

 D4.3
Version 1.0

Author URJC

Dissemination PU

Date 30-12-2019

Status FINAL

D4.3 Test Orchestration basic toolbox v2

Project acronym ELASTEST

Project title ElasTest: an elastic platform for testing complex distributed

large software systems

Project duration 01-01-2017 to 31-12-2019

Project type H2020-ICT-2016-1. Software Technologies

Project reference 731535

Project website http://elastest.eu/

Work package WP4

WP leader URJC

Deliverable nature Other

Lead editor URJC

Planned delivery date 31-12-2019

Actual delivery date 31-12-2019

Keywords Open source software, cloud computing, software

engineering, operating systems, computer languages,

software design & development

Funded by the European Union

http://elastest.eu/

 D4.3 Test Orchestration basic toolbox v2

2

 D4.3 Test Orchestration basic toolbox v2

3

License

This is a public deliverable that is provided to the community under a Creative Commons

Attribution-ShareAlike 4.0 International License:

http://creativecommons.org/licenses/by-sa/4.0/

You are free to:

Share — copy and redistribute the material in any medium or format.

Adapt — remix, transform, and build upon the material for any purpose, even

commercially.

The licensor cannot revoke these freedoms as long as you follow the license

terms.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and

indicate if changes were made. You may do so in any reasonable manner, but not

in any way that suggests the licensor endorses you or your use.

ShareAlike — If you remix, transform, or build upon the material, you must

distribute your contributions under the same license as the original.

No additional restrictions — You may not apply legal terms or technological

measures that legally restrict others from doing anything the license permits.

Notices:

You do not have to comply with the license for elements of the material in the

public domain or where your use is permitted by an applicable exception or

limitation.

No warranties are given. The license may not give you all of the permissions

necessary for your intended use. For example, other rights such as publicity,

privacy, or moral rights may limit how you use the material.

For a full description of the license legal terms, please refer to:

http://creativecommons.org/licenses/by-sa/4.0/legalcode

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/legalcode

 D4.3 Test Orchestration basic toolbox v2

4

Contributors

Name Affiliation

Piyush Harsh ZHAW

Eduardo Jiménez URJC

Francisco Gortázar URJC

Micael Gallego URJC

Francisco Díaz URJC

Version history

Version Date Author(s) Description of changes

0.1 30/10/2019 URJC Structure of document and first contents

0.2 02/12/2019 URJC Introduction, Section 2, Section 3 and

Section 5

0.3 03/12/2019 URJC Section 4

1.0 30/12/2019 URJC Final version

 D4.3 Test Orchestration basic toolbox v2

5

Table of contents

1. Executive summary ... 10

2. Introduction .. 10

3. ElasTest tests manager .. 12

3.1. Introduction ... 12

3.2. Features .. 12

3.3. Baseline concepts and technologies .. 13

3.4. Component architecture .. 14

3.4.1. Component diagram .. 14

3.4.2. Metrics and logs .. 20

3.4.3. TJobs Execution elasticity .. 21

3.5. Code links ... 23

3.5.1. Validation .. 23

3.5.2. Discussion .. 24

3.6. Research results and plans ... 24

4. ElasTest orchestration engine ... 24

4.1. Introduction ... 24

4.2. Features .. 25

4.3. Component architecture .. 26

4.4. Research results and plans ... 28

5. ElasTest cost engine .. 29

5.1. Introduction ... 29

5.2. Features .. 29

5.3. Baseline concepts ... 30

5.4. Component architecture .. 30

5.5. Implementation and code links .. 30

5.6. Limitations of current approach .. 34

6. Conclusions and future work ... 34

7. References .. 36

 D4.3 Test Orchestration basic toolbox v2

6

List of figures

Figure 1. ETM sub-components .. 15

Figure 2. ETM Mini sub-components .. 16

Figure 3. ETM Core modules used to execute TJobs ... 17

Figure 4. ETM GUI components .. 18

Figure 5. LogAnalyzer modules ... 19

Figure 6. LogComparator sequence .. 21

Figure 7. Sequence diagram of a TJob execution .. 22

Figure 8. TJob list ... 30

Figure 9. Static cost estimation form query .. 31

Figure 10. Static cost estimated output .. 32

Figure 11. True computed costs of all executions for a selected TJob 33

 D4.3 Test Orchestration basic toolbox v2

7

List of tables

Table 1. ETM new features from M19 .. 13

Table 2. Kubernetes components used by ETM .. 23

Table 3. Orchestrator requirements ... 26

Table 4: Cost Engine Requirements .. 29

 D4.3 Test Orchestration basic toolbox v2

8

Glossary of acronyms

Acronym Definition

API Application Programming Interface

AWS Amazon Web Services

CI Continuous Integration

CRUD Create, Read, Update and Delete

CUT Cloud Unit Testing

CWL Common Workflow Language

DoA Description of Action

DSL Domain-Specific Language

EBS ElasTest Big data Service

ECE ElasTest Cost Engine

EDM ElasTest Data Manager

EOE ElasTest Orchestration Engine

ERE ElasTest Recommendation Engine

ESM ElasTest Service Manager

ESS ElasTest Security Service

ETM ElasTest Tests Manager

EUS ElasTest User Impersonation Service

FMC Fundamental Modeling Concepts

GUI Graphical User Interface

IaaS Infrastructure as a Service

ISO International Organization for Standardization

JSON JavaScript Object Notation

OASIS Organization for the Advancement of Structured Information Standards

REST REpresentational State Transfer

SiL System in the Large

SPA Single Page Application architecture

SUT System Under Test

SWOT Strengths, Weaknesses, Opportunities, Threats

TE Test Engine

TiL Test in the Large

TJob Testing job

TOSCA Topology and Orchestration Specification for Cloud Applications

 D4.3 Test Orchestration basic toolbox v2

9

TSS Test Support Service

UML Unified Modeling Language

WP Work Package

XML eXtensible Markup Language

YAML YAML Ain't Markup Language

 D4.3 Test Orchestration basic toolbox v2

10

1. Executive summary

ElasTest is an open source platform aimed to ease the testing process of large

distributed and heterogeneous software systems. This deliverable is focused on the

technical details of the following core components of ElasTest, namely:

- ElasTest Tests Manager (ETM), which is the brain of ElasTest and the main entry

point for developers.

- ElasTest Orchestration Engine (EOE), which is responsible of selecting, ordering,

and executing a group of test (called TJobs).

- ElasTest Cost Engine (ECE), which is responsible of managing the cost of TJob

executions.

Regarding ETM, we have defined a REST API and a web user interface around the

concepts of testing jobs (TJobs) and System Under Test (SUT). Concretely, the initial

version of the ETM allows end users to define their system under test, define their

testing jobs and run them. The ETM takes care of starting the SUT, running the tests

defined in the TJob and stopping the SUT afterwards. The ETM keeps a log of all TJobs

executing during the history, along with all their related information: logs and metrics.

of the project, improved visualization tools focused on troubleshooting those tests in

error will be designed and developed.

Regarding EOE, we hypothesize that the concept of orchestration, understood as a novel

way to select and execute a group of TJobs within ElasTest, can be a relevant way to

improve the testing process. To that aim, two different notions are considered: i)

Topology generation, that is, to define a graph of TJobs (edges) and checkpoints

(vertices). ii) Test augmentation, that is, to reproduce custom operational conditions of

the SUT reusing the orchestration capabilities. During the first review period we

implemented the first one. During this second period, we implemented the test

augmentation part. In the future we plan to release a reference implementation of the

data-driven approach for tests.

Regarding the ECE, we have implemented real cost calculation based on actual cost of

execution of a TJob, and retrieval of monitoring information from ElasTest.

2. Introduction

Testing large distributed and heterogeneous software systems on cloud-based

platforms is increasingly complex. This kind of software systems aggregates different

distributed components, which are typically built and run based on Infrastructure as a

Service (IaaS) combined with operation tools and services such as Continuous

Integration (CI), container engines, or service orchestrators. The complete assessment

of these systems is challenging since developers face with many different problems,

including the difficulty to test the system as a whole due to diversity of individual

 D4.3 Test Orchestration basic toolbox v2

11

components, or the coordination of these components due to the distributed nature of

the system [1]. Recent surveys confirm the existence of a significant gap between the

current and the desired status of test automation for distributed heterogenous system,

prioritizing the relevance of test automation features for these systems [2].

To contribute in the solution of this problem, the ElasTest platform provides an

integrated toolbox for end-to-end test automation along the development life cycle,

including test case management, System Under Test (SUT) deployment,

instrumentation, and monitoring for large distributed and heterogeneous software,

including web and mobile among others.

The core functionality of ElasTest is provided by the ElasTest Tests Manager (ETM),

which is the brain of ElasTest and the main entry point for developers. The core

functionality provided by ETM is augmented by means of so called Test Engines (TE). A

Test Engine is a component that provides complementary features in the ElasTest

platform. ElasTest offers several TEs at the time of this writing, namely:

● ElasTest Recommendation Engine (ERE). This engine provides recommendations

about tests to the user. This engine is described in private deliverable D4.2 titled

“Test Recommendation Engines v1”.

● ElasTest Question & Answer Engine (EQE). This engine provides a question &

answer (Q&A) interface. End-users can, by means of this interface, ask questions

about their test suites, and how to improve it. This engine is described in the

private deliverable D4.4 “Test Recommendation Engines v2”.

● ElasTest Orchestration Engine (EOE). This engine is responsible of providing

capabilities for selecting, ordering, and executing a group of TJobs in ElasTest.

Recall, that TJobs are technologically neutral. In other words, ElasTest supports

tests coded in any language and using any testing framework.

● ElasTest Cost Engine (ECE). This engine is responsible of managing the cost of

TJob executions.

The complete description of the ElasTest architecture at the end of the project is

described in deliverable D2.5, titled “ElasTest requirements use-cases and architecture

v2”. This deliverable (D4.3) is focused on the technical description of the above-

mentioned components. First, we present the features, baseline concepts and

design/implementation details of ETM in Section 3. Then we present the EOE and ECE

in Section 4 and 5 respectively. To conclude the deliverable, some conclusions and

future work are discussed in section 6.

 D4.3 Test Orchestration basic toolbox v2

12

3. ElasTest tests manager

3.1. Introduction

As described in deliverables D2.3 (“ElasTest requirements, use-cases and architecture

v1”), and D4.1 ("Test orchestration basic toolbox v1”), the ElasTest Tests Manager (ETM)

is the main controller of ElasTest. It is the entry point used by users through its web

interface and REST API. The main feature of this component is the coordination of the

rest of the platform components to work together to give users the ability to manage

the execution of end to end tests to verify complex distributed applications. This

component has been extensively modified during the second period of the project in

order to enable several ElasTest deployment (installation) modes: mini, ElasTest on

Kubernetes (EK), and High-availability ElasTest on Kubernetes (HEK).

ElasTest as its own name indicates must be elastic, in order to support many integration

and end-to-end tests running in parallel, each one with its own TSSs. In order to achieve

elasticity, the ETM can now deploy the components needed by a TJob on K8s1

(Kubernetes). When ElasTest is deployed on a K8s cluster, the ETM will deploy TJobs,

TSSs, TE and integrated external tools on K8s too. In this way, if ElasTest is low on

resources, new VMs are started within the K8s cluster providing the necessary additional

resources to deploy the requested ElasTest components. However, sometimes a smaller

deployment is required (for instance, for evaluation purposes), and ElasTest can also be

deployed in an environment with fewer resources. This is why the Mini mode has been

created. In this mode the functionalities of several modules (Logstash, RabbitMq, ESM,

and EUS) of ElasTest have been included in the ETM component, in order to reduce the

resources required for ElasTest to work.

This section is devoted to describing the new functionalities added to the ETM, and the

changes made to its components as a result of these functionalities, since milestone

M18 (June 2018). The rest of this section is structured as follows. Section 3.2 presents

the main features of ETM. Section 3.3 presents a detailed description of the technologies

used in the implementation of the component. Section 3.4 describes the internal

architecture of the component and how it is implemented. Finally, section 3.5 details

the main aspects related to source code that implements the ETM.

3.2. Features

The list of new features implemented in the ElasTest Tests Manager (ETM) component

since M19 is summarized in the following table.

1 https://kubernetes.io/

https://kubernetes.io/

 D4.3 Test Orchestration basic toolbox v2

13

Feature Description

Compare TJob

executions

As an ElasTest user, I want to compare the results of several

executions of a TJob toeasily identify the differences.

Cross-browsing As an ElasTest user, I want to be able to execute a TestLink Test

Plan in a browser and simultaneously reproduce all my actions in a

different browser in order to save some effort during manual

testing when several different browsers are to be tested. This

functionality is provided in cooperation with the EUS (the

browsers-as-a-service component).

Upload and

download files

from a browser

As an ElasTest user, I want to be able to upload or download a file

from or to the browser that I’m using during a manual test. This

functionality is provided in cooperation with the EUS.

Select Browser in

manual version

As an ElasTest user, I want to choose the browser version with

which to perform the manual test. This functionality is provided in

cooperation with the EUS

Multi Axis TJob As an ElasTest user, I want to execute a TJob with several

configurations with a single click one on the execution button.

Add attachments

to a TJob

execution

As an ElasTest user, I want to be able to attach files to a TJob

execution using the API rest of ElasTest.

Deploy a TJob

components on

K8s

As a Software Architect, I want ElasTest to be able to deploy its

test components in K8s in order to get the elasticity my testing

process needs.

Get Metrics from

an external source

when ElasTest is

deployed on K8s

As an ElasTest user, I want to be able to obtain the metrics of an

external SuT from an external source. In this case Prometheus

when ElasTest is deployed on K8s.

Table 1. ETM new features from M19

3.3. Baseline concepts and technologies

The ETM is composed internally by several sub-components. The main sub-component

is the ETM Core, which provides a REST API and a Web Socket interface. This backend

service is used by the ETM Graphical User Interface (GUI) implemented as a Single Page

Application architecture2 (SPA). The ETM Core is responsible to coordinate the rest of

the ElasTest components and other internal sub-components.

2 https://en.wikipedia.org/wiki/Single-page_application

https://en.wikipedia.org/wiki/Single-page_application

 D4.3 Test Orchestration basic toolbox v2

14

The ETM Core is implemented in the Java language using the Spring Boot framework3.

The ETM GUI is implemented in the TypeScript language using the Angular framework4.

Other sub-components used in the ETM are:

● Logstash5: Used to retrieve and process logs and metrics during TJob executions.

This information is then stored in an ElasticSearch6 provided by the ElasTest Data

Manager component (EDM). Logstash and ElasticSearch are part of elastic stack7,

the leading open source stack used to gather, process, register and analyze logs,

metrics and any kind of KPI of Internet applications.

● RabbitMQ8: Used to send real time information from ETM-core to the frontend

my means of WebSockets. RabbitMQ is a leading message queuing software well

integrated with the Spring technologies used in the ETM core.

In the rest of the section, we describe the interactions between the ETM Core and the

rest of the subcomponents of the ETM.

3.4. Component architecture

In the following subsections, we outline a general overview of the internal structure of

the ETM using several class and component diagrams. The interaction of the different

modules is described with UML sequence diagrams. Finally, a detailed data model is

presented.

3.4.1. Component diagram

The ETM is composed of the following sub-components:

● ETM Core: Service backend that coordinates all other internal sub-components

and interacts with the rest of ElasTest components.

● ETM GUI: The graphical user interface with which the user interacts. This

component is also called 'Angular GUI' to emphasize the technology used to

implement it.

● RabbitMQ: A messaging broker used to send logs and metrics in real time to the

user interface.

● Logstash: A server-side data processing pipeline that ingests data, transforms it,

and then sends it to RabbitMQ and ElasticSearch. ElasticSearch is a sub-

component of the ElasTest Data Manager (EDM) component used to register all

information gathered during test execution.

3 https://spring.io/projects/spring-boot
4 https://angular.io/
5 https://www.elastic.co/products/logstash
6 https://www.elastic.co/products/elasticsearch
7 https://www.elastic.co/
8 https://www.rabbitmq.com/

https://spring.io/projects/spring-boot
https://angular.io/
https://www.elastic.co/products/logstash
https://www.elastic.co/products/elasticsearch
https://www.elastic.co/
https://www.rabbitmq.com/

 D4.3 Test Orchestration basic toolbox v2

15

● Dockbeat and Filebeat: These services are used for log retrieval and monitoring

of TJobs executed as docker containers. These services are well integrated with

the elastic stack.

● TestLink: The ETM includes an instance of this project to manage manual tests.

● Jenkins: The ETM includes an instance of this project to manage tests.

These sub-components are illustrated in Figure 1.

Figure 1. ETM sub-components

ElasTest offers a lightweight mode called ElasTest Mini, which integrates the Logstash

and RabbitMQ subservices into the backend code, among other components like ESM

and EUS (see Figure 2). In order to reduce the use of resources, in ElasTest Mini MySQL

is used to store the monitoring data, instead of ElasticSearch.

 D4.3 Test Orchestration basic toolbox v2

16

Figure 2. ETM Mini sub-components

3.4.1.1. Modules used for TJob execution

Several ETM modules interact to execute a TJob in the ETM. These modules and their

relations are shown in Figure 3.

 D4.3 Test Orchestration basic toolbox v2

17

Figure 3. ETM Core modules used to execute TJobs

When a TJob is executed using the graphical interface, the ETM GUI interacts with the

TJobApiController to manage TJobs. This controller makes use of TJobService to process

the requests received. Later on, TJobExecOrchestratorService takes control of the

execution using the following services:

● TSSService: interacts with ElasTest Service Manager (ESM) component to

manage the Test Support Services (TSSs) associated to the TJob. It is performed

 D4.3 Test Orchestration basic toolbox v2

18

using the EsmServiceClient interface thought the ESM API. This interface has two

implementations:

o EsmServiceClientImpl: In charge of interacting with the ESM.

o MiniEsmServiceClient: This implementation is used only in the Mini

mode of ElasTest, and acts as the ESM, since in this mode the full fledged

ESM is not included.

● SutService: used in case the TJob has an associated SuT.

● PlatformService: this class abstracts the platform over which ElasTest is running

(Docker or K8s). The PlatformService implements the behavior shared between

different platforms and defines the rest that will be implemented by the

following classes that inherit from this abstract class:

o DockerServiceImpl: makes use of Docker to manage services.

o K8ServiceImpl: makes use of Kubernetes to manage services.

● EimService: this service is only used if the TJob has an associated SuT “deployed

outside” ElasTest and “Instrumented by ElasTest”. In this case, the sevice, will be

in charge of interacting with the EIM, which will connect to the SuT via SSH and

install Beats agents to obtain monitoring information.

● AbstractMonitoringService: this abstract service is in charge of monitoring data

management. Has two childs:

o ElasticsearchService: communicates with ElasticSearch to manage

monitoring data.

o TracesSearchService: used in ElasTest Mini. Communicates with MySQL

to manage monitoring data.

Main modules of ETM GUI are shown in Figure 4.

Figure 4. ETM GUI components

 D4.3 Test Orchestration basic toolbox v2

19

These modules have the following responsibilities:

● TjobExecViewComponent: this is the main component, which contains all the

logic of the Executing TJob page.

● EsmService: this service is in charge to manage information related to TSSs

coming indirectly from ESM.

● TJobService: This service manage all the information related to TJobs. It is mainly

used to populate the GUI with information related to them.

● TJobExecService: It updates the interface in real time during the execution of

TJobs. This is done implementing a polling strategy.

● ElastestRabbitmqService: creates the necessary connections with RabbitMQ to

obtain logs and metrics in real time during the TJob execution.

● EtmMonitoringViewComponent: is responsible for managing everything related

to metrics and logs, making use of the information obtained from RabbitMQ and,

occasionally, from Elasticsearch.

3.4.1.2. Modules used in LogAnalyzer

The LogAnalyzer is the part of the ETM that allows the user to analyze logs retrieved

during tests executions. The user can mark and filter log entries with certain patterns or

contents. Figure 5 shows the main GUI modules of the LogAnalyzer, which consists on

the following modules:

● LogAnalyzerComponent: is the high-level component for LogAnalyzer. It uses

LogAnalyzerService, that contains all the logic of the tool.

● GetIndexModal: This module is responsible for obtaining the available

executions (through ProjectService, TJobExecService and ExternalService) so

that the user can select the ones he wants and then process and pass them to

LogAnalyzerComponent to perform the search for logs.

● MonitoringService: this service is used to make queries to get the logs through

the backend.

Figure 5. LogAnalyzer modules

 D4.3 Test Orchestration basic toolbox v2

20

3.4.1.3. Modules used in TestLink integration

Several improvements and functionalities have been introduced to facilitate the

execution of manual tests with TestLink:

● Upload/Download files to/from browser. In that way, if a manual tester needs

to upload a file to a web application he is testing, ElasTest provided browsers can

access to this file. In the opposite way, if a file is generated in the web page being

tested, this file can be downloaded by ElasTest user.

● Crossbrowser: it’s possible to execute manual testing with multiple browsers.

The actions carried out in any of the browsers will also be carried out in the rest

of the browsers. This module implements all the logic needed to simulate

interaction with several browsers at the same time.

● Pause execution of TestLink test cases and resume it later.

3.4.2. Metrics and logs

An important feature added to the log and metrics section is the LogComparator, which

allows to compare the logs from two executions, highlighting with colors the lines where

there have been changes. With this tool the user can easily see what has changed and

find errors revealed in the two executions. The Log Comparator can be used in two

different sections:

● In the Execution Comparator section

● When the last execution of a TJob was satisfactory but a new execution fails. It

will be shown automatically in the display of the failed execution and will show

the changes between the current (failing) execution and the last successful one.

There are several filters that that can be applied when using the Log Comparator,

divided into two categories:

● View:

o Complete logs: compare all available logs. (Default)

o Test Logs: compare only the logs of the test cases.

o Failed Tests: compare only the logs of the failed test cases.

● Comparison:

o Complete: displays the complete message as it is saved.

o No timestamp: if the message contains timestamp, it is removed.

(Default)

o Time diff: includes the time difference between traces in the logs

comparison.

Figure 6 shows the Log Comparator sequence diagram highlighting how this component,

upon activation by the user, gathers the necessary data to perform the comparison:

 D4.3 Test Orchestration basic toolbox v2

21

Figure 6. LogComparator sequence

3.4.3. TJobs Execution elasticity

When ElasTest is running over K8s, the ETM will deploy the resources to execute a TJob

(TJob, Sut, TSSs), TEs (Test Engines) and other integrated services (like Jenkins on K8s),

making use of the Java client provided by fabric89. To see this with a simple example,

Figure 7 describes how a TJob is executed from the ETM.

9 https://github.com/fabric8io/kubernetes-client

https://github.com/fabric8io/kubernetes-client

 D4.3 Test Orchestration basic toolbox v2

22

Figure 7. Sequence diagram of a TJob execution

In the diagram, the EPM is the component responsible of deploying the components

associated with a TJob (in this case, the SUT and TJobExecution) on Docker or K8s,

depending on where ElasTest was deployed.

Each resource that the ETM deploys on K8s is associated with a K8s component as

described in the following table.

ETM
Resource

K8s Resource K8s Resource description

TJob Job Controller that deploy one or more

pods and ensures that some of them

finalice with success.

Sut Pod Minimal deployment unit on K8s

 D4.3 Test Orchestration basic toolbox v2

23

TSS Deployment Allow easy updating and define the

number of replicas of a POD (when

ElasTest is running in Mini mode)

TE Deployment Allow easy updating and define the

number of replicas of a POD

Jenkins Deployment Allow easy updating and define the

number of replicas of a POD

Dockbeat Daemonset Deploys an instance of a pod in each

kubernetes node.

Table 2. Kubernetes components used by ETM

3.5. Code links

The ETM is composed of several sub-components: the ETM Core, the ETM GUI, Logstash,

RabbitMQ, Filebeat, Dockbeat, Jenkins and TestLink. From them, the ETM Core and the

ETM GUI have been developed entirely in the context of the ElasTest project. The other

components are available with open source licenses. All these components are executed

in different docker containers except for the ETM GUI that is executed entirely in the

web browser.

The development of the ETM has used the following GitHub repository:

https://github.com/elastest/elastest-torm

3.5.1. Validation

The ETM have been extensively validated in several ways:

● The experiments conducted in the context of project’s WP7 evidence that ETM

accomplish its main objective to enable TJobs execution coordinating the rest of

ElasTest components accordingly.

● An extensive number of unit, integration and end to end tests have been

implemented and are executed automatically in the continuous integration

system. These tests evidence the features implemented in the ETM are behaving

as expected and regressions are detected quickly.

● The ElasTest platform (coordinated by the ETM) is being used to implement and

execute end to end tests of Kurento10, an open source WebRTC platform used to

implement videoconference web applications.

10 http://www.kurento.org/

https://github.com/elastest/elastest-torm
https://github.com/elastest/elastest-torm
https://github.com/elastest/elastest-torm
http://www.kurento.org/

 D4.3 Test Orchestration basic toolbox v2

24

● The ElasTest platform is being used to implement and execute end to end tests

of OpenVidu11, a family of open source libraries for different frameworks (web

and mobile) to include videconference with ease into any application.

3.5.2. Discussion

The ETM is now mature enough to be used in real world projects. It provides a broad set

of features to test complex distributed applications like browsers as a service,

observability during testing, log comparison, etc. Also, it provides features to perform

manual testing more productive (thanks to simultaneous cross browser testing) and bug

fixing more easily (thanks to observability during testing). ElasTest has shown growing

adoption in the industry as shown in the download statistics of DockerHub statistics

(10K+ at the time of writing).

ElasTest has been evaluated for software development teams in companies like Panel

Sistemas, Zooplus, Idealista and Ericsson. As a result of these evaluations, bugs were

reported, and new features requested. ElasTest as a whole and ETM in particular have

been enhanced with feedback from community.

3.6. Research results and plans

As stated in the previous version of this deliverable (D4.1), a main research direction for

the ETM has been the automatic analysis of the information gathered during the

execution of a test. For example, in case of regression, it is very useful to compare

logs and metrics obtained from failed tests with the information of equivalent

succeeding tests. Another research line has been the comparison of the information

gathered executing the same tests against different configurations of the same SUT,

detecting the best configuration attending to different aspects like CPU consumption,

bandwidth usage, latency, requests per second, etc. These features have been used by

the verticals in the context of WP7 to validate the different objectives of the project.

4. ElasTest orchestration engine

4.1. Introduction

The concept of test orchestration is one of the three main principles of the project as

specified in the ElasTest Description of Action (DoA) document [3]:

ElasTest is a cloud platform designed for helping developers to test and validate

SiL (see definitions above), while maintaining compatibility with current CI

practices and tools. For this, ElasTest bases on three principles: (1)

instrumentation (i.e. customization of the SUT infrastructure so that it reproduces

real-world operational behavior); (2) test orchestration (i.e. to combine

11 https://openvidu.io/

https://openvidu.io/

 D4.3 Test Orchestration basic toolbox v2

25

intelligently testing units for creating a more complete test suite following the

“divide and conquer” principle); and (3) test recommendation (i.e. to use

machine learning and cognitive computing for recommending testing actions and

providing testers with friendly interactive facilities for decision taking). Hence,

ElasTest main objectives relate to improving the testing of SiL.

This orchestration mechanism is one of the main novelties of the ElasTest project and

its precise conception, formalization and consolidation is one of our main research

objectives. For a state-of-the-art on test orchestration see D4.1 (“Test orchestration

basic toolbox v1”).

Two main mechanisms are proposed in the ElasTest DoA to implement test

orchestration:

1. Topology generation. This concept allows the actual implementation of test

orchestration, including a notation to define test orchestrations. The idea is that

testers define the different TJobs (edges) and checkpoints (vertices).

2. Test augmentation. This concept consists on introducing new TJobs an original

test to reproduce custom operational conditions of the SUT. This way, in addition

to test functional features of the SUT, other non-functional attributes (such as

performance, scalability or reliability) can be assessed.

During the first period of the project, we devoted efforts to the first mechanism above.

We developed a Jenkins extension that allows end-users to define their own testing

topology, and ElasTest takes care of executing such topology applying the necessary

checkpoints, and providing at the very end of the process a report with the results.

During this second period, we focused on the second mechanism, namely test

augmentation. The test augmentation approach requires the combination efforts of the

programmable test orchestrator (Task 4.2) and the instrumentation manager (Task 3.4)

and agents (Task 3.3). By leveraging the instrumentation capabilities of ElasTest, the test

orchestrator can, giving a TJob, run additional TJobs reproducing custom operational

conditions of the SUT.

The rest of this section is structured as follows. Section 4.2 presents the set of features

initially planned for Task 4.2. Section 4.3 presents a detailed description of the test

augmentation approach in ElasTest. Section 4.4 describes the publications so far. Finally,

Section 5.5 concludes.

4.2. Features

The list of requirements for the ElasTest Orchestration Engine (EOE) component is

summarized in the following table.

 D4.3 Test Orchestration basic toolbox v2

26

Requirement Description

Topology generation Define a test orchestration notation for users to define TiL

(Test in the Large) by aggregating different TJobs

Jenkins DSL notation Leverage Jenkins shared library technology to allow the

definition of orchestration topologies so that users can

define a TiL by aggregating different TJobs

EOE DSL parser To enable the EOE to parse Jenkins notation

EOE communication

manager

To enable the EOE to support data-driven orchestration

EOE proxy To intercept requests from the ETM to TSSs to share

sessions among different tests

Reference

implementation

Create some reference implementation of the data-driven

approach, for example using the JUnit 5 extension model

Test augmentation New TJobs can be added to the orchestration in order to

reproduce custom operational conditions of the SUT or

non-functional attributes (such as performance, scalability

or reliability)

Include extra

checkpoints

Integrate techniques (new or existing) to include automated

assertions in existing orchestrations to improve test

coverage of orchestrated TJobs by adding extra checkpoints

(especially in data-driven approach)

Test prioritization Prioritize TJob executions using on a multi criteria approach

based on dissimilarity and resource availability

Table 3. Orchestrator requirements

4.3. Component architecture

In ElasTest, test orchestration is understood as the interconnection of different TJobs

expressed as a graph. The precise form of the graph which describes the order in which

tests get executed is specified by the tester. During the second period, two features

were implemented: the test augmentation approach, and the test prioritization support.

For the test augmentation mechanism, we introduced in the test orchestrator the

concept of custom operational conditions. G iven a TJob, and a set of operational

conditions, the EOE will execute as many instances of the TJob as needed in order to

exercise the SUT with all the possible combinations of operational conditions. At the

end, a checkpoint is created in order to decide if the augmented TJob passes the test or

fails.

The current implementation of the EOE support the operational conditions currently

defined in the EIM (ElasTest Instrumentation Manager):

 D4.3 Test Orchestration basic toolbox v2

27

● Packet loss: a ratio of network packets to be discarded and not delivered.

● CPU burst: a ratio of CPU load to be forced.

● Teardown nodes: a ration of nodes (i.e., application instances) to teardown.

The test augmentation feature allows end-users to specify different values for each of

these operational conditions, and the EOE will force all the possible combinations of

packet loss, CPU burst and teardown nodes. This approach simplifies enormously the

definition and execution of this kind of tests, enabling chaos testing within

organizations.

Snippet 1 below shows a possible test augmentation definition. The exit condition is set

to exit the orchestration as soon as any of the TJob executions fail. We specify 2 different

packet loss values and 3 different CPU burst values, which result in a total of 6 possible

combinations: (0.1, 0.2), (0.1, 0.5), (0.1, 0.8), (0.5, 0.2), (0.5, 0.5), (0.5, 0.8). Then we

specify that we want to test all those combinations using TJob “myjob1”, so the EOE will

run this TJob 6 times, each time using a different operational condition.

@Library('OrchestrationLib') _

// Configuration

orchestrator.setContext(this)

orchestrator.setExitCondition(OrchestrationExitCondition.EXIT_ON_FAIL)

orchestrator.setPacketLoss(0.1, 0.5)

orchestrator.setCpuBurst(0.2, 0.5, 0.8)

// Graph

def result = orchestrator.runJob('myjob1')

Snippet 1.Test augmentation definition

We can as well be more specific about when the test execution fails or passes by

providing thresholds on different metrics that the test orchestrator can capture using

the ElasTest Monitoring Service (EMS). Consequently, three different ElasTest

components collaborate to ease the testing process. For instance, Snippet 2 shows a

definition that uses the same operational conditions but specifies thresholds for

different properties. If these thresholds do not hold, the test fails, otherwise it passes.

Specifically, the EOE will check, with the aim of the EMS, that the CPU load will be below

50% for all the 6 TJob executions, and that the running time of each execution will be 5

seconds at most.

@Library('OrchestrationLib') _

// Config

orchestrator.setContext(this)

orchestrator.setExitCondition(OrchestrationExitCondition.EXIT_ON_FAIL)

orchestrator.setPacketLoss(0.1, 0.5)

 D4.3 Test Orchestration basic toolbox v2

28

orchestrator.setCpuBurst(0.2, 0.5, 0.8)

orchestrator.checkTime(LessThan(5, Time.SECONDS))

orchestrator.checkCpuLoad(LessThan(50, Unit.PERCENTAGE)

// Graph

def result = orchestrator.runJob('myjob1')

Snippet 2. Automatic test oracle generation to assess outcome of augmented test

Regarding the test prioritization support, in the second part of the project we have been

researching the use of context-aware prioritization to decide in which order to execute

the TJobs in the orchestration graph. This is useful when the time available for testing is

limited and we want to run first those tests that are more likely to reveal a bug. Test

prioritization is not usually driven by the context, i.e., the available resource. In our

research work, we have studied the hybridization between a previous work on

prioritization based on dissimilarity of so-far prioritized test cases [6], and the resource

awareness that ElasTest can provide. We have developed a multi-criteria algorithm that

prioritizes both dissimilarity and resources available (memory). Our preliminary results

are very promising, and the algorithm outperforms the state-of-the-art alternatives.

At this moment we’re preparing a paper to be submitted to ICST or AST (both deadlines

in January) with the results of our research. Once the paper is submitted, we will

integrate the algorithm into the EOE, thus allowing the orchestrator to use this multi-

criteria prioritization algorithm to decide which TJob to execute next out of the graph of

all possible TJobs.

4.4. Research results and plans

At the time of this writing, a publication about the EOE has been accepted in the

following international conference:

● A Proposal to Orchestrate Test Cases. Boni García, Francesca Lonetti, Micael

Gallego, Breno Miranda, Eduardo Jiménez, Guglielmo De Angelis, Carlos Santos,

and Eda Marchetti. 11th International Conference on the Quality of Information

and Communications Technology. Coimbra, Portugal, September 4-7, 2018.

The CodeURJC research group expects to submit the augmentation approach in a testing

conference (probably AST or ICST workshops) by January. In parallel, the URJC team is

working jointly with CNR on submitting a paper on test prioritization in the context of

the test orchestration feature. Also, a joint research is been carried with IMDEA project

partner to submit a paper focused on data-driven orchestration using EMS.

Finally, ElasTest is part of a PhD currently in development at the URJC research group.

The thesis focuses on running tests in the past to find the origin of bugs. In this context

the research group got this year a grant from the National Research Program that

guarantees the sustainability of the PhD student, and therefore ElasTest as a research

tool.

 D4.3 Test Orchestration basic toolbox v2

29

5. ElasTest cost engine

5.1. Introduction

The ElasTest cost engine (ECE) is the principal module that deals with estimating the cost

of executing a test based on specified resources, and also with collecting resource

consumption data post execution for calculating the true cost of execution. This section

captures the architectural changes, enhanced requirements listing, updates to core

features in ECE since D4.1.

5.2. Features

The list of requirements for the ElasTest Cost Engine (ECE) component is summarized in

the following table.

Requirement Description

1 Receive TJob information from ETM The ECE should be able to get the list of

TJobs from the ETM

2 Receive TJob information from ESM The ECE should be able to get the

service type cost definitions from ESM

3 Static Estimation of a TJob cost The ECE should be able to estimate

the cost of execution of a TJob

statically using the cost model

definitions received from the ESM

4 Retrieve monitoring information The ECE should be able to query and

get the actual monitored data capturing

the events and resource consumption

for a TJob execution

5 Actual calculation of the cost of

execution of a TJob

The ECE should be able to calculate the

real cost of an execution of a TJob

based on the cost models and the

monitored data values.

6 Extend cost model to support all

ElasTest support service

The ECE task-force should define the

cost models for relevant ElasTest

services using meaningful metrics.

7 Make rest cost feature optional

depending on the availability of EMP

service

To know the real cost feature is not

supported in a release outright and not

see a broken feature error

Table 4: Cost Engine Requirements

Requirements 4, 5, and 7 were implemented since D4.1 and are reported as part of this

deliverable.

 D4.3 Test Orchestration basic toolbox v2

30

5.3. Baseline concepts

The initial design of ECE was designed with the open source billing framework Cyclops

in perspective. Since the implementation of the first prototype of this service (as

reported in D4.1), it was realized that full capabilities as offered by Cyclops framework

was not needed for ElasTest. The fact that the ElasTest service manager (ESM) (see D3.1

and D3.2) has the responsibility of maintaining the cost models as part of the OSBA

specification, and availability of enhanced capability in the ElasTest monitoring platform

(EMP) (see D3.1, and D3.2) for reporting of resource consumption data for various TJob

related container processes, as well as support services, doing a simpler, alternative cost

calculation workflow was more sensible.

5.4. Component architecture

No significant architectural updates were needed since D4.1. The cost models defined

in D4.1 have been used in the implementation of the true cost of TJob post its execution.

The cost processing flow chart and modulus interaction diagrams are already presented

in D4.1 and thus has not been repeated here.

5.5. Implementation and code links

The UI underwent a refresh since D4.1. The ECE depends on the ETM, the ESM and the

EMP for cost estimation and true cost calculations.

Figure 8. TJob list

Using the ETM’s REST APIs, the ECE fetches the list of registered TJobs, and provides the

users with an option to analyze the cost of execution. Furthermore, if tests have already

been executed, the ECE allows the tester to see the true cost of historical test runs.

Figure 8 above shows the list of all TJobs as retrieved from ETM.

 D4.3 Test Orchestration basic toolbox v2

31

Figure 9 shows the form a user has to fill in before a static cost analysis can be

performed. The elements of the form depends on how the TJob has been defined at the

time of registration.

Figure 9. Static cost estimation form query

Figure 10 depicts the post analysis screen showing the cost model associated with any

support service used within the TJob.

If alternatively, the user selects the ‘true cost’ option, the ECE will contact the EMP to

fetch the resources consumed metrics from all historical run of this particular Job, and

 D4.3 Test Orchestration basic toolbox v2

32

using a cost model from the ESM, computes the actual cost of running those past

execution within ElasTest. This is shown in Figure 11 below.

Figure 10. Static cost estimated output

 D4.3 Test Orchestration basic toolbox v2

33

Figure 11. True computed costs of all executions for a selected TJob

The key technology parameters that characterizes the ECE are:

● Programming language: Java 8

● Framework: Spring framework

● Templating framework: Thymeleaf

The implementation exposes the RESTful interface through a class Controller.java that

allows the ElasTest GUI ask ECE for cost estimation for a given TJob ID.

 D4.3 Test Orchestration basic toolbox v2

34

5.6. Limitations of current approach

The current true cost computation is based on the data received from the EMP, and thus

the fidelity of the results are heavily based on the faithfulness of data received from

REST calls to the EMP. The EMP collects resource consumed data from various agents

which report periodically to it. In the currently integrated nightly deployment, the

docker agents of the EMP are configured to report every 15 minutes. Thus it is possible

that a TJob execution which gets started and finished in between the two collection

epochs, will not be assessed for cost, simply due to the fact that the EMP reports no

data on such executions.

One way to overcome this limitation is to add a lifecycle event processing engine which

gathers all TJob execution states such as started, finished, etc. and compute the true

cost calculation based on the duration of execution. Such an alternative is possible, but

will require the adaptation of the cost models and will not be truly representative of

actual resources consumed. It is for this reason, such an alternative was not pursued in

this task.

6. Conclusions and future work

This deliverable provides a summary of the technical aspects of the following

components of the ElasTest toolbox: i) the ElasTest Tests Manager (ETM), ii) the ElasTest

Orchestration Engine (EOE), and iii) the ElasTest Cost Engine (ECE).

Regarding the ETM, its main objectives were: i) to allow the execution of end to end

tests against complex distributed applications coordinating the rest of the ElasTest

components and ii) to gather, register and analyze the information generated during

test execution. These two objectives have been accomplished. The ETM have been

implemented using several open source technologies (Docker, Elastic stack) and

frameworks (Spring Boot, Angular). This component provides extensibility mechanisms

to allow third party modules to be included in ElasTest. This mechanisms have been used

to include all TSS and TE. Extensive validation have been performed to evidence that

features provided by ETM are useful for testers in real projects and automated tests are

executed to verify the expected behavior and detect regressions. The future work of

ETM will be focused on the automatic analysis of the information gathered during test

execution in several uses cases like regressions and comparisons of several SUT

configurations.

Regarding the EOE, we conceive test orchestration as a novel way to select, order, and

execute a group of TJobs. We distinguish two types of orchestration techniques. The

first one is called verdict-driven orchestration, and it allows to create TJobs workflows

by modeling TJobs as black-boxes, meaning that we only known its final verdict (i.e.,

passed or failed) after the execution. Each TJob verdict value can be used to create

conditional paths within the orchestration workflow. The second approach presented in

 D4.3 Test Orchestration basic toolbox v2

35

this deliverable is called data-driven. This second approach is more complex due to the

fact that tests within TJobs are supposed be composable, meaning that the test data

(input) and test outcomes (output) are imported and exported by tests. The

inconvenience of this approach is that new tests following these guidelines need to

be created. On the other side, we can create richer test suites using the “divide and

conquer” principle applied to testing, as hypothesized in the ElasTest DoA.

These orchestration approaches are being implemented in the ElasTest platform.

Internally, ElasTest has been implemented following a microservices architecture based

on Docker containers. The ElasTest component in charge of implementing the

orchestration approaches is called ElasTest Orchestration Engine (EOE). This component

is able to parse an orchestration workflow based on the DSL Jenkins Pipeline,

sequencing, and executing in parallel tests according to the DSL (provided by testers).

In order to ease the development of composable test as required in the data-driven

approach, the ElasTest project is going to provide a reference implementation as a JUnit

5 extension [4]. This extension is not released at the time of this writing, although we

can anticipate how the final JUnit 5 will look like. The following listing shows an example,

in which input and output data are specified using Java annotations. Notice that the

input data can declare some default value in order to be executed as single instances

(i.e., outside the orchestration workflow). These data are later overridden by the EOE in

the actual orchestration execution.

@ExtendsWith(ElasTestExtension.class)

class TJob1Test {

 @InputData

 String in1 = "default-value1";

 @InputData

 int in2 = 20;

 @InputData

 boolean in3 = false;

 @OutputData

 String out1

 @OutputData

 int out2

 @Test

 void myTest() {

 // my test logic

 }

}

Snippet 3. Data-driven JUnit 5 test case design

 D4.3 Test Orchestration basic toolbox v2

36

This work is the first step in our vision to create a novel testing theory for sequencing,

ordering, and parallelization applied to software testing. This is an ambitious goal, and

so, there is still a long path ahead. So far, we have focused in the first part of the

problem, i.e. the definition of a topology generation to orchestrate tests. The next steps

include actions to enhance the current model using test augmentation, i.e. introducing

new TJobs to reproduce custom operational conditions of the SUT. Moreover, we plan

to investigate additional techniques (new or existing) to include automated assertions

(i.e., the oracle problem [5]) applied to the output data in the data-driven orchestration

approach.

Regarding the ECE, cost estimation brings much needed financial transparency in any

testing infrastructure. The process of accounting, rating, and charging and billing is a

complicated process. Although in ElasTest we do not do billing, the complexity and

challenges of accounting remains. As a first step, we have defined a reasonably flexible

cost model and have prototyped the initial version of cost engine that performs static

cost estimation based on defined cost plans of supporting services. In the immediate

future, we begin implementing real cost calculation capability based on observed

metrics and utilizing planned metering module. We will also enhance TJob registration

process with usage model inclusion which will add more teeth to the cost estimation for

the TJob.

7. References

[1] Mili, A. and Tchier, F., 2015. Software testing: Concepts and operations. John Wiley

& Sons.

[2] Lima, B. and Faria, J.P., 2016, July. A Survey on Testing Distributed and

Heterogeneous Systems: The State of the Practice. In International Conference on

Software Technologies (pp. 88-107). Springer, Cham.

[3] ElasTest project Description of Action (DoA) – part B. Amendment 1. Reference

Ares(2017) 343382. 23 January 2017.

[4] B. García, Mastering Software Testing with JUnit 5. Packt Publishing, 2017.

[5] Barr, E.T., Harman, M., McMinn, P., Shahbaz, M. and Yoo, S., 2015. The oracle

problem in software testing: A survey. IEEE transactions on software

engineering, 41(5), pp.507-525.

[6] Breno Miranda, Emilio Cruciani, Roberto Verdecchia, and Antonia Bertolino. 2018.

FAST approaches to scalable similarity-based test case prioritization. In Proceedings

of the 40th International Conference on Software Engineering (ICSE '18). ACM, New

York, NY, USA, 222-232. DOI: https://doi.org/10.1145/3180155.3180210

