AVAILABLE R1-R2

EMP15 EMP Availability of
commonly used
metric collectors
(agents)

operator /
application
developer

to easily collect and send
most commonly used
system metrics into the
monitoring platform

I can concentrate more on my
system specific
instrumentation and
monitoring

AVAILABLE R4

EMP16 EMP Showing in ElasTest
GUI monitoring
information of all
components

user See all metrics and other
monitoring information in
ElasTest GUI

I can know the status of the
system

AVAILABLE R7

EMP17 EMP API for querying
TJob resource
consumption

elastest cost
engine

to be given a TJob ID,
resource consumption data

I can compute the true cost of
TJob execution based on cost

AVAILABLE R7a

D2.5 ElasTest requirements, use-cases and architecture v2

63

ID Component Title As a <type
of user>

I want <some goal> so that <some reason> Status Release

parameters process across all known executions models defined in ESM

EMP18 EMP Monitor
Kubernetes
clusters

ElasTest
operator

to quickly see the status of
my Kubernetes clusters

I can quickly identify hotspots
and take corrective measures

AVAILABLE R7b

EMP19 EMP Individual
container metrics
visualization

monitoring
system user

to see CPU, memory and
networking stats for any
container and not just the
core components of
ElasTest

I can visually see any abnormal
spikes in data

AVAILABLE R7

D2.5 ElasTest requirements, use-cases and architecture v2

64

Table 6 Technical requirements list - ElasTest Test Support Services

ID Component Title As a <type
of user>

I want <some goal> so that <some reason> Status Release

EMS1 EMS Receive beats SuT /
ElasTest
component

to feed events to the EMS using
the beats elasticsearch
infrastructure

they can be processed by the
monitoring machines

AVAILABLE R1-R2

EMS2 EMS Subscribe an
elasticsearch
instance to
receive events

Tester /
ElasTest user

my instance of elasticsearch to
receive events flowing through
a certain channel

I can detect anomalies and
follow the running test's trace

AVAILABLE R1-R2

EMS3 EMS Subscribe a
RabbitMq
instance to
events

Tester /
ElasTest user

to receive events flowing
through a certain channel using
the rabbitmq infrastructure

I can detect anomalies and
follow the running test's trace

AVAILABLE R1-R2

EMS4 EMS Subscribe the
dashboard to
events

Tester /
ElasTest user

the dashboard to receive events
automatically, without having to
implement functionality to
communicate my (dashboard)
end-point

I can visualize the data from
the events

AVAILABLE R4

EMS5 EMS Subscribe
persistence to
events

Tester /
ElasTest user

the persistence manager to
receive events automatically,
without having to implement
functionality to communicate
my (EDM) end-point

I can extract information from
the data offline

AVAILABLE R4

D2.5 ElasTest requirements, use-cases and architecture v2

65

ID Component Title As a <type
of user>

I want <some goal> so that <some reason> Status Release

EMS6 EMS Specify rules to
route events
through
channels

Tester /
ElasTest user

to be able to route events to
subscribers depending only on
the "channel" stamped in the
input event

I can select which input
channels to listen to

AVAILABLE R4

EMS7 EMS Simple filtering
rules

Testers /
Elastest user

to be able to add subscriptions
so that EMS filters events
according to conditions
expressed in my subscriptions

I can better select which
events to receive

AVAILABLE R4

EMS8 EMS Deploy
sampled-based
and signal-
based signals

Tester /
ElasTest user

to extract a field from certain
types of events to be considered
as sampled values from a signal,
which I want to reconstruct and
work with.

I can build on it, aggregating its
values and combining them
with each other to synthesize
useful information

AVAILABLE R5

EMS9 EMS Deploy
correlation
machines

Tester /
ElasTest user

to create notification events
based on received events, their
relative timing and arrival and
other contextual information

I can delegate to the EMS the
finding of patterns of events in
the stream of observations
from the test

AVAILABLE R5

EMS10 EMS Unsubscribe
endpoints

Tester /
ElasTest user

to stop the flow of events to a
subscribed endpoint

I can remove it safely AVAILABLE R5

EMS11 EMS Undeploy
routing rules

Tester /
ElasTest user

to stop applying certain rules of
routing

I can regroup the events in
new ways

AVAILABLE R5

D2.5 ElasTest requirements, use-cases and architecture v2

66

ID Component Title As a <type
of user>

I want <some goal> so that <some reason> Status Release

EMS12 EMS Undeploy
machines

Tester /
ElasTest user

to stop executing certain
monitoring machine

The system avoids computing
data which I no longer need

AVAILABLE R5

EMS13 EMS Subscribe
websockets

Tester /
ElasTest user

to receive events over a
websocket

I can easily describe tests that
guide the testing process
depending on the observations
of the current test

AVAILABLE R4

EMS14 EMS Receive beats in
many formats

SuT /
ElasTest
component

to feed events to the EMS using
other infrastructure (like Zabbix)

I can easily produce events
within the SuT to assess the
outcome of tests

BACKLOG

EMS15 EMS Extend the
Monitoring
Machines
language

Tester /
ElasTest user

to have extra features in the
Monitoring Machines language

I can describe my test IN
PROGRESS

EMS16 EMS JSON template
in Monitoring
Machines

Tester /
ElasTest user

to receive events with rich data I can analyse them more easily AVAILABLE R7b

EMS17 EMS Emission of
structured
output as JSON

ElasTest user output events to be structured
types

The TJob receives rich
information which makes it
easier to investigate the cause
of a test failure

AVAILABLE R7b

EMS18 EMS Monitoring ElasTest user to calculate durations and define tests in terms of AVAILABLE R7b

D2.5 ElasTest requirements, use-cases and architecture v2

67

ID Component Title As a <type
of user>

I want <some goal> so that <some reason> Status Release

Machines can
interpret a
timestamp in a
string field as a
numeric value

delays absence or presence of events
within an interval of time.

EMS19 EMS Accessing the
value of streams
at previous
instants

ElasTest user to perform a computation
between successive values of
the same stream

I can compute the delay
between two successive
events

AVAILABLE R7b

EMS20 EMS Vector notation
for streams

ElasTest user to scale the tests easily I reduce the duplication of
streams

AVAILABLE R7b

EMS21 EMS Output events
at websocket
channel at port
8181

ElasTest user to connect to the websocket
endpoint and receive the events

I can get the verdicts from the
EMS specifications

AVAILABLE R7b

EMS22 EMS Offline
Monitoring

ElasTest user to compute a specification on a
dump of a Tjob execution

I can evaluate specifications
without the need to re-run the
same actions on a SuT

AVAILABLE R7b

EMS23 EMS If-then-else
expression in
EMS language

ElasTest user to assign the value of an if-then-
else expression to a stream

I can express richer streams
more easily

AVAILABLE R7b

D2.5 ElasTest requirements, use-cases and architecture v2

68

ID Component Title As a <type
of user>

I want <some goal> so that <some reason> Status Release

ESS1 ESS Security testing
via TJobs

Tester /
ElasTest user

to do provide tests of my SuT as
TJobs and get a security scan
report

I can integrate security testing
to my tests without additional
effort

AVAILABLE R1-R2

ESS2 ESS Unprotected url
detection

Tester /
ElasTest user

to receive list of unprotected
URLs

I can protect them and prevent
attackers from stealing
sensitive information of the
users of my web site

AVAILABLE R3

ESS3 ESS Insecure cookie
detection

Tester /
ElasTest user

to receive list of insecure
cookies (sensitive cookie values
sent via http channel)

I can secure them and prevent
attackers from impersonating
the users of my web site

AVAILABLE R3

ESS4 ESS Scanning for
common
vulnerabilities
(unauthenticate
d)

Tester /
ElasTest user

to be able to automatically test
whether my Web Application is
vulnerable to common Web
Application security weaknesses

I can avoid the situation in
which malicious actors cannot
easily hack my web site by
exploiting the most common
vulnerabilities .

AVAILABLE R4

ESS5 ESS Deep scanning
for common
vulnerabilities
(authenticated)

Tester /
ElasTest user

to do a deep security scan
covering parts of my Web
application that are otherwise
difficult to be reached by
automatic Web vulnerability
scanners

I can avoid the situation in
which common Web
application vulnerabilities are
not missed by my security
scanner due to the reachability
issue

AVAILABLE R5

ESS6 ESS Privacy check Tester / to be able to detect privacy the privacy of my users are not AVAILABLE R6

D2.5 ElasTest requirements, use-cases and architecture v2

69

ID Component Title As a <type
of user>

I want <some goal> so that <some reason> Status Release

(without GUI) ElasTest user leaks in my Web application compromised to malicious
third party web sites

ESS7 ESS Privacy check
(with GUI)

Tester /
ElasTest user

to be able to detect privacy
leaks in my Web application

the privacy of my users are not
compromised to malicious
third party web sites

IN
PROGRESS

EUS1 EUS W3C WebDriver
compatibility

Tester /
ElasTest user

to support standard W3C
WebDriver API (based on JSON
messages over REST)

EUS is backwards compatible
with existing technologies such
as Selenium and Appium

AVAILABLE R1-R2

EUS2 EUS Basic media
evaluation

Tester /
ElasTest user

to read audio level and RGB
colors of given UI elements

they can be used as test oracle
to feed test assertion

BACKLOG

EUS3 EUS Event
subscription

Tester /
ElasTest user

to subscribe to UI elements tests can receive events
notification

BACKLOG

EUS4 EUS Measure end-
to-end latency
of a WebRTC
session

Tester /
ElasTest user

to measure end-to-end latency that tests can know whether
or not a WebRTC service has
operational real-time
performance rates

BACKLOG

EUS5 EUS Measure quality
(audio|video) of
a WebRTC
session

Tester /
ElasTest user

to measure full-reference QoE
indicators both for audio and
video

that tests can find out the
quality of the WebRTC media
in an easy way

BACKLOG

EUS6 EUS Remote control Tester / to monitor remote sessions for I can watch in real-time and AVAILABLE R1-R2

D2.5 ElasTest requirements, use-cases and architecture v2

70

ID Component Title As a <type
of user>

I want <some goal> so that <some reason> Status Release

ElasTest user browsers and mobile interact with browser/mobile
sessions

EUS7 EUS WebRTC stats Tester /
ElasTest user

to read WebRTC statistics test can read WebRTC QoS
indicator in a seamless way

AVAILABLE R4

EUS8 EUS Browser logging
gathering

Tester /
ElasTest user

to read browser logs tests are aware on the
underlying logging info to
trace potential failures

AVAILABLE R3

EUS9 EUS Mobile logging
gathering

Tester /
ElasTest user

to read mobile logs tests are aware on the
underlying logging info to
trace potential failures

BACKLOG

EUS10 EUS Upload a file to
browser context

Tester /
ElasTest user

to upload a file to browser
context

It can be used in browser
context

AVAILABLE R7

EUS11 EUS Deploy ElasTest
browsers in
AWS

Tester /
ElasTest user

to start, stop and record
browsers in AWS and get logs

 AVAILABLE R7b

EUS12 EUS Deploy ElasTest
browsers on K8s

EUS
developer

to deploy browsers on
Kubernetes and get recordings
and logs

Elastest be able to ask
Kubernetes for more resources
if it
doesn't have enough

AVAILABLE R7b

EDS1 EDS Minimal
orchestrator

ElasTest User to orchestrates sensors and
actuators

demonstrator can initiate and
connect sensors and actuators

AVAILABLE R4

D2.5 ElasTest requirements, use-cases and architecture v2

71

ID Component Title As a <type
of user>

I want <some goal> so that <some reason> Status Release

EDS and connect them with a logic

EDS2 EDS Min. EDS
orchestration

ElasTest User to call and initiate required
sensors and actuators

the sensors and actuators are
live and can provide data

AVAILABLE R4

EDS3 EDS Demonstrator
logic

ElasTest User to connect sensors and
actuators via logic

an IoT application can be
realized

AVAILABLE R4

EDS4 EDS EDS
communication
activities

ElasTest User to communicate with oneM2M
standard

IoT application can be realized
in an industrial context

AVAILABLE R4

EDS5 EDS Min. EDS tracks
life cycle of
sensors and
actuators

ElasTest User efficient resource handling clean up and track activities of
min. EDS

AVAILABLE R4

EDS6 EDS Scalability of an
application

ElasTest User combination of demonstrator
applications

to test an SiL AVAILABLE R4

EDS7 EDS Reusability of an
application

ElasTest User combination of demonstrator
applications

to form an SiL as a
combination of SiS

AVAILABLE R4

EDS8 EDS Mechanisms for
collecting QoS

ElasTest User to collect QoS metrics to analyze QoS DROPPED

EDS9 EDS Add basic set of
sensors (about 7

ElasTest User can use various sensors I can them in an IIoT
application

AVAILABLE R7b

D2.5 ElasTest requirements, use-cases and architecture v2

72

ID Component Title As a <type
of user>

I want <some goal> so that <some reason> Status Release

types)

EDS10 EDS Add basic set of
actuators

ElasTest User can use various actuators use them in an IIoT application AVAILABLE R5

EDS11 EDS Basic
configuration
for actuators
and sensors.

ElasTest user set of meaningful and
configurable parameters for
devices

I can configure the devices
during run time to emulate
device behavior.

AVAILABLE R7a

EBS1 EBS Provide Spark ElasTest
component

to have access to a big data
processing framework

I can process my data using
various big data algorithms

AVAILABLE R1-R2

EBS2 EBS Provide a REST
API for
healthcheck of
Spark

ElasTest
component

to be able to monitor the health
of my Spark cluster

I can take appropriate action in
the case of failure

AVAILABLE R3

D2.5 ElasTest requirements, use-cases and architecture v2

73

Table 7 Technical requirements list - ElasTest Test Engines

ID Component Title As a <type of
user>

I want <some goal> so that <some reason> Status Releas
e

EOE1 EOE Topology
generation

Tester /
ElasTest user

to define some kind of
test orchestration
notation

users can define a TiL by
aggregating different T-Jobs

AVAILABLE R5

EOE2 EOE Jenkins DSL
notation

Tester /
ElasTest user

to leverage Jenkins shared
library technology to
create orchestration
topology

users can define a TiL by
aggregating different T-Jobs

AVAILABLE R6

EOE3 EOE EOE DSL parser Tester /
ElasTest user

EOE capable of parsing
Jenkins notation

EOE is integrated in ElasTest BACKLOG

EOE4 EOE EOE Tester / EOE able to support data- EOE is integrated in ElasTest BACKLOG

D2.5 ElasTest requirements, use-cases and architecture v2

74

ID Component Title As a <type of
user>

I want <some goal> so that <some reason> Status Releas
e

communication
manager

ElasTest user driven orchestration
approach

EOE5 EOE EOE proxy Tester /
ElasTest user

EOE to intercept requests
from ETM to TSSs

shared sessions among different
tests

BACKLOG

EOE6 EOE Reference
implementation

Tester /
ElasTest user

to create some reference
implementation of the
data-driven approach, for
example using the JUnit 5
extension model

the adoption of the data-driven
approach can be easy for ElasTest
users

BACKLOG

EOE7 EOE Test
augmentation

Tester /
ElasTest user

new TJobs can be added
to the orchestration

I can reproduce custom
operational conditions of the SUT
or non-functional attributes (such
as performance, scalability or
reliability)

BACKLOG

EOE8 EOE Include extra
checkpoints

Tester /
ElasTest user

to integrate techniques
(new or existing) to
include automated
assertions in existing
orchestrations

I can improve test coverage or
orchestrated T-Jobs by adding
extra checkpoints (especially in
data-drive approach)

BACKLOG

EOE9 EOE Include resource
information when
orchestrating test

Tester /
ElasTest user

to ensure my test cases
when running in parallel
fit within the resources

test cases don't fail because of a
high load or scarce resources

BACKLOG

D2.5 ElasTest requirements, use-cases and architecture v2

75

ID Component Title As a <type of
user>

I want <some goal> so that <some reason> Status Releas
e

cases available

ERE1 ERE Data
Preprocessing

Admin user to automatically
preprocess user data

I can minimize time and effort
spent on data preparation

AVAILABLE R1-R2

ERE2 ERE Data Load Admin user to upload user data to
cloud

it can be fed to the machine
learning model

AVAILABLE R1-R2

ERE3 ERE Training on User
Data

Admin user to launch the execution of
ML algorithms

I can train machine learning
model on user provided data

AVAILABLE R1-R2

ERE4 ERE Flexible Storage Admin user a flexible solution for
storing user data

I can choose storage type that fits
best the size of my datasets

AVAILABLE R3

ERE5 ERE Authentication Admin / Tester to log in and authenticate
as a registered user

I can get access to proprietary
services

BACKLOG

ERE6 ERE Admin Dashboard Admin user to separate role and UI for
managing data load and
training

I can ensure control over
resource-consuming procedures

AVAILABLE R3

ERE7 ERE Configure default
settings

Tester to configure and save
default settings for
queries

I can choose the model that I
want to query

AVAILABLE R3

ERE8 ERE Tester UI Tester a user interface I can query for, view and interact
with recommendations generated
by ERE

AVAILABLE R1-R2

D2.5 ElasTest requirements, use-cases and architecture v2

76

ID Component Title As a <type of
user>

I want <some goal> so that <some reason> Status Releas
e

ERE9 ERE Recommend
TJobs for reuse

Tester to receive
recommendations, based
on a natural language
descriptions, on
automated testcases to
reuse

I can increase code reusability,
save time and effort

AVAILABLE R1-R2

ERE10 ERE Recommend
manual test cases
for reuse

Tester to receive
recommendation on
manual test steps to
reuse, based on
functionality description,

I can increase knowledge reuse,
improve test cases quality,
support less experienced testers

BACKLOG

ERE11 ERE Recommend new
TJobs from
natural language
description

Tester to receive newly
generated code for
automated testcases,
based on natural language
description

I can save time and resources
spent on test automation

AVAILABLE R4

ERE12 ERE Learning from
tester feedback

Tester a convenient way to
amend received
recommendations and
return them to the system

the feedback is used for re-
training to improve future
recommendations

BACKLOG

ERE13 ERE Inline help Tester to have access to inline
help as I navigate through

I can get immediate explanations
and tips for using various features

AVAILABLE R4

D2.5 ElasTest requirements, use-cases and architecture v2

77

ID Component Title As a <type of
user>

I want <some goal> so that <some reason> Status Releas
e

the UI

ERE14 ERE End-to-end
preprocessing
pipeline

Admin user to automatically crawl a
software repository (Java)
and extract relevant
training data

I can eliminate manual effort
required to gather and analyse
data

AVAILABLE R5

ERE15 ERE Pre-trained
models

Admin /Tester ERE to provide off-the-
shelf pretrained model
that can be customized
using my own data

I can leverage software
engineering knowledge captured
in large open source repositories,
decrease training time and cost

AVAILABLE R7

ERE16 ERE Trial version of
Recommender

Tester to get free access to a
subset of ERE functionality

I can try and evaluate the
component

AVAILABLE

ERE17 ERE View more
context for
reusable test
cases

Tester to view class members
corresponding to the
recommended test
methods and easily access
parent repositories

I can fully understand the
recommended code

AVAILABLE R7

EQE1 EQE Data
Preprocessing

Admin to automatically
preprocess user data

I can minimize manual effort on
data preparation

BACKLOG

EQE2 EQE Data Load Admin to load user data it can be fed to a machine
learning model

BACKLOG

EQE3 EQE Training on user Admin to launch training I can generate a Q&A model IN

D2.5 ElasTest requirements, use-cases and architecture v2

78

ID Component Title As a <type of
user>

I want <some goal> so that <some reason> Status Releas
e

data trained on user data PROGRESS

EQE4 EQE Interactive UI Tester an interactive UI I can easily input questions and
read responses

IN
PROGRESS

EQE5 EQE Querying Q&A
model

Tester to send queries to the
selected model and
receive responses
generated by the model

I can receive relevant responses
based on the previous knowledge
ingested and processed by EQE

IN
PROGRESS

EQE6 EQE Pre-trained EQE
model

Tester EQE to provide a model
pretrained on open data

I can benefit from EQE
functionality even if I do not have
own data

IN
PROGRESS

EQE7 EQE Re-training with
user data

Admin to re-train off-the-shelf
model using my custom
data

I can receive responses that are
better tailored to my domain
while still leveraging open data

BACKLOG

EQE8 EQE Launching the
component

Admin to open/close the
detached panel using the
platform Dashboard

I can control the presence of
detached panel

AVAILABLE R7-
Final

ECE1 ECE Receive TJob
information from
TORM

ElasTest
Component

to get TJob Information
from the TORM

ECE can estimate a cost based on
which services are used in the
test

AVAILABLE R3

ECE2 ECE Receive TJob
information from

ElasTest
Component

to get the Service Type
cost definitions

ECE can generate a Static cost
estimation

AVAILABLE R3

D2.5 ElasTest requirements, use-cases and architecture v2

79

ID Component Title As a <type of
user>

I want <some goal> so that <some reason> Status Releas
e

ESM

ECE3 ECE Static Estimation
of a TJob Cost

Tester to estimate the TJob cost I can see in beforehand a Static
estimation of his TJob execution
cost

AVAILABLE R3

ECE4 ECE Retrieve
Monitoring
information

ElasTest
Component

to generate a real cost
report based on the
platform usage

the End-User sees the real cost of
the TJob Execution

AVAILABLE R6

ECE5 ECE Use Lifecycle
events

ElasTest
Component

to generate a real cost
report based on the
platform usage inferred
based on the start and
stop events of a TJob

the End-User sees the real cost of
the TJob Execution

DROPPED

ECE6 ECE Actual calculation
of a TJob cost

Tester to compute the true TJob
cost based on monitored
metric data

I can see in true TJob execution
cost post execution

AVAILABLE R7b

ECE7 ECE Extend cost
model to support
all ElasTest
support service

ElasTest
Component

to capture service specific
cost parameters with the
model

I can use service specific
nomenclature to define a
reasonable cost model for my
service

AVAILABLE R5

ECE8 ECE Make costs
available via REST

ElasTest
Component

to get the cost of running
my tests programmatically
and not only via the

as Elastest component I can query
costs via an API to show to the

BACKLOG

D2.5 ElasTest requirements, use-cases and architecture v2

80

ID Component Title As a <type of
user>

I want <some goal> so that <some reason> Status Releas
e

APIs dashboard user in a consolidated view

ECE9 ECE Make rest cost
feature optional
depending on the
availability of
EMP service

Tester to know the real cost
feature is not supported in
a release outright and not
see a broken feature error

I know exactly what is supported
and what is not

AVAILABLE R7a

Table 8 Technical requirements list - ElasTest Integrations with External Tools

ID Component Title As a <type of
user>

I want <some goal> so that <some reason> Status Release

ET1 ET Install full latest
version

Any User (Tester,
developer,
operator...)

to install the latest full
ElasTest

testers can configure SuTs and
TJobs with all the capabilities

BACKLOG

ET2 ET Install lite latest
version

Any User (Tester,
developer,
operator...)

to install the latest lite
ElasTest

testers can configure SuTs and
TJobs with and use the basic
capabilities of ElasTest

BACKLOG

ET3 ET Install full specific
version

Any User (Tester,
developer,
operator...)

to install a specific version
of the full ElasTest

testers can configure SuTs and
TJobs with all the capabilities

BACKLOG

ET4 ET Install lite specific
version

Any User (Tester,
developer,
operator...)

to install a specific version
of the lite ElasTest

testers can configure SuTs and
TJobs with and use the basic
capabilities of ElasTest

BACKLOG

ET5 ET Check ElasTest
Status

Any User (Tester,
developer,
operator...)

to check the ElasTest status
(running/stop/failed/unstab
le...)

the user can check if the
platform is ready to be used

AVAILABLE R1-R2

ET6 ET Start full latest
version

Any User (Tester,
developer,
operator...)

to start the latest full
ElasTest docker image

testers can configure SuTs and
TJobs with all the capabilities

AVAILABLE R4

ET7 ET Start lite latest Any User (Tester, to start the latest lite testers can configure SuTs and AVAILABLE R1-R2

D2.5 ElasTest requirements, use-cases and architecture v2

82

ID Component Title As a <type of
user>

I want <some goal> so that <some reason> Status Release

version developer,
operator...)

ElasTest TJobs with and use the basic
capabilities of ElasTest

ET8 ET Start full specific
version

Any User (Tester,
developer,
operator...)

to start a specific version of
the full ElasTest

testers can configure SuTs and
TJobs with all the capabilities

AVAILABLE R4

ET9 ET Start full latest
version without
ERE

Any User (Tester,
developer,
operator...)

to start the latest full
ElasTest (without the
ElastTest Recommendation
Engine)

testers can configure SuTs and
TJobs with all the capabilities
except ElastTest
Recommendation Engine

AVAILABLE R1-R2

ET10 ET Start lite specific
version

Any User (Tester,
developer,
operator...)

to start a specific version of
the lite ElasTest

testers can configure SuTs and
TJobs with and use the basic
capabilities of ElasTest

AVAILABLE R1-R2

ET11 ET Retrieve
connection
information

Any User (Tester,
developer,
operator...)

to know where to connect
to access the ElasTest
platform

users can connect to the
Platform to operate

AVAILABLE R1-R2

ET12 ET Retrieve
information of
deployed
components

Any User (Tester,
developer,
operator...)

to know which components
are available in the running
ElasTest

I can obtain information of each
of the components, such as
status, port, consuming
resurces...

AVAILABLE R3

ET13 ET AWS Cloud Elastest
Deployment

Any User (Tester,
developer,

to configure and Run an
Elastest Instance in the AWS

I am able to have a fully
operating ElasTest running in

AVAILABLE R4

D2.5 ElasTest requirements, use-cases and architecture v2

83

ID Component Title As a <type of
user>

I want <some goal> so that <some reason> Status Release

operator...) cloud, with no or little effort the cloud.

ET14 ET AWS Cloud Elastic
Elastest

Any User (Tester,
developer,
operator...)

to configure and Run an
Elastest that can be
seamlessly elastic

I am able to launch (virtualy)
any number of TJobs as the
resources would be elastic

IN
PROGRESS

EJ1 EJ Install plugin Tester (Jenkins
User)

to install ElasTest Plugin
with default plugin installer

ElasTest configuration
properties can be set on Jenkins
Configuration and ElasTest can
be used in Jenkins Jobs

AVAILABLE R5

EJ2 EJ Install plugin for
pipelines

Tester (Jenkins
User)

to install ElasTest Plugin
with default plugin installer

ElasTest configuration
properties can be set on Jenkins
Configuration and ElasTest can
be used in Jenkins Pipelines

AVAILABLE R5

EJ3 EJ Global
configuration of
ElasTest platform

Tester (Jenkins
User)

to configure global ElasTest
settings:
 - Version
 - type (lite/full)

the plugin can manage the
ElasTest platform with the
appropriate configuration

BACKLOG

EJ4 EJ Jenkins Managed
ElasTest

Tester (Jenkins
User)

ElasTest plugin to be able to
launch a ElasTest with the
specified global
configuration

any job can be able to launch
and use this ElasTest.

BACKLOG

EJ5 EJ External Managed Tester (Jenkins ElasTest plugin to be able to
use an ElasTest runing in

any job can be able to use this AVAILABLE R5

D2.5 ElasTest requirements, use-cases and architecture v2

84

ID Component Title As a <type of
user>

I want <some goal> so that <some reason> Status Release

ElasTest User) other location (local or
external)

ElasTest.

EJ6 EJ Configure Docker
Image SuT

Tester (Jenkins
User)

to configure in a Job,
ElasTest to recognize and
launch a provided an image
of a SuT

ElasTest can work with that SuT BACKLOG

EJ7 EJ Configure
externally hosted
SuT

Tester (Jenkins
User)

to configure in a Job,
ElasTest to recognize an
externally hosted SuT

ElasTest can work with that SuT BACKLOG

EJ8 EJ Configure
personalized SuT

Tester (Jenkins
User)

to provide an script (mvn,
sh, py...) that the ElasTest
plugin will use to launch a
SuT

ElasTest can work with that SuT BACKLOG

EJ9 EJ Configure Docker
Image TJob

Tester (Jenkins
User)

to configure ElasTest to
recognize and launch a
provided an image of a TJob

ElasTest can execute that TJob BACKLOG

EJ10 EJ Configure
personalized TJob

Tester (Jenkins
User)

to provide an script (mvn,
sh, py...) that the ElasTest
plugin will use to launch a
TJob

ElasTest can execute that TJob BACKLOG

EJ11 EJ Export results Tester (Jenkins to export the result of the
tests executed in a readable

user can read detailed results AVAILABLE R6

D2.5 ElasTest requirements, use-cases and architecture v2

85

ID Component Title As a <type of
user>

I want <some goal> so that <some reason> Status Release

User) format

EJ12 EJ Export logs Tester (Jenkins
User)

to export all the generated
logs for SuT and TJobs

user can retrieve them for
further operations.

AVAILABLE R6

EJ13 EJ Request for TSS Tester (Jenkins
User)

to use the TSS's
functionalities

users can use browsers in their
tests

AVAILABLE R5

EJ14 EJ Bind a Job to a
specific ET Project

Tester (Jenkins
User)

to create the TJob
associated with a Job inside
of a specific ET Project

the executions can be organized AVAILABLE R5

EJ15 EJ Choose a SuT
defined on ElasTest

Tester (Jenkins
User)

to don't have to start the
SuT in the jenkins pipeline

users can reuse SUTs defined on
ElasTest

AVAILABLE R5

EJ16 EJ Monitoring SuTs
started from a
Jenkins pipeline
(doesn't work on
k8s)

Tester (Jenkins
User)

to send logs and metrics
from a SUT started on
Jenkins to ElasTest

users can analyze those logs and
metrics in ElasTest

AVAILABLE R5

