

 D3.2
Version 1.0

Author ATOS

Dissemination PU

Date 23-12-2019

Status FINAL

D3.2 ElasTest Platform Cloud Modules v.2

Project acronym ELASTEST

Project title ElasTest: an elastic platform for testing complex distributed
large software systems

Project duration 01-01-2017 to 31-12-2019

Project type H2020-ICT-2016-1. Software Technologies

Project reference 731535

Project website http://elastest.eu/

Work package WP3

WP leader ATOS

Deliverable nature Report

Lead editor Orlando Avila-García (ATOS)

Planned delivery date 31-12-2019

Actual delivery date 31-12-2019

Keywords Open source software, cloud computing, software
engineering, operating systems, computer languages,
software design & development

Funded by the European Union

http://elastest.eu/

D3.2 ElasTest Platform Cloud Modules v2

2

License

This is a public deliverable that is provided to the community under a Creative Commons
Attribution-ShareAlike 4.0 International License:

http://creativecommons.org/licenses/by-sa/4.0/

You are free to:

Share — copy and redistribute the material in any medium or format.

Adapt — remix, transform, and build upon the material for any purpose, even
commercially.

The licensor cannot revoke these freedoms as long as you follow the license
terms.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and
indicate if changes were made. You may do so in any reasonable manner, but not
in any way that suggests the licensor endorses you or your use.

ShareAlike — If you remix, transform, or build upon the material, you must
distribute your contributions under the same license as the original.

No additional restrictions — You may not apply legal terms or technological
measures that legally restrict others from doing anything the license permits.

Notices:

You do not have to comply with the license for elements of the material in the
public domain or where your use is permitted by an applicable exception or
limitation.

No warranties are given. The license may not give you all of the permissions
necessary for your intended use. For example, other rights such as publicity,
privacy, or moral rights may limit how you use the material.

For a full description of the license legal terms, please refer to:

http://creativecommons.org/licenses/by-sa/4.0/legalcode

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/legalcode

D3.2 ElasTest Platform Cloud Modules v2

3

Contributors

Name Affiliation

Orlando Avila-García ATOS

Fernando Méndez ATOS

Tran Quang Thanh TUB

Piyush Harsh ZHAW

Andy Edmonds ZHAW

Micael Gallego URJC

Eduardo Jiménez URJC

Version history

Version Date Author(s) Description of changes

0.1 01/11/2019 Orlando Avila-García Table of content (ToC)

0.2 04/11/2019 Orlando Avila-García Change in ToC to account for
comments from ZHAW

0.3 20/11/2019 ALL Initial contributions from ATOS
(Section 6), TUB (Sections 3 and
4.1) and ZHAW (Sections 4.2 and
5). Adding Introduction (Section 2)
by ATOS.

0.4 27/11/2019 Tran Quang, Orlando
Avila-García, Andy
Edmonds

Adding Section 4.1 by TUB,
Conclusions (Sections 8) by ZHAW,
and Executive summary (Section 1)
by ATOS.

0.5 23/12/2019 Piyush Harsh, Tran
Quang, Orlando
Avila-García, Andy
Edmond

Adding changes by TUB, ZHAW
and ATOS to address amendments
and comments resulting from the
internal review by TUB.

1.0 23/12/2019 Orlando Avila-García Final release

D3.2 ElasTest Platform Cloud Modules v2

4

Table of contents

1 Executive summary ... 9

2 Introduction .. 10
2.1 Overview and Objectives ... 10
2.2 Structure of the Document .. 11
2.3 Target Audiences .. 11

3 ElasTest Cloud Modules .. 12
3.1 Rationale .. 12
3.2 Categories .. 12
3.3 Challenges to Overcome .. 13
3.4 Roadmap .. 13

4 Platform Management and Monitoring ... 15
4.1 ElasTest Platform Manager (EPM) ... 15

4.1.1 Introduction ... 15
4.1.2 Baseline Concepts and Technologies ... 15
4.1.3 Component Design and Architecture ... 16
4.1.4 Roadmap and Features .. 19
4.1.5 Research results and Future Plan ... 21

4.2 ElasTest Monitoring Platform (EMP) .. 22
4.2.1 Introduction ... 22
4.2.2 Baseline Concepts and Technologies ... 22
4.2.3 Component Design and Architecture ... 22
4.2.4 Roadmap and Features .. 23
4.2.5 Research results and Future Plan ... 28

5 Service Lifecycle Management .. 30
5.1 ElasTest Service Manager (ESM) .. 30

5.1.1 Introduction ... 30
5.1.2 Baseline Concepts and Technologies ... 30
5.1.3 Component Design and Architecture ... 30
5.1.4 Roadmap and Features .. 32
5.1.5 Research results and Future Plan ... 34

6 SuT Instrumentation ... 35
6.1 ElasTest Instrumentation Manager (EIM) & Instrumentation Agents 35

6.1.1 Introduction ... 35
6.1.2 Baseline Concepts and Technologies ... 35
6.1.3 Component Design and Architecture ... 35
6.1.4 Roadmap and Features .. 38

7 Data Persistence Management .. 43

8 Conclusions ... 44

9 References .. 45

D3.2 ElasTest Platform Cloud Modules v2

5

List of Figures
Figure 1 – Schema of deployment elements within Kubernetes .. 16

Figure 2 – EPM High-level Architecture .. 17

Figure 3 – Worker creation sequence diagram ... 18

Figure 4 – Kubernetes cluster creation sequence diagram ... 18

Figure 5 – EMP High-level Architecture .. 22

Figure 6 – New API for the EMP .. 27

Figure 7 – New data visualization interface for the EMP... 28

Figure 8 – ESM High-level Architecture .. 31

Figure 9 – The ESM graphical user interface showing the import of a service definition 32

Figure 10 – EIM High-level Architecture .. 36

Figure 11 – Main data model classes (resource types) in the EIM ... 37

Figure 12 – EIM Jenkins build report ... 42

List of Tables
Table 1 – Main features developed between M18 and M36 for the cloud enablers ... 14

Table 2 – EPM requirements validation summary ... 20

Table 3 – EMP requirements validation summary ... 26

Table 4 – ESM requirements validation summary ... 34

Table 5 – EIM controllability data model .. 37

Table 6 – EIM requirements validation summary .. 41

D3.2 ElasTest Platform Cloud Modules v2

6

Glossary of acronyms

Acronym Description

CI Continuous Integration. This refers to the software development
practice with that name.

FOSS Free Open Source Software. This refers to software released under
open source licenses.

IaaS Infrastructure as a Service. This refers to one of the models of
exposing cloud capabilities and services to third parties.

PaaS Platform as a Service. This refers to one of the models of exposing
cloud capabilities and services to third parties.

SaaS Software as a Service. This refers to one of the models of exposing
cloud capabilities and services to third parties.

FaaS Function-as-a-Service.

Instrumentation This refers to extending the interface exposed by a software system
for achieving enhanced controllability and observability

QoS In this proposal, Quality of Service refers to non-functional attributes
of systems. QoS is related to objective quality metrics such as latency
or packet loss. In ElasTest, QoS is particularly important for the
characterization of multimedia systems and applications through
custom metrics.

QoE In this proposal, Quality of Experience refers to non-functional
attributes of systems. QoE is related to the subjective quality
perception of users. In ElasTest, QoE is particularly important for the
characterization of multimedia systems and applications through
custom metrics.

SiL A SiL (Systems in the Large) is a large distributed system exposing
applications and services involving complex architectures on highly
interconnected and heterogeneous environments. SiLs are typically
created interconnecting, scaling and orchestrating different SiS. For
example, a complex microservice-architected system deployed in a
cloud environment and providing a service with elastic scalability is
considered a SiL.

SiS SiS (Systems in the Small) are systems basing on monolithic (i.e. non
distributed) architectures. For us, a SiS can be considered a
component that provides a specific functional capability to a larger
system.

SuT Software under Test. This refers to the software that a test is
validating. In this project, SuT typically refers to a SiL that is under
validation.

TO Test Orchestration. The term orchestration typically refers to test
orchestration understood as a technique for executing tests in

D3.2 ElasTest Platform Cloud Modules v2

7

coordination. This should not be confused with cloud orchestration,
which is a completely different concept related to the orchestration
of systems in a cloud environment.

TORM Test Orchestration and Recommendation Manager. This is a
functional aggregation of ElasTest components that abstracts away
the details and exposes to testers the capabilities of the ElasTest
orchestration and recommendation engines.

TJob We define a TJob (Testing Job) as a monolithic (i.e. single process)
program devoted to validating some specific attribute of a system.
Current Continuous Integration tools are designed for automating
the execution of TJobs. TJobs may have different flavours such as
unit tests, which validate a specific function of a SiS, or integration
and system tests, which may validate properties on a SiL as a whole.

TiL A TiL (Test in the Large) refers to a set of tests that execute in
coordination and that are suitable for validating complex functional
and/or non-functional properties of a SiL on realistic operational
conditions. We understand that a TiL can be created by orchestrating
the execution of several TJob.

ICT Information and Communication Technology

IT Information Technology

WP Work Package

FMC Fundamental Model Concept

ETM ElasTest Test Manager

EPM ElasTest Platform Manager

EMP ElasTest Monitoring Platform

ESM ElasTest Service Manager

EIM ElasTest Instrumentation Manager

EDM ElasTest Data Manager

TSS Test Support Service

EUS ElasTest User Impersonation Service

ESS ElasTest Security Service

ECE ElasTest Cost Engine

PoP Point of Presence

REST Representational State Transfer

VDU Virtual Deployment Unit

AWS Amazon Web Services

AAA Authentication, Authorization, Accounting

TOSCA Topology and Orchestration Specification for Cloud Applications

API Application Programming Interface

D3.2 ElasTest Platform Cloud Modules v2

8

SDK Software Development Kit

SSH Secure Shell

CPU Central Processing Unit

R&D Research and Development

OSBA Open Service Broker API

SLA Service Level Agreement

DoA Description of Actions

UI User Interface

GUI Graphical User Interface

VM Virtual Machine

KVM Kernel-based Virtual Machine

JDK Java Development Kit

KPI Key Performance Indicator

R Release

MS Milestone

D3.2 ElasTest Platform Cloud Modules v2

9

1 Executive summary

This deliverable reports the increment of the ElasTest Platform cloud testing enablers
carried out within WP3 between M18 to M36. This document should be read and
understood as an extension of D3.1 [3], which describes the development of such
enablers during the first half of the project; the present deliverable focuses on what has
been done since then. Thus, this document presents the design specifications and
implementation details for that period, covering the Platform Manager (EPM), the
Monitoring Platform (EMP), the Service Manager (ESM), the Instrumentation Manager
(EIM) and the Data Management (EDM) capabilities of the ElasTest Platform. The key
goals for WP3 during this period have been: i) the ability to provide resources and
services to execute TJobs and support the complete Platform (EPM and ESM), ii) the
ability to provide resources to deploy and execute SuTs (EPM), the ability to provide
insights into the Platform (EMP), and the ability to provide controllability of SuTs in order
to operationalize realistic execution environments (EIM). The new versions of these
enablers released during the M18-M36 period were key to carry out realistic system-
level and/or end-to-end testing throughout WP6 and WP7 activities. Furthermore, these
components have all been key to sustain core platform functions, such as the ETM
(ElasTest Test Manager).

D3.2 ElasTest Platform Cloud Modules v2

10

2 Introduction

2.1 Overview and Objectives

In recent years, cloud testing and more specifically “testing in the cloud” has arisen to
facilitate testing of large-scale distributed systems [12]. In this new paradigm, cloud-
based environments and infrastructures are used to carry out realistic system-level
and/or end-to-end testing. This includes collecting logs and measurements of the
performance of the application and data services, and infrastructure resources
comprising the environment, and allowing for the use of data analytics and data
visualization techniques on them.

Cloud technologies therefore facilitate the cost-effective construction of large-scale
production-like testing environments; however, while this approach brings the
possibility to pursue innovative and more effective testing solutions, it also brings
important challenges [12]. This deliverable presents a set of cloud testing enablers to
address some of the challenges in the test execution domain—as presented by the
authors of this deliverable in a conference paper [24]:

Firstly, the distributed application needs to be deployed, therefore an adequate
scalable environment is needed. Secondly, the application needs to be exercised
by the test in different ways depending on the attributes or functionalities to
check, which sometimes means using services like browsers, IoT device emulation
or data processing and management tools. Thirdly, to test extra-functional
properties, the application's operational environment needs to be controlled
during testing to resemble real production conditions. Finally, during the testing
process the different systems that comprise the application need to be
monitored, their logs collected, and every piece of information that might render
useful for a post-analysis retrieved and presented in a meaningful way. This is
usually called observability, and in distributed applications might be the only way
to understand why a test failed, given the impossibility of debugging the whole
thing.

This deliverable aims at presenting how the collection of ElasTest cloud testing modules
seek to provide the testers with cloud testing capabilities to accomplish the test
enactment process mentioned above, including the operationalization of realistic
production environments. These services are part of the ElasTest platform and are
deployable as cloud-native components in a wide range of infrastructures, either
together or separately from the ElasTest platform [13].

Notice this deliverable reports the evolution of the cloud testing enablers in the scope
of the WP3 from M18 to M36. In order to avoid the duplication of content, those aspects
of the components which have remained unchanged since M18 are not described again
here; please refer to D3.2 [6] for a full comprehension of those components.

These cloud testing enablers have been realized as software components and
subsystems required to run the ElasTest Platform: Platform Manager (EPM), Monitoring
Platform (EMP), Service Manager (ESM), Instrumentation Manager (EIM) and its
deployable Instrumentation Agents. Data Manager (EDM) is also included as one of the

D3.2 ElasTest Platform Cloud Modules v2

11

software components of WP3; however, its section in this deliverable appears empty
because no upgrades were required for that component since M18.

2.2 Structure of the Document

The structure of this deliverable is as follows: Section 1 introduces the document, its
objectives and motivation. Section 2 presents the ElasTest Cloud modules describing
how they are categorised and its overall roadmap since M18—the roadmap up to that
point in the lifetime of the project is already described in D3.1 [6]. The following four
sections describes the cloud enablers for managing and monitoring the ElasTest
Platform in a target cloud provider (Section 4), the mechanism and interfaces offered
for managing the on-demand cloud-based test support services offered by the Platform
(Section 5), the mechanisms used to instrumentalize the software under test (Section
6), and the service offering data persistence capabilities to the rest of components of
the Platform (Section 7). Finally, in Section 8, some conclusions of our work on cloud
testing enablers from M18 to M36 are drawn.

2.3 Target Audiences

The primary audience of this document are internal ElasTest technicians from WP3,
WP4, WP5 and WP6 involved in the development of the ElasTest platform. In addition,
this document would also be useful to developers and testers interested in cloud testing,
in general, and the approach taken by ElasTest, in particular. Finally, QA managers and
software architects seeking and/or evaluating testing platforms can use this document
to know technical details about ElasTest in order to assess its suitability and/or compare
it with alternative platforms and tools.

D3.2 ElasTest Platform Cloud Modules v2

12

3 ElasTest Cloud Modules

3.1 Rationale

New advances in ICT technology influence the way software is developed and tested,
the proliferation of large-scale applications targeting thousands of users that can be
connected concurrently and expect real time interactions; makes the testing strategy a
crucial aspect for the release management process of the applications.

Nowadays cloud technologies are creating advantages for organizations that adopt it
such as: speed, agility, scalability, accessibility and flexibility; therefore ElasTest aims to
extend the adoption of the aforementioned benefits offered by the cloud to testers
through the creation of a cloud platform (ElasTest Platform) designed for helping to
validate large software systems that require complex test suites and validation
processes.

Since the irruption of the cloud computing (together with the virtualization era) as a
disruptive technology, the increased use of the cloud introduced new business
opportunities and challenges during the last years allowing developers to apply more
easily the principles of mass production into the IT world. The current panorama reveals
that a whole range of IT functions can be thought of as commodity services.

The ElasTest cloud components described within this report is concerned with the
management and monitoring of the resources that the platform needs to operate; as
well as of the lifecycle management associated to the on-demand testing support
services catalogue which can be requested by the ElasTest Platform user dynamically. In
addition to the cloud components in charge of the platform management, the report
also includes other kind of cloud-based component not targeting the platform itself but
offering management capabilities over the software system under evaluation.

3.2 Categories

The different categories identified have a direct relationship with the tasks described
within the “WP3 Cloud components”. Task 3.1 implements the enablers for the platform
components to be deployed in a target cloud being able as well to monitor its usage
recovering in seamless way information related to the runtime execution of the
platform. Task 3.2 implements the appropriate mechanism enabling the lifecycle
management of the Test Support Services catalogue offered by ElasTest. Finally, Tasks
3.3 & 3.4 are devoted to the instrumentation capabilities offered over the software
under evaluation.

As it has been introduced in the previous paragraph, different categories have been
considered:

A. Software modules for managing the computational resources of the platform.
B. Software modules for managing the cloud-based services offered by the

platform.
C. Software modules for managing the applications under test.

D3.2 ElasTest Platform Cloud Modules v2

13

3.3 Challenges to Overcome

ElasTest is a platform designed to facilitate the build, execution and reporting of end-to-
end tests of complex distributed applications. These types of applications present some
properties like elasticity and fault tolerance that need to be tested with end-to-end
tests. To execute these complex not just distributed applications but also scalable tests
runs, enabling resources and supporting services are needed. The primary reason that
such elements must be provided is to remove the tester from the responsibility of having
to manage these resources and services themselves and in doing so allow them to focus
on their core business focus, writing complete tests that validate the SuT.

Not only resources and services should be provided for TJobs, additional cloud
components must also be provided in order to allow ElasTest deploy and execute a SuT
on the behalf of the tester; also, deploy and execute the components required to run
the ElasTest platform itself. In summary WP3’s main goals for the M18-M36 period has
been the following:

• to provide resources and services to execute TJobs and support the complete
ElasTest platform through the EPM and ESM,

• to provide resources to deploy and execute SuTs through the EPM,

• to provide necessary insights into ElasTest platform, that is, the current and past
state of ElasTest core components in order to facilitate stable operation of the
platform itself, through the EMP, and

• to provide controllability of SuTs in order to operationalize realistic execution
environments, suitable for validating non-functional properties on realistic
operational conditions, through the EIM.

The key aim and contribution of WP3 to ElasTest is to provide the enabling facilities
required by the ETM (TORM) to carry out its task of orchestration and executing tester
supplied TJobs. As such it can be thought of as the enabling platform for the ETM.

3.4 Roadmap

ElasTest uses an Agile Management methodology, which is suitable for innovation
management. This methodology has been designed for transforming ideas into
profitable products. For this, it focuses on learning and discovering how to fit a
technology into the market instead on how to carry out the technological developments
themselves. See D2.5 for more details.

Following such a methodology, the different cloud testing enablers underwent several
upgrades between M18 and M36 to achieve their goals (outlined in Section 3.3):

• EPM (ElasTest Platform Manager)

• EMP (ElasTest Monitoring Platform)

• ESM (ElasTest Service Manager)

• EIM (ElasTest Instrumentation Manager)

• EDM (ElasTest Data Management)

D3.2 ElasTest Platform Cloud Modules v2

14

The table below lists the cloud enablers’ main features developed in that increment
spanning from M18 (the date of the previous report D3.1 [6]) to M36:

Component Feature

EPM Fast and Flexible Worker creation

EPM Kubernetes Cluster on OpenStack and AWS

EPM Dynamic Kubernetes Cluster Management

EPM EPM deployment on Kubernetes (within ElasTest)

EMP API extension to enable ECE usage-based cost computation

EMP Visualization engine data storage optimization

EMP Visualization engine support to dynamic dashboards

EMP EMP deployment on Kubernetes (within ElasTest)

ESM Catalog of public services

ESM Services deployment by using Kubernetes templates

ESM ESM deployment on Kubernetes (within ElasTest)

EIM Portability of the instrumentation agents and manager

EIM Scalability of the instrumentation manager

EIM Persistence of agent configuration data by means of EDM

EIM Controllability of CPU, network and container failures

EIM EIM deployment on Kubernetes

EDM N/A (no upgrades required)

 Table 1 – Main features developed between M18 and M36 for the cloud enablers

D3.2 ElasTest Platform Cloud Modules v2

15

4 Platform Management and Monitoring

The following section introduces the core components in charge of the management
and monitoring of the platform; and provides the details of the requirements,
architecture, interfaces and features for each of them.

4.1 ElasTest Platform Manager (EPM)

4.1.1 Introduction

The ElasTest Platform Manager (EPM) is designed to serve as an interface for the
ElasTest components/consumers (e.g. TORM, Test Support Services, etc.) and the
underlying cloud platform. The EPM abstracts the connection to the cloud infrastructure
by providing Software Development Kits (SDK) or REST APIs to allow service consumers
manage virtual resources in a target cloud environment. Hence, ElasTest becomes fully
agnostic to the cloud services. Through the EPM, ElasTest can seamlessly control the
cloud technologies that the consortium considers as appropriate (e.g. OpenStack, AWS,
Docker, etc.).

4.1.2 Baseline Concepts and Technologies

The EPM itself is implemented in Java making use of the Spring framework 1 . Data
persistency is provided via SQL where by default it uses an in-memory database
(HyperSQL2). Nevertheless, other SQL databases (e.g. MySQL3) can be easily integrated
by changing the configuration inside the main properties file following the spring
configuration guide. Two approaches are supported by the EPM in the meaning of the
consumer can either make use of the EPM’s data model or TOSCA4 to describe the
deployment scenario or use directly templates of a certain technology. Thanks to the
modular approach, other virtualization infrastructures can be easily supported by
providing adapters for certain technologies. This adapter mechanism is provided via
gRPC 5 which manages the communication between the EPM itself and the
corresponding adapter.

In addition, the EPM makes indirectly use of several supporting services by configuring
the virtual instances for the purpose of log forwarding (e.g. Logstash6) or monitoring
(e.g. Dockbeat 7) which are then provided indirectly to other services for further
processing, such as, the ElasTest Monitoring Service, ElasTest Monitoring Platform, or
the ElasTest Test Manager.

1 Spring Framework, https://spring.io/
2 HyperSQL, https://spring.io/
3 Oracle MySQL, https://www.mysql.com/
4 OASIS Topology and Orchestration Specification for Cloud Application, https://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=tosca
5 A high performance, open-source universal RPC framework, https://grpc.io/
6 Logstash, https://www.elastic.co/products/logstash
7 DockBeat, https://www.elastic.co/blog/dockbeat-a-new-addition-to-the-beats-community

https://spring.io/
https://spring.io/
https://www.mysql.com/
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca
https://grpc.io/
https://www.elastic.co/products/logstash
https://www.elastic.co/blog/dockbeat-a-new-addition-to-the-beats-community

D3.2 ElasTest Platform Cloud Modules v2

16

The EPM and all the available adapters are delivered as Docker containers which are
available in Docker Hub. In addition, several docker-compose files are provided in the
GitHub repositories to start easily the EPM with the additional components and services
to ease the deployment and configuration.

Figure 1 – Schema of deployment elements within Kubernetes

Supporting Kubernetes8 deployment is the most important requirement in the phase 2
of ElasTest. This capability has been implemented to be able to provide a bigger
audience of end-users. Kubernetes is an open source system for automating
deployment, scaling, and management of containerized applications (It was started by
Google in 2014 and later donated to the Cloud Native Computing Foundation). With
Kubernetes we can quickly deploy our applications, scaling it according to our needs,
without having to stop anything in the process. The high-level architecture of a
Kubernetes cluster (which is, in Kubernetes terminology, the equivalent of a datacenter)
is depicted in the figure below.

4.1.3 Component Design and Architecture

Figure 2 describes the high-level architecture of EPM. The core functionalities include:
to allocate, terminate, update virtual resources (e.g. compute, network) and request
information of those as well, to execute run-time operations, and to register and
configure new workers. For maintaining state and to allow the user to retrieve state and
information of the allocated virtual resources, the EPM maintains data in a repository.
The EPM adopts modular architecture where the Core is decoupled from so called “EPM
Adapters” that provide an abstracted way to interact with any kind of cloud
environment. The northbound interface is exposed to the Core and abstracted in such a
way, that the Core do not need to take care about the type of the target cloud

8 https://justanotherdevblog.com/2017/02/22/kubernetes-an-overview-bf47b0af1865/

https://justanotherdevblog.com/2017/02/22/kubernetes-an-overview-bf47b0af1865/

D3.2 ElasTest Platform Cloud Modules v2

17

environment - it just needs to know to which adapter to send the requests. The
southbound interface is dependent on the type of target cloud environment. This allows
an easy way to provide any kind of cloud environment by providing an adapter without
changing anything in the core. The EPM Adapter takes also care about the configuration
of logging and monitoring of the virtualized resources by receiving that information by
the EPM component either defined by the Consumer itself or the default configuration.

Figure 2 – EPM High-level Architecture

The EPM provides two different options to describe and deploy virtual resources: “All-
in-One” and “Step-by-Step”. The former is designed to make use of template-dependent
technologies such as docker-compose or Ansible, to give consumers the freedom to use
pre-existing templates. Such template with additional metadata will be forwarded
directly to the target virtual infrastructure to trigger the deployment as a whole (e.g.
SuT, TSS). The latter, on the other hand, targets IaaS infrastructures (e.g. Docker,
OpenStack, AWS) where EPM receives the resource description which is compliant to
the EPM internal information model or TOSCA. This allows consumers to use the same
definition for various cloud infrastructures.

D3.2 ElasTest Platform Cloud Modules v2

18

Figure 3 – Worker creation sequence diagram

Figure 4 – Kubernetes cluster creation sequence diagram

D3.2 ElasTest Platform Cloud Modules v2

19

4.1.4 Roadmap and Features

In the following sections we present the final set of requirements that has driven the
implementation of the component, and the details of the final increments of its
development roadmap (since M18).

4.1.4.1 Requirements Validation Summary

Requirements from EPM are being tracked as part of WP2 activities, and details can be
found in D2.3 [5] and D2.5 [15]. The following table shows the status of validation of
those requirements at M36 as well as the test coverage achieved for this component.

Title As a <type of
user>

I want <some
good>

So that <some reason>

EPM
1

Abstraction of
underlying
virtualization
technologies

 ElasTest
Component
(TORM, Test
Support Services,
etc.)

to be able to
orchestrate and
manage virtualized
resources
(compute,
network, storage)
on any
virtualization
technology under
consideration

the consumer does not
need to care about the
target virtualization
technology but can
define needed resources
in a generic way.

EPM
2

Providing
Northbound API

ElasTest
Component

to interact with
the EPM

the consumer can make
use of the EPM via a
RESTful API

EPM
3

Providing SDKs ElasTest
Component

to interact with
the EPM

developers of other
components can easily
integrate with the EPM
by making use of SDKs
(libraries) provided for
different languages (e.g.
java, python)

EPM
10

Containers
monitoring

ElasTest
Component

to monitor
instances managed
by the EPM

the consumer can
retrieve monitoring
information for further
evaluation and
troubleshooting

EPM
11

Log forwarding ElasTest
Component

to forward logs to
the configured
endpoint

other parties can access
those logs which can be
used for further
troubleshooting and
debugging

EPM
15

Support for
OpenStack

ElasTest
Component

to be able to
allocate, manage
and terminate VMs
via OpenStack

the consumer can make
use of OpenStack as a
virtualization technology

D3.2 ElasTest Platform Cloud Modules v2

20

EPM
16

Kubernetes
Cluster on
OpenStack

ElasTest
Component

to be able to
deploy Kubernetes
in OpenStack

the consumer of the EPM
want to deploy SUTs on
top of Kubernetes

EPM
7

Platform - Linux
support

User to run the EPM in
Linux as the OS
with native docker

the user of ElasTest has
the free choice of the
underlying OS where
ElasTest is running

EPM
8

Platform - Mac
support

User to run the EPM in
Mac OS as the OS
with docker for
Mac

the user of ElasTest has
the free choice of the
underlying OS where
ElasTest is running

EPM
9

Platform -
Windows support

User to run the EPM in
Windows with
docker toolbox as
the OS and docker
for Windows

the user of ElasTest has
the free choice of the
underlying OS where
ElasTest is running

Table 2 – EPM requirements validation summary

4.1.4.2 Road Map

Some important updates carried out from M18 to M36 are listed as follows:

1. Fast and Flexible Worker creation

a. Improved Worker Creation

i. Create a VM & Register it as a Worker - 2 API Calls

ii. Supported Types: Docker Compose, Docker, Kubernetes

b. Improved Worker Setup

i. Worker setup - Ansible Plays

ii. Worker type - set on registration

2. Kubernetes Cluster on OpenStack and AWS

a. Cluster Model and API

b. Create & Delete Clusters

c. Set up Clusters from fresh VMs

d. Create Kubernetes Cluster

e. Install Kubernetes on VMs

f. Configure Cluster using Kubeadm

g. Add node to an already Running Cluster

h. Worker becomes part of a Cluster using Ansible Play

3. Dynamic Kubernetes Cluster Management

a. Manual scale out and in of workers

D3.2 ElasTest Platform Cloud Modules v2

21

b. Provide Java SDKs via Maven Central

c. Migration of adapters to new repository

4.1.4.3 Code Reports

The EPM code repository can be found on GitHub (see table below) and is licenses using
Apache 2.0. Within that repository, there is detailed documentation about its usage and
provides API.

Subcomponent Code repository

EPM https://github.com/elastest/elastest-platform-manager

Adapter -
Docker

https://github.com/tub-elastest/epm-adapter-docker

Adapter -
docker-
compose

https://github.com/tub-elastest/epm-adapter-docker-compose

Adapter -
Ansible

https://github.com/tub-elastest/epm-adapter-ansible

Adapter -
Virtual Box

https://github.com/tub-elastest/epm-adapter-vbox

Adapter - Open
Baton

https://gitlab.fokus.fraunhofer.de/ogo/elastest-openbaton-adapter

SDK Client -
Java

https://github.com/tub-elastest/epm-client-java

SDK Client -
Python

https://github.com/tub-elastest/epm-client-python

4.1.5 Research results and Future Plan

The EPM has been delivered to satisfy all the needs of the ElasTest platform. The flexible
architecture allows adapting with different types of requirements and its application in
ElasTest ecosystem has been described in a recent WP3 publication to UCC19 [14].
Through the EPM, ElasTest can seamlessly control the cloud technologies that the
consortium considers as appropriate (e.g. OpenStack, AWS, Docker, Kubernetes).
Several targets are under considerations including not only the extending/developing
new adapters for existing NFV Orchestrator (e.g. OSM, OpenBaton) to support telco
testing requirements, but also supporting deploy domain specific external SUTs (e.g.
virtual mobile core network).

https://github.com/elastest/elastest-platform-manager
https://github.com/mpauls/epm-adapter-docker
https://github.com/mpauls/epm-adapter-docker-compose
https://github.com/mpauls/epm-adapter-docker
https://github.com/mpauls/epm-adapter-docker-compose
https://github.com/mpauls/epm-adapter-ansible
https://github.com/mpauls/epm-adapter-docker
https://github.com/mpauls/epm-adapter-ansible
https://github.com/mpauls/epm-adapter-vbox
https://github.com/mpauls/epm-adapter-docker
https://github.com/mpauls/epm-adapter-vbox
https://gitlab.fokus.fraunhofer.de/ogo/elastest-openbaton-adapter
https://github.com/mpauls/epm-client-java
https://github.com/mpauls/epm-adapter-docker
https://github.com/mpauls/epm-client-java
https://github.com/mpauls/epm-client-python
https://github.com/mpauls/epm-adapter-docker
https://github.com/mpauls/epm-client-python

D3.2 ElasTest Platform Cloud Modules v2

22

4.2 ElasTest Monitoring Platform (EMP)

4.2.1 Introduction

ElasTest monitoring platform is a suite of tools made of targeted agents that collect
various metrics from host nodes, as well as critical ElasTest service processes
periodically, plus metric aggregators and visualizers. The principal goal EMP is to enable
monitoring of ElasTest core components themselves, which allows the operator of
ElasTest to diagnose possible fault lines quickly, remove bottlenecks thereby ensuring
reactiveness and fluidity of overall test framework.

4.2.2 Baseline Concepts and Technologies

EMP concepts and technologies have not changed since M18 for the most part (please
refer to D3.1 [6], Section 4.2.2 for a full explanation). The only significant change has
been in the underlying Java runtime switch from OpenJDK to IBM’s open source OpenJ9
runtime (see Section 4.2.3).

4.2.3 Component Design and Architecture

The EMP baseline architecture has remained unchanged from D3.1 [6].

Figure 5 – EMP High-level Architecture

D3.2 ElasTest Platform Cloud Modules v2

23

However, the underlying Java runtime was changed: from OpenJDK to IBM’s open
source OpenJ9 runtime. This switch was done to reduce the memory footprint of the
module which was necessary to enable deployment in Kubernetes clusters over physical
or virtual infrastructure clusters with rather limited resources.

Since the original architecture was already conducive for delivery as a set of container
processes, deployment of EMP as Kubernetes pods was straightforward barring slight
update in EMP dashboard definition which was needed due to changed container
naming strategy within Kubernetes.

4.2.4 Roadmap and Features

In the following sections we present the final set of requirements that has driven the
implementation of the component, and the details of the final increments of its
development roadmap (since M18).

4.2.4.1 Requirements Validation Summary

Requirements from EMP are being tracked as part of WP2 activities, and details can be
found in D2.3 [5] and D2.5 [15]. The following table shows the status of validation of
those requirements at M36 as well as the test coverage achieved for this component.

Title As a <type of
user>

I want <some
good>

So that <some
reason>

Validation test

EMP
1

Monitoring
spaces

Complex
application,
System
developer,
Integrator

To be able to
specify a
separate
monitoring
space for the
overall
application

I can get easy,
properly
segregated
access to my
overall metric /
log data

API-EMP-001

EMP
2

Monitoring
subspaces

Complex
application,
System
developer,
Integrator

To be able to
further separate
metric and log
stream of an
application sub-
component /
microservice
from rest of the
components

I can easily
locate the data
stream coming
from one
component
versus looking
at a large set of
data points from
all possible
metric
generation
sources in my
large application
(possibly
distributed)

API-EMP-002

EMP
3

API
authentication
and
authorization

Monitoring
system user

My access to be
authenticated
and properly
logged for
safety as well as

No one else to
be able to
access the data
streams from
my services as

API-EMP-001

API-EMP-002

API-EMP-003

API-EMP-006

D3.2 ElasTest Platform Cloud Modules v2

24

auditing
purposes

they may
contain sensitive
data

EMP
4

Receive system
metric streams

ElasTest
platform
operator,
Monitoring user

To be able to
send relevant
system metrics
into the
monitoring
system

I can analyze
data trends later
or in real time

API-EMP-004

API-EMP-005

EMP
5

Persist system
metric streams

ElasTest
platform
operator,
Monitoring user

My data points
to be stored for
a specified
period in time

I can do detailed
offline analysis
of trends and /
or investigate
bottlenecks /
problem areas
with my
application

API-EMP-004

API-EMP-005

EMP
6

Receive
application log
streams

ElasTest
platform
operator,
Monitoring user

To use same
service
preferably to
send my log
messages too

I can do a
proper
correlation
study of service
degradation as
observed from
logs and the
environment
metric data

API-EMP-004

API-EMP-005

EMP
7

Persist
application log
streams

ElasTest
platform
operator,
Monitoring user

My data points
aka log parts to
be stored for a
specified period
of time

I can do offline /
historical data
analysis

API-EMP-004

API-EMP-005

EMP
8

Data query
capability

Monitoring user To be able to
see stored data
points

I can analyze
data trends and
observe system
trends

API-EMP-006

EMP
9

Metric
visualization

Monitoring
user,
Application
developer,
Operator

To be able to
see charts /
graphs
visualizing data
points in a
meaningful way

I can
comprehend
quickly trends
over time from
metric streams
from my
services

GUI-EMP-001

EMP
10

Cross
space/subspace
correlated query
capability

Monitoring
user,
Application
developer,
Operator

To perform
advance inter-
space/domain
data query

I can gain insight
into correlation
among various
services on each
other’s
performance

N/A

D3.2 ElasTest Platform Cloud Modules v2

25

EMP
11

Health check
capability

Application
developer,
Operator

To be able to
monitor the
liveness of set of
target services

I know as soon
as possible
when a service
is down in order
to react in a
timely manner
for restoring it

API-EMP-007

EMP
12

Alerting
capability

Operator To be alerted if
one of my
services
becomes dead

I can react
quickly to
restore the
service

API-EMP-007

EMP
13

Online
expression
evaluation
against metric
data stream

Operator To ensure that
the minimum
service
availability and
contracts with
my users are
always
supported and if
any violation is
notified to me
as soon as
possible

I satisfy my
service level
agreement
terms

N/A

EMP
14

RESTful APIs Monitoring
user,
Application
developer,
operator

To easily
integrate with
the monitoring
service with
clearly defined
interfaces

I can send
metrics and
perform control
operations
through my
application code
logic rather than
interacting with
the monitoring
service in a
standalone
detached mode

API-EMP-001

API-EMP-002

API-EMP-003

API-EMP-008

EMP
15

Availability of
commonly used
metric collectors
(agents)

Operator,
Application
developer

To easily collect
and send most
commonly used
system metrics
into the
monitoring
platform

I can
concentrate
more on my
system specific
instrumentation
and monitoring

N/A

EMP
16

Showing in
ElasTest GUI
monitoring
information of
all components

user See all metrics
and other
monitoring
information in
ElasTest GUI

I can know the
status of the
system

GUI-EMP-001

API-EMP-006

D3.2 ElasTest Platform Cloud Modules v2

26

EMP
17

API for querying
TJob resource
consumption
parameters

Elastest cost
engine process

Given a TJob ID,
resource
consumption
data across all
known
executions

I can compute
the true cost of
TJob execution
based on cost
models defined
in ESM

API-EMP-006

EMP
18

Monitor
Kubernetes
clusters

ElasTest
operator

To quickly see
the status of my
Kubernetes
clusters

I can quickly
identify
hotspots and
take corrective
measures

N/A

EMP
19

Individual
container
metrics
visualization

Monitoring
system user

To see CPU,
memory and
networking stats
for any
container and
not just the core
components of
ElasTest

I can visually see
any abnormal
spikes in data

GUI-EMP-001

API-EMP-006

Table 3 – EMP requirements validation summary

In the above table the mapping between component requirements and automated
validation tests are shown. This information is a summary of the work done at WP6.

A couple of requirements namely 10, and 13 have been deprioritized in the light of need
of remaining requirements by other components in ElasTest. These retain their
significance in terms of research worthiness and have been explained in the last sub-
section dealing with future plans. Remaining requirements have been fulfilled until the
time of writing of this deliverable.

4.2.4.2 Road Map

The following sections present the main feature updates in EMP since D3.1 [6].

D3.2 ElasTest Platform Cloud Modules v2

27

4.2.4.2.1 API Updates

Figure 6 – New API for the EMP

Since D3.1, a few extra APIs have been added to EMP, these primarily were added to
enable true usage-based cost computation within ElasTest Cost Engine (ECE). More
information on ECE and its evolution since D4.1 can be found in D4.2. The additional API
endpoints have been developed keeping backward compatibility of remaining APIs,
thereby ensuring all integration remained valid all through the development phase.

D3.2 ElasTest Platform Cloud Modules v2

28

4.2.4.2.2 GUI Updates

Figure 7 – New data visualization interface for the EMP

EMP visualization engine underwent a few major iterations. The data layer was modified
to optimally store data coming in from various agents. Host and Container-Name were
changed from type “field” to “tags” which allowed EMP to support dynamic dashboards.
Now it is possible to select metrics charts per host node where ElasTest components
have been deployed. Similarly, now it is possible to see any container process metrics
from the drop-down list.

4.2.5 Research results and Future Plan

A collaborative peer-reviewed conference paper which included the EMP architecture
and feature set was accepted as part of CloudAM workshop at the “12th IEEE/ACM
International Conference on Utility and Cloud Computing.” One of the targets to be
achieved in the near term is the ability to support correlated queries by the end users,
the initial support towards this was already implemented as part of this phase of work
since D3.1 [6]—the capability to query for a TJob usage data over a queried time
window. Distributed traceability has become a major need in the developer community
recently, and a tool to enable FaaS (Function-as-a-Service) debugging is also fast
becoming a necessity. EMP already supports log ingestion; a correlated query over logs

D3.2 ElasTest Platform Cloud Modules v2

29

from multiple “series” within the same ‘space’ (see D3.1) can fulfill some of the needs
of this emerging developer community, so it is worth looking into.

D3.2 ElasTest Platform Cloud Modules v2

30

5 Service Lifecycle Management

The following section introduces the core components in charge of the management of
the lifecycle of the test support services within the ElasTest platform; and provides the
details of the requirements, architecture, interfaces and features for it.

5.1 ElasTest Service Manager (ESM)

5.1.1 Introduction

Delivering service instances to the end-users on-demand is meant to be a seamless task
done with efficiency. To accomplish this, the ESM provides the possibility to deploy
services using Docker-compose- and Kubernetes-based capabilities through YAML files,
which describe the diverse components that constitute a service. All of this has been
made available through the ElasTest Service Manager API, based upon the 2.12 release
of the Open Service Broker API, with ElasTest-specific extensions, such as the ones
required for the registration of services.

For the specifics of how a TSS should be presented to the ESM, D5.1. information and
the minor updates contained within D5.2. Do note however, that efforts to minimize
backward-compatibility have been made and to date no significant changes are
required.

5.1.2 Baseline Concepts and Technologies

For the specifics of the Baseline Concepts and Technologies, including information
related to the Open Service Broker API, OSBA and Billing, and the ESM Data Model, refer
to the information contained in D3.1 [6].

5.1.3 Component Design and Architecture

There are several components that constitute the ESM; for a detailed description of
these components refer to D3.1 [6], since here we provide the novelties related to each
component that have changed since M18.

● Workflow: the ESM provides the deployment of a service as a static construction

of tasks, where once a service is registered in the catalog, along with the

respective manifest and plan, the instantiation of it follows: backend

identification, deployment of the components described in the service manifest

descriptor, information collection and distribution, and finally de-provision of

components on-demand.

● Kubernetes Implementation: this capability has been implemented to be able

to provide a bigger audience of end-users the benefits of the ESM for

provisioning services. The ESM now operates upon Kubernetes allowing for it to

be easier to scale based on different replica groups. As services can also be

deployed upon Kubernetes, this allows service authors to take avail of the scaling

primitives made available by Kubernetes. The Kubernetes backend is used via

loading the credentials that the Kubernetes cluster provides to the ESM pod, and

then through the cluster API.

D3.2 ElasTest Platform Cloud Modules v2

31

● Updating a Service Instance: this functionality has been replaced by a higher

priority feature, which is the deletion of a service definition (plus plan and

manifest) capabilities in the ESM’s API.

● Service Import: a requested feature was that to use the service definitions of the

TSS listed in each service’s repository (for example: the EUS service definition9)

or indeed any service description available at a URL, which has been provided in

the ESM’s UI, as shown in the following figure:

Figure 8 – ESM High-level Architecture

The ESM continues to have a number of interactions with external entities such as the
EPM, AAA and Monitoring. Regarding Billing, the ESM is the entity that informs Billing
components e.g. cost estimation with information required to make decisions on billing.
This is exemplified by the Cost Estimation Engine (CEE) delivered out of WP4. It makes
all its decisions based on costs that are provided by the ESM.

9 https://github.com/elastest/elastest-user-emulator-service/blob/master/elastestservice.json

https://github.com/elastest/elastest-user-emulator-service/blob/master/elastestservice.json

D3.2 ElasTest Platform Cloud Modules v2

32

Figure 9 – The ESM graphical user interface showing the import of a service definition

For the details of a Service Lifecycle in the ESM, from Design to Disposal phase, please
refer to D3.1 [6].

5.1.3.1 Sequence Diagrams

In D.2.3, the sequence diagrams related to the ESM only showed the interactions with
other external components and services. As such it provides a black box view. There are
further details that are illustrated in sequence diagrams (see D3.1 [6]) that show the
internal details of the ESM or in other words the “white box” view.

5.1.4 Roadmap and Features

In the following sections we present the final set of requirements that has driven the
implementation of the component, and the details of the final increments of its
development roadmap (since M18).

5.1.4.1 Requirements Validation Summary

Requirements from ESM are being tracked as part of WP2 activities, and details can be
found in D2.3 [5] and D2.5 [15]. The following table shows the status of validation of
those requirements at M36 as well as the test coverage achieved for this component.

Title As a <type of
user>

I want <some
good>

So that <some
reason>

Validation test

ESM
1

Create a
Support
Service
Instance

TORM to create a
service
instance

additional test
functionality can
be used

API-ESM-010

API-ESM-011

API-ESM-012

API-ESM-013

ESM
2

Collect
Information
from Service
Instance

TORM to get a list of
my service
instances

I can reuse and
understand
what I have
running

API-ESM-017

API-ESM-018

API-ESM-019

D3.2 ElasTest Platform Cloud Modules v2

33

ESM
3

Deprovision
Service
Instance

TORM to delete a
service
instance

I don't get
charged for it

API-ESM-020

ESM
4

Configure
Service
instance

TORM to configure a
service
instance with
new or
updated
parameters

the software can
run as desired
by end user

API-ESM-014

API-ESM-015

ESM
5

Register TSS
offer

TORM to register a
TSS

I can offer my
software as a
service to the
TORM

API-ESM-001

API-ESM-002

API-ESM-003

API-ESM-004

API-ESM-005

ESM
6

Update TSS
offer

TORM to update a
TSS's technical
and business
description

I can change my
offer

API-ESM-006

API-ESM-007

ESM
7

Delete TSS
offer

TORM to delete a TSS I do not offer it
anymore

API-ESM-021

ESM
8

Register
Service
Instance with
Monitoring

ESM to register the
service
instance an
endpoint with a
monitoring
service

the TSS provider
can ensure
guarantees
offered to the
TORM/end-user
are met and
adjustments can
be made to
ensure this

This is functionality
mainly looked after
by EMP and also
some tests in
test_measurer.py10

ESM
9

Public catalog
to allow end
users to
“install” and
“uninstall”
services in the
current
ElasTest
instance

User to install a TSS
from a public
catalog/registry

new TSSs can be
installed in an
ElasTest
instance

N/A

ESM
10

Allow
deployment
of services
based on a
Kubernetes

TORM to register a
service with a
Kubernetes
YAML
description

Kubernetes and
docker-compose
can be
supported by
the ESM

API-ESM-022

10 https://github.com/elastest/elastest-service-manager/blob/master/tests/test_measurer.py

https://github.com/elastest/elastest-service-manager/blob/master/tests/test_measurer.py

D3.2 ElasTest Platform Cloud Modules v2

34

YAML
descriptor

Table 4 – ESM requirements validation summary

In the above table the mapping between component requirements and validation tests
are shown. This information is a summary of the work done out of WP2’s architecture.

5.1.4.2 Code Reports

The ESM is implemented using python and this code is tested using the Python unit test
module. There are currently 97 tests that are run against all configurations of the ESM.
These tests consist of both unit and integration tests. Currently the code coverage is at
approximately 80%, which is calculated using codecov.io11 every time a new build of the
ESM is done. As shown, the code coverage for the ESM for the last 6 months has
remained stable. Note that currently code complexity is not calculated.

5.1.5 Research results and Future Plan

The ESM has been delivered to satisfy all the needs of the ElasTest platform and it now
delivers all required TSS-related functionality to TJobs and authors of TJobs. The ESM
has been described in a recent WP3 publication to UCC1912 where it’s described in a
wider context. Investigations into replacing the default compute infrastructure with
hypervisor-based execution of containers has revealed that with the appropriate
hypervisor and image conversion tooling, the same “docker” experience can be
maintained. To enable debugging of ESM provisioned services has been suitably
addressed by the integration of the EMP work. Moving forward from where the ESM is
at, work related to function-as-a-service and provisioning services using edge-based
infrastructure (e.g. k3s13) is being considered with hypervisor-based compute facilities.

11 https://codecov.io/gh/elastest/elastest-service-manager
12 https://www.ucc-conference.org
13 https://k3s.io

https://codecov.io/gh/elastest/elastest-service-manager
https://www.ucc-conference.org/
https://k3s.io/

D3.2 ElasTest Platform Cloud Modules v2

35

6 SuT Instrumentation

The following section introduces the core components in charge of the management of
the instrumentation of the software under test (SuT) within the ElasTest platform; and
provides the details of the requirements, architecture, interfaces and features for it.

6.1 ElasTest Instrumentation Manager (EIM) & Instrumentation Agents

6.1.1 Introduction

Tasks 3.3 & 3.4 oversee designing and implementing the Instrumentation Agents and
the Instrumentation Manager (EIM), respectively. In this section we report the novelties
or changes those testing services underwent between M18 and M36.

6.1.2 Baseline Concepts and Technologies

As explained already in D3.1 [6], we refer as instrumentation to extending the interface
exposed by a software system for achieving enhanced controllability (i.e. the ability to
modify the operational environment at runtime) and observability (i.e. the ability to
infer information about the runtime internal state of the system).

Technologies used in the development of EIM have not changed since M18 (please refer
to D3.1 [6], Section 6.1.2 for a full explanation.

6.1.3 Component Design and Architecture

The EIM lets testers to exercise observability and controllability through the so-called
instrumentation agents: software agents that are deployed along the software under
test (SuT), at operating system-level (i.e. physical machine, virtual machines or
containers). They can be of two types:

• Observability, through which the Agent collects all information relevant for
testing or monitoring purposes (e.g. energy consumption, resources utilization,
etc.).

• Controllability, through which the agent can force custom behaviours on the
host’s network, CPU utilization, memory consumption, process life cycle
management, failure injection, etc.

The present report covers controllability, as this was the focus between M18 and M36;
and the observability capability didn’t receive changes since M18. For a full description
of such capabilities as well as initial steps towards controllability support, please refer
to D3.1 [6], Section 6.1.3 for a full description.

D3.2 ElasTest Platform Cloud Modules v2

36

Figure 10 – EIM High-level Architecture

ETM (within TORM) consumes the EIM (see Figure 10) to install observability agents in
SuT at test deployment time. These agents cover the most common metrics of compute,
storage and networking resource utilization. This means testers don't have to worry
about the collection of these types of metrics to observe the performance of their tests.
However, the controllability agents must be explicitly installed by the tester by making
requests to the EIM in their test code, at test runtime. In this way, testers are the sole
responsible for synthesizing custom operational conditions for their tests.

6.1.3.1 API Updates

Since D3.1, the EIM API and data model have been upgraded to enable SuT
controllability, to operationalize realistic execution environments in non-functional
properties validation scenarios. Additional API endpoints—in the “controllability” path
—and one new class (or API resource type) in the data model were developed to support
controllability within the EIM. Their design kept backward compatibility, thereby
ensuring all the integrations remained valid all through the rollout of the upgrade.

D3.2 ElasTest Platform Cloud Modules v2

37

The data model has remained the same apart from the new types related to the
realization of the controllability feature in the EIM. Figure 11 shows the main classes
(resource types) engaged in the SuT observability and controllability.

Figure 11 – Main data model classes (resource types) in the EIM

AgentConfigurationControl is the new resource type for controllability, carrying the
configuration of the agent, in charge of executing controllability commands on the host
machine where the SuT as well as the agent are deployed. The following table shows
the attributes of this new type, incorporated in the EIM API to support the management
of controllability actions.

Name Description Schema

exec This entity defines the ID of the agent String

component Target host String

type Action name = {StressNg, PacketLoss, ContainerFailure} String

value The value of the control String

dockerized It uses docker path String

cronExpression Time expression String

Table 5 – EIM controllability data model

The rest of API resource types remained unchanged, as described in D3.1.

D3.2 ElasTest Platform Cloud Modules v2

38

6.1.4 Roadmap and Features

In the following sections we present the final set of requirements that has driven the
implementation of the component, and the details of the final increments of its
development roadmap (since M18).

6.1.4.1 Requirements Validation Summary

Requirements from EIM are being tracked as part of WP2 activities, and details can be
found in D2.3 [5] and D2.5 [15]. The following table shows the status of validation of
those requirements at M36 as well as the test coverage achieved for this component.

Title As a <type of
user>

I want <some
good>

So that <some
reason>

Validation test

EIM
1

Non-Intrusive ElasTest user instrumentation
agents to be as
less intrusive as
possible

to produce low
overhead of the
instrumentation
on the software
under test (SuT).

API-EIM-001

API-EIM-002

API-EIM-003

API-EIM-004

API-EIM-005

API-EIM-006

API-EIM-007

API-EIM-008

 API-EIM-009

EIM
2

Lightweight ElasTest user instrumentation
agents to be as
lightweight as
possible

to deploy them
within the
software under
test (SuT).

API-EIM-001

API-EIM-002

API-EIM-003

API-EIM-004

API-EIM-005

API-EIM-006

API-EIM-007

API-EIM-008

 API-EIM-009

EIM
3

Configuration
Management

ElastTest
component
(TORM)

to deploy
automatically
instrumentation
agents in the
target
infrastructure

to achieve
automated
installation of
instrumentation
agents across
target compute
environments,
such as bare
metal, VMs, cloud
instances (IaaS
such as AWS or

API-EIM-001

API-EIM-002

API-EIM-003

API-EIM-004

API-EIM-005

API-EIM-006

API-EIM-007

API-EIM-008

D3.2 ElasTest Platform Cloud Modules v2

39

OpenStack) and
container
platforms (such as
Kubernetes).

 API-EIM-009

EIM
4

Interoperabilit
y

ElasTest user to maintain
interoperability
across different
operating
systems (OS) and
distributions

the agents should
be designed to
consume well -
established
operating system
interfaces to
guarantee
interoperability;
supporting Linux
systems at least.

API-EIM-001

API-EIM-002

API-EIM-003

API-EIM-004

API-EIM-005

API-EIM-006

API-EIM-007

API-EIM-008

 API-EIM-009

EIM
5

Agent
management

ElastTest
component
(TORM)

to perform CRUD
operations to
manage the
lifecycle of
instrumentation
agents

EIM offers
northbound
interfaces which
controls and
orchestrates the
operation of
instrumentation
agents.

GUI-EIM-002

API-EIM-001

API-EIM-002

API-EIM-003

API-EIM-004

API-EIM-005

API-EIM-006

API-EIM-007

API-EIM-008

 API-EIM-009

EIM
6

Persistence ElastTest
component

to store
configuration
data in
structured
database (Mysql-
like)

I can persist and
query my
structured data
about the agents.
(R3 only support
MongoDB).

GUI-EIM-002

API-EIM-001

API-EIM-002

API-EIM-003

API-EIM-004

API-EIM-005

API-EIM-006

API-EIM-007

API-EIM-008

 API-EIM-009

EIM
7

Observability ElasTest user to extend the
interface
exposed by a
software system

I can have the
ability to collect
the logs and
metrics and

GUI-EIM-002

 API-EIM-007

D3.2 ElasTest Platform Cloud Modules v2

40

for archiving
enhanced
observability of
the software
under test (SuT)

performance data
from the software
under test (SuT)
through the
instrumentation
agents.

EIM
8

Portability ElastTest
component

to be able to
install the
instrumentation
agents and
manager across
different
compute
environments.

to enable the
installation,
configuration and
provisioning of the
EIM along the rest
of the ElastTest
platform, and its
instrumentation
agents in the
supported SuT
environments.

GUI-EIM-002

API-EIM-006

 API-EIM-007

EIM
9

Scalability ElastTest
component

to provide a
scalable solution
to the
instrumentation
of the software
under test for
both
observability and
controllability

to avoid the
degradation of
test (and the
overall ElastTest
platform)
performance
when running an
increasing number
of
instrumentalized
SuTs.

GUI-EIM-002

GUI-EIM-003

API-EIM-006

API-EIM-007

EIM
14

Controllability
of CPU stress

ElasTest user to achieve
enhanced
controllability of
the stress level of
the CPU

to simulate a rise
in the load/use of
the CPU of the
machine running a
software under
test (SuT)

GUI-EIM-002

API-EIM-008

API-EIM-009

EIM
15

Controllability
of Network
failures

ElasTest user to achieve
enhanced
controllability of
the stress level of
the network
interface

to simulate
network packet
loss of the
machine running a
software under
test (SuT)

GUI-EIM-003

GUI-EIM-005

API-EIM-001

API-EIM-002

API-EIM-003

API-EIM-004

 API-EIM-005

EIM
16

Controllability
of Container
failures

ElasTest user to control the
failures
(breakdown) of
containerized

to simulate
failures of some or
all replicas of
some or all

D3.2 ElasTest Platform Cloud Modules v2

41

software
components

components of a
software under
test (SuT)

Table 6 – EIM requirements validation summary

In the above table the mapping between component requirements and automated
validation tests are shown. This information is a summary of the work done at WP6.

The only feature that we could not validate through automated tests is EIM16 due to
the late implementation in the lifespan of the project. Nevertheless, this requirement
was property tested and validated through conventional manual testing techniques.

6.1.4.2 Road Map

The GUI components of the instrumentation solutions did not change since M18 (please
refer to D3.1, Section 6.1.4.1 for more details). This is also the case for the EIM API,
which remains the same, because the controllability feature is implemented as a new
type of agent configuration, which are in turn managed through the endpoint and
operations designed for observability.

The EIM features released between M18 (included) and M36 are shown in the following
list, organized by ElasTest official released:

R5-Final

o Portability: To be able to install the instrumentation agents and manager across
different compute environments.

o Scalability: To provide a scalable solution to the instrumentation of the software
under test for both observability and controllability

R6

o Persistence (prototype): To store configuration data in structured database
(Mysql-like)

R7a

o Persistence (integrated): To store configuration data in structured database
(Mysql-like)

R7b

o Controllability of CPU overload: To achieve enhanced controllability of the stress
level of the CPU.

o Controllability of Network failures: To achieve enhanced controllability of the
stress level of the network interface.

o E2E tests: to evaluate the correctness of the controllability features integrated
into the ElasTest Platform.

R7-Final

o Controllability of Container failures: To control the failures (breakdown) of
containerized software components through chaos testing techniques.

D3.2 ElasTest Platform Cloud Modules v2

42

6.1.4.3 Code Reports

EIM has been integrated with the CI system that uses Jenkins for automated tests and
builds after every commit. Also, it has been included end-two-end related on WP6
reports

Figure 12 – EIM Jenkins build report

D3.2 ElasTest Platform Cloud Modules v2

43

7 Data Persistence Management

From M18, The ElasTest Data Management (EDM) service did not undergo any change
so its design specification and implementation details have remained the same, as
described in D3.1. Please refer to that deliverable for more details about this
component.

D3.2 ElasTest Platform Cloud Modules v2

44

8 Conclusions

This deliverable has reported the evolution of the cloud testing enablers in the scope of
the WP3 from M18 to M36. The key goals of this period and the work package itself have
been delivered in the form of four important capabilities of the ElasTest Platform:

• ability to provide resources and services to execute TJobs and support the
complete Platform through the EPM and ESM,

• ability to provide resources to deploy and execute SuTs through the EPM,

• ability to provide necessary insights into the Platform, that is, the current and
past state of ElasTest core components in order to facilitate stable operation of
the platform itself, through the EMP, and

• ability to provide controllability of SuTs in order to operationalize realistic
execution environments, suitable for validating non-functional properties on
realistic operational conditions, through the EIM.

With these components implemented and delivered, they have been continually used
to carry out realistic system-level and/or end-to-end testing throughout WP6 and WP7
activities. These components have all been key to high level components such as the
TORM. In general, they facilitate the cost-effective construction of large-scale
production-like testing environments in the cloud.

All the components of WP3 have been clearly documented, licensed under the open
source Apache 2.0 license and various academic publications have been successfully
made available to the relevant communities. Finally, the resulting outputs and
discovered future work, as detailed per component section, for all components will
continue beyond the life of ElasTest.

D3.2 ElasTest Platform Cloud Modules v2

45

9 References

[1] ElasTest project Description of Action (DoA) – part B. Amendment 1. Reference Ares
(2017)343382. 23 January 2017.

[2] Bertolino, A., 2007, May. Software testing research: Achievements, challenges,
dreams. In 2007 Future of Software Engineering (pp. 85-103). IEEE Computer
Society.

[3] Apache 2.0 license terms. https://www.apache.org/licenses/LICENSE-2.0. Accessed
on 07 March 2017.

[4] Grant Agreement number: 731535 - ELASTEST - H2020-ICT-2016-2017/H2020-ICT-
2016-1. EUROPEAN COMMISSION. Communications Networks, Content and
Technology. 11 November 2016.

[5] D2.3. ElasTest requirements, use-cases and architecture v1. Grant Agreement
number: 731535 - ELASTEST - H2020-ICT-2016-2017/H2020-ICT-2016-1. EUROPEAN
COMMISSION.

[6] D3.1. ElasTest Platform Cloud Modules v1. Grant Agreement number: 731535 -
ELASTEST - H2020-ICT-2016-2017/H2020-ICT-2016-1. EUROPEAN COMMISSION.

[7] D4.1. Test Orchestration basic toolbox v1. Grant Agreement number: 731535 -
ELASTEST - H2020-ICT-2016-2017/H2020-ICT-2016-1. EUROPEAN COMMISSION.

[8] D4.2. Test recommendation engines v1. Grant Agreement number: 731535 -
ELASTEST - H2020-ICT-2016-2017/H2020-ICT-2016-1. EUROPEAN COMMISSION.

[9] D5.1. ElasTest Test Support Services v1. Grant Agreement number: 731535 -
ELASTEST - H2020-ICT-2016-2017/H2020-ICT-2016-1. EUROPEAN COMMISSION.

[10] D6.1. ElasTest Continuous Integration and Validation System v1. Grant Agreement
number: 731535 - ELASTEST - H2020-ICT-2016-2017/H2020-ICT-2016-1. EUROPEAN
COMMISSION.

[11] D6.2. ElasTest platform toolbox and integrations v1. Grant Agreement number:
731535 - ELASTEST - H2020-ICT-2016-2017/H2020-ICT-2016-1. EUROPEAN
COMMISSION.

[12] Antonia Bertolino, Guglielmo De Angelis, Micael Gallego, Boni García, Francisco
Gortázar, Francesca Lonetti, and Eda Marchetti. 2019. A Systematic Review on Cloud
Testing. ACM Computing Surveys (CSUR), 52, 5, Article 93 (Aug. 2019).
https://doi.org/10.1145/3331447 (to be published).

[13] Boni García, Micael Gallego, Francisco Gortázar, and Luis López-Fernández. 2017.
ElasTest, an Open-Source Platform to Ease End-to-End Testing. In Challenges and
Opportunities in ICT Research Projects, Volume 1: EPS Madrid 2017. INSTICC,
SciTePress, 3–21. https://doi.org/10.5220/0007904700030021

[14] Piyush Harsh, Juan Francisco Ribera Laszkowski, Enric Pages, Orlando Avila-García,
Tran Quang Thanh, Francisco Gortázar Bellas and Micael Gallego Carrillo. 2019.
Cloud Enablers for Testing Large-Scale Distributed Applications. In Proceedings of
the 12th IEEE/ACM International Conference on Utility and Cloud Computing,

https://www.apache.org/licenses/LICENSE-2.0
https://doi.org/10.5220/0007904700030021

D3.2 ElasTest Platform Cloud Modules v2

46

CloudAM workshop, Auckland University of Technology, New Zealand (Dec. 2019).
ACM ISBN 978-1-4503-7044-8/19/12. https://doi.org/10.1145/3368235.3368838.

[15] D2.5. ElasTest requirements, use-cases and architecture v2. Grant Agreement
number: 731535 - ELASTEST - H2020-ICT-2016-2017/H2020-ICT-2016-1. EUROPEAN
COMMISSION.

https://doi.org/10.1145/3368235.3368838

