

 D5.2
Version 1.0

Author ZHAW

Dissemination PU

Date 31-12-2019

Status FINAL

D5.2 ElasTest Test Support Services v2

Project acronym ELASTEST
Project title ElasTest: an elastic platform for testing complex distributed

large software systems

Project duration 01-01-2017 to 31-12-2019

Project type H2020-ICT-2016-1. Software Technologies

Project reference 731535

Project website http://elastest.eu/
Work package WP5

WP leader Andy Edmonds

Deliverable nature Public

Lead editor Andy Edmonds

Planned delivery date 31-12-2019

Actual delivery date 20-12-2019

Keywords Open source software, cloud computing, software
engineering, operating systems, computer languages,
software design & development, service delivery.

Funded by the European Union

 D5.2 ElasTest Test Support Services v2

2

License
This is a public deliverable that is provided to the community under a Creative Commons
Attribution-ShareAlike 4.0 International License:

http://creativecommons.org/licenses/by-sa/4.0/

You are free to:

Share — copy and redistribute the material in any medium or format.

Adapt — remix, transform, and build upon the material for any purpose, even
commercially.

The licensor cannot revoke these freedoms as long as you follow the license
terms.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and
indicate if changes were made. You may do so in any reasonable manner, but not
in any way that suggests the licensor endorses you or your use.

ShareAlike — If you remix, transform, or build upon the material, you must
distribute your contributions under the same license as the original.

No additional restrictions — You may not apply legal terms or technological
measures that legally restrict others from doing anything the license permits.

Notices:

You do not have to comply with the license for elements of the material in the
public domain or where your use is permitted by an applicable exception or
limitation.

No warranties are given. The license may not give you all of the permissions
necessary for your intended use. For example, other rights such as publicity,
privacy, or moral rights may limit how you use the material.

For a full description of the license legal terms, please refer to:

http://creativecommons.org/licenses/by-sa/4.0/legalcode

 D5.2 ElasTest Test Support Services v2

3

Contributors
Name Affiliation
Juan Navarro URJC

Mica Gallego URJC

Varun Gowtham TUB

Cesar Sanchez IMDEA

Felipe Gorostiaga IMDEA

Pablo Chico de Guzman IMDEA

Luis Miguel Danielsson IMDEA

Kimon Moschandreou REL

Avinash Sudhodanan IMDEA

Juan Caballero IMDEA

Andy Edmonds ZHAW

Version history
Version Date Author(s) Description of changes
0.1 29.03.2018 Andy Edmonds Initial draft and outline.

0.2 04.11.2019 Francisco Diaz,
Avinash
Sudhodanan

Initial contributions on EUS and ESS.

0.3 04.11.2019 Andy Edmonds Editing and formatting.

0.4 06.11.2019 Varun
Gowtham,
Cesar Sanchez,
Felipe
Gorostiaga

Initial contributions on EDS and EMS.

0.5 12.11.2019 Kimon
Moschandreou

Initial contribution on EBS.

0.6 13.11.2019 Andy Edmonds Integration of initial contributions
complete.

0.7 15.11.2019 Francisco
Gortázar Bellas

Updates on EUS (contributions, SotA).

0.8 21.11.2019 All Updates and edits to sections 4 and 5.

0.9 25.11.2019 All Final contributions before peer review.

1.0 20.12.2019 Magda
Kacmajor,
Andy Edmonds

Finalisation of deliverable after peer-
review comments.

 D5.2 ElasTest Test Support Services v2

4

Table of Contents
1	 Executive Summary .. 11	

2	 Introduction ... 12	

3	 Test Support Service Management ... 13	
3.1.1	 Definitions ... 13	
3.1.2	 TSS Life Cycle ... 14	
3.1.3	 TSS Interaction with ElasTest .. 14	
3.1.4	 TSS Description .. 14	
3.1.5	 TSS Instance Monitoring for T-Jobs ... 14	
3.1.6	 TSS Health Check ... 15	
3.1.7	 TSS & Creating New Computational Resources .. 15	
3.1.8	 TSS Costing .. 15	
3.1.9	 TSS Testing .. 15	
3.1.10	 TSS Documentation ... 16	
3.1.11	 TSS Creation .. 16	

4	 ElasTest Test Support Services ... 17	
4.1	 ElasTest User Impersonation Service .. 17	

4.1.1	 Introduction .. 17	
4.1.2	 Features .. 17	
4.1.3	 Baseline Concepts and Technologies .. 18	
4.1.4	 Component Architecture ... 18	
4.1.5	 Implementation Details .. 21	
4.1.6	 Contributions .. 21	
4.1.7	 Progress Beyond the State of the Art .. 22	

4.2	 ElasTest Device Emulator Service .. 23	
4.2.1	 Introduction .. 23	
4.2.2	 Features .. 23	
4.2.3	 Baseline Concepts and Technologies .. 23	
4.2.4	 Component Architecture ... 23	
4.2.5	 Implementation Details .. 24	
4.2.6	 Contributions .. 24	
4.2.7	 Progress Beyond the State of the Art .. 25	

4.3	 ElasTest Monitoring Service .. 26	
4.3.1	 Introduction .. 26	
4.3.2	 Features .. 26	
4.3.3	 Baseline Concepts and Technologies .. 28	
4.3.4	 Component Architecture ... 29	
4.3.5	 Implementation Details .. 30	
4.3.6	 Contributions .. 30	
4.3.7	 Progress Beyond the State of the Art .. 31	

4.4	 ElasTest Big Data Service ... 33	
4.4.1	 Introduction .. 33	
4.4.2	 Features .. 33	
4.4.3	 Baseline Concepts and Technologies .. 33	
4.4.4	 Component Architecture ... 33	
4.4.5	 Implementation Details .. 34	
4.4.6	 Contributions .. 35	

 D5.2 ElasTest Test Support Services v2

5

4.4.7	 Progress Beyond the State of the Art .. 35	
4.5	 ElasTest Security Service ... 36	

4.5.1	 Introduction .. 36	
4.5.2	 Features .. 36	
4.5.3	 Baseline Concepts and Technologies .. 36	
4.5.4	 Component Architecture ... 37	
4.5.5	 Implementation Details .. 37	
4.5.6	 Contributions .. 37	
4.5.7	 Progress Beyond the State of the Art .. 38	

5	 Conclusions .. 39	

6	 Appendix ... 42	
6.1	 References .. 42	

 D5.2 ElasTest Test Support Services v2

6

Index of Figures
Figure 1 TSS Descriptor File's Document Model. ... 14	
Figure 2 EUS Class diagram .. 19	
Figure 3 EUS Sequence Diagram of Creation ... 20	
Figure 4 EUS Sequence Diagram of the Process of Calculating QoE .. 21	
Figure 5 EMS Architecture ... 29	
Figure 6 EMS Use Cases ... 30	
Figure 8 EBS FMC Diagram ... 34	
Figure 9 ESS Architecture Update .. 37	

 D5.2 ElasTest Test Support Services v2

7

Index of Tables
Table 1 TSS Management Changes .. 13	

 D5.2 ElasTest Test Support Services v2

8

Glossary of Acronyms
Acronym Definition
CI (Continuous Integration) This refers to the software development practice with

that name.

Cross-Origin State
Inference (COSI) attack

 A web attack where a malicious web site infers the state of
the victim at another web site

EK ElasTest Kubernetes

ElasTest Big data analysis
Service (EBS)

 One of ElasTest’s Test Support Services. See section 4.4.

ElasTest Monitoring Service
(EMS)

 One of ElasTest’s Test Support Services. See section 4.3.

ElasTest Security check
Service (ESS)

 One of ElasTest’s Test Support Services. See section 4.5.

ElasTest sensor, actuator
and Device emulator
Service (EDS)

 One of ElasTest’s Test Support Services. See section 4.2.

ElasTest Test and
Orchestration Manager
(ETM)

 Main ElasTest coordinating entity of T-Jobs

ElasTest User
impersonation Service
(EUS)

 One of ElasTest’s Test Support Services. See section 4.1.

FOSS (Free Open Source
Software)

 This refers to software released under open source
licenses.

Fundamental Modelling
Concepts (FMC)

 A modelling framework for the description of software-
systems.

HEK Highly Scalable ElasTest Kubernetes

IaaS (Infrastructure as a
Service), PaaS (Platform as
a Service) and SaaS
(Software as a Service)

 This refers to different models of exposing cloud
capabilities and services to third parties.

IIoT Industrial Internet of Things

Instrumentation This refers to extending the interface exposed by a
software system for achieving enhanced controllability
(i.e. the ability to modify behaviour and runtime status)
and observability (i.e. the ability to infer information about
the runtime internal state of the system).

Man-in-the-Middle (MitM)
attack

 A type of security exploit where an interloper is
transparently inserted between what should be a one-to-
one communication.

 D5.2 ElasTest Test Support Services v2

9

MoM Monitoring Machines

 QoS (Quality of Service)
and QoE
(Quality of Experience)

 QoS and QoE refer to non-functional attributes of systems.
QoS is related to objective quality metrics such as latency
or packet loss. QoE is related to the subjective quality
perception of users. In ElasTest, QoS and QoE are
particularly important for the characterization of
multimedia systems and applications through custom
metrics.

Service Oriented
Architecture (SOA)

 An architectural style used to design distributed service-
based applications.

SiL (Systems in the Large) A SiL is a large distributed system exposing applications
and services involving complex architectures on highly
interconnected and heterogeneous environments. SiLs are
typically created interconnecting, scaling and
orchestrating different SiS. For example, a complex
microservice-architected system deployed in a cloud
environment and providing a service with elastic scalability
is considered a SiL.

SiS (Systems in the Small) SiS are systems basing on monolithic (i.e. non-distributed)
architectures. For us, a SiS can be seen as a component
that provides a specific functional capability to a larger
system.

SuT (Software under Test) This refers to the software that a test is validating. In this
project, SuT typically refers to a SiL that is under validation.

T-Job (Testing Job) We define a T-Job as a monolithic (i.e. single process)
program devoted to validating some specific attribute of a
system. Current Continuous Integration tools are designed
for automating the execution of T-Jobs. T-Jobs may have
different flavours such as unit tests, which validate a
specific function of a SiS, or integration and system tests,
which may validate properties on a SiL as a whole.

Test Support Service (TSS) A service acquired on-demand and use in support of a T-
Job.

TiL (Test in the Large) A TiL refers to a set of tests that execute in coordination
and that are suitable for validating complex functional
and/or non-functional properties of a SiL on realistic
operational conditions. We understand that a TiL can be
created by orchestrating the execution of several T-Job.

TO (Test Orchestration) The term orchestration typically refers to test
orchestration understood as a technique for executing
tests in coordination. This should not be confused with
cloud orchestration, which is a completely different

 D5.2 ElasTest Test Support Services v2

10

concept related to the orchestration of systems in a cloud
environment.

TORM (Test Orchestration
and Recommendation
Manager)

 Is an ElasTest functional component that abstracts and
exposes to testers the capabilities of the ElasTest
orchestration and recommendation engines.

Web Real-Time
Communication (WebRTC)

 Enables audio and video streams to work in web pages
using a direct peer-to-peer paradigm.

 D5.2 ElasTest Test Support Services v2

11

1 Executive Summary
Developers and therefore end-users receive productivity gains from the use of
supporting services to deliver and use their own servce. The same should also be
provided to testers of software and services. In this deliverable we report updated
results of designing and implementing Test Support Services that are used within the
ElasTest platform. Through the use of orchestration in WP4, these services can also be
presented to the T-Job owner in a uniform fashion.

In this deliverable, after the introduction, we detail the updated (from [D5.1]) common
elements that all services are required to have in order to be used as ElasTest Test
Support Services. For each of the five services in Work Package 5 (WP5), we describe the
updates related to each including aspects related to design and implementation. Those
Test Support Services are:

● ElasTest User impersonation Service (EUS): This service enables the
impersonation of end-users in their tests through GUI (Graphical User Interface)
instrumentation and through mechanisms for QoS (Quality of Service) and QoE
(Quality of Experience) evaluation.

● ElasTest sensor, actuator and Device emulator Service (EDS): This service is
useful for enabling tests to emulate customized device behaviour at the time of
testing IoT (Internet of Things) applications.

● ElasTest Monitoring Service (EMS): This service leverages runtime verification
ideas (in turn inspired by formal verification) to represent the system behaviour
as sequences of events that can be monitored in universal ways.

● ElasTest Big data analysis Service (EBS): Enables the collection, analysis and
visualization of large volumes of logs.

● ElasTest Security check Service (ESS): For security vulnerability checking
targeting specifically the problems of the main large-scale deployed system.

Ultimately, the main output of this deliverable is the software, which is delivered from
this technical work package, including common guidelines on how to create a Test
Support Service and the architectures and implementations of each of the five Test
Support Services. All of the implementations are available on GitHub1. Nonetheless,
from the first 18 months of the ElasTest project not only has there been advancements
n the software but also a shift in reporting scientific progress in the form of
presentations and papers. Each service also details its contributions in this respect.

1 https://github.com/elastest/

 D5.2 ElasTest Test Support Services v2

12

2 Introduction
In this deliverable we describe the work of WP5 from month 19 up to month 36 of the
project ElasTest.

The work package five’s goal has been to provide (design, implement) and deliver Test
Support Services (TSS) that support and provide additional functionality in the creation
of T-Jobs. These services are provided as on-demand services when needed by T-Jobs.
This means that only when the functionality is declared, the service/services are
instantiated. These services are defined according to the general architecture principles
and style specified in D2.3, namely as cloud-native, microservice-based services [TSS1].
They also satisfy the requirements and validation specifications described in D2.5. Using
the functionality of these services is through well-defined API and UI interfaces. How
the API is defined, again follows the D2.3 mandated adoption of OpenAPI2, however
user interfaces are considered to be optional.

These services are to be ultimately used and consumed by the ElasTest Test and
Orchestration Manager (ETM), however they can be used independently of this through
the API or UI of the ElasTest Service Manager (ESM).

This deliverable is aimed at those wishing to understand how the updated Test Support
Services are designed and implemented through:

1. Understanding the common guidelines required to be adhered by each service.

2. Understanding how services can be design and implemented and integrated into
the ElasTest service. In this case, the “how” is given by example of the five
different services within WP5 and their related updates.

3. Providing information about each service’s beyond the state of the art
capabilities and specific details through various service-specific publications
made during the second period (M19-M36).

This deliverable is structured in the following way. In section 3, we present updates to
the common guidelines that each service should follow from design, through
implementation to deployment and delivery. In section 4, we provide the detailed
information on updates to the features, architecture and other outputs of each Test
Support Service. Finally, in section 5 we conclude the deliverable.

Reading note: When reading this deliverable, it is useful to have [D5.1] available to
easily refer to the section that is cross-referenced. This has been done to reduce
unnecessary text reproduction.

2 https://www.openapis.org

 D5.2 ElasTest Test Support Services v2

13

3 Test Support Service Management
This section contains the updates and necessary changes to support the service
management based on the work reported in [D5.1].

Below is a table that lists where to read and understand on a service management topic
and lists what sections are updated and dealt with in this deliverable. Topics that do not
have an update are considered as stable and already dealt with sufficiently in [D5.1].

Topic Updated Description
Definitions No See [D5.1]
TSS Lifecycle No See [D5.1]
TSS interactions with ET No See [D5.1]
TSS Description Yes See D5.2, Section 3.1.4
TSS Monitoring No See [D5.1]
TSS Health Checks No See [D5.1]
TSS & Creating Computational Resources Yes See D5.2, Section 3.1.7
TSS Costing No See [D5.1]
TSS Testing Yes See D5.2, Section 3.1.9
TSS Documentation No See [D5.1]
TSS Creation No See [D5.1]

Table 1 TSS Management Changes

Test Support Services are services used by tests via T-Jobs. They provide additional
functionality that the application/service developer can use but not be responsible for.
Adding support services allows for rapid additional specific functionality. Consider the
EUS; it provides to tests the ability to control web browsers and emulate a real user
using it. All services should provide some way of programmatic usage of the service, so
that it can be configured/used by the test code. Naturally many services provide an
additional graphical interface to be used directly by the tester. Again, if we consider the
EUS; it provides the web browser inside ElasTest main interface to be managed by the
tester if he wants.

The technologies used in WP5 are directly influenced by the technology decisions made
in WP3. As such, all services are presented for deployment as Docker3 container images
that are composed and deployed using both Docker’s docker-compose4 technology and
Kubernetes. With new updates to the ESM, Kubernetes5 can now be used as an
alternative technology to carry out the same composition as docker-compose, but with
the added benefits of dynamic scaling and additional reliability.
.

3.1.1 Definitions

Please see [D5.1].

3 https://www.docker.com
4 https://docs.docker.com/compose/
5 https://kubernetes.io

 D5.2 ElasTest Test Support Services v2

14

3.1.2 TSS Life Cycle

Please see [D5.1].

3.1.3 TSS Interaction with ElasTest

Please see [D5.1].

3.1.4 TSS Description

The definition of a TSS is contained in a file named elastestservice.json. In
ElasTest, this description file is hosted within the service implementation repository,
however, it can be located anywhere the ETM has access to. New TSS’s can now also be
imported to ElasTest via the ESM’s import functionality. The only change of note here is
that the Manifest’s manifest_content field can now contain a docker-compose
description or a Kubernetes manifest that describes the service’s deployment
implementation. From [D5.1], the elastestservice.json is a JSON document and
has the following structure:

Figure 1 TSS Descriptor File's Document Model.

3.1.5 TSS Instance Monitoring for T-Jobs

Please see [D5.1].

 D5.2 ElasTest Test Support Services v2

15

3.1.6 TSS Health Check

Please see [D5.1].

3.1.7 TSS & Creating New Computational Resources

All services can create new containers during their execution. This allows services to
request further resources, allowing them to scale themselves.

With using docker-compose-based manifests, each service implementation manages
the scaling of itself. Services have a fixed set of resources depending on the selected
plan and so the goal of a service implementation is more to maintain the service level
delivered to the user of the service.

With using Kubernetes-based manifests, dynamic scaling is now supported by the
support of Kubernetes in the ESM. This dynamic scaling provided for service
implementors and providers in order to provide reliability to their service consumers.
Ultimately, how many replicas of a service component instance (e.g. a container) is
managed by declaring how many replicas are required in the service’s manifest. An
example of setting the number of replicas can be seen within the Kubernetes
documentation6.

3.1.8 TSS Costing

Please see [D5.1].

3.1.9 TSS Testing

It is important to implement tests for TSSs. All types of tests are important and should
take into account the test pyramid7. There is direction on what’s needed to test the
implementation of a service in [D5.1]. Also, the work that happens in WP6 is important
and related.

Nonetheless, during the course of WP5 work it was seen that a useful contribution could
be made that validated the service manifest. This has the advantage of avoiding errors
that arose from manifests that did not comply correctly to the docker-compose model.

TSS Manifest Validation
Despite an active research field around cloud-native architectures, the dominant
industry trends are around container-native architectures. These are centred around
Docker images and declarative orchestration (composition) files referencing the images.
A major issue in the context of end to end testing is the drill-down into these files. While
existing scanning tools cover the quality of Docker container images well (DIVA [TSS2],
Clair [TSS3], Hadolint [TSS4]), a research and innovation gap was identified for the
orchestration files. We have therefore introduced Docker Compose Validator, with a

6 https://kubernetes.io/docs/concepts/workloads/controllers/deployment/#creating-a-deployment
7 https://martinfowler.com/bliki/TestPyramid.html

 D5.2 ElasTest Test Support Services v2

16

primary focus on Docker Compose files but also capable of addressing quality issues in
Kubernetes deployments and OpenShift templates. The validator is able to check for
invalid syntax such as duplicate names which are not checked by much of the Docker-
based tools in regular operation. This concerns container names, port numbers and
labels, among other syntactic elements. A heuristic validation is able to reveal typical
typos through string similarity. Moreover, it can discover inconsistencies in labels to
enforce labelling policies. All validation results can be output synchronously to the
terminal to aid developers or be asynchronously submitted to a Kafka pub/sub system
for further processing. An integration with the ElasTest framework itself, to run the
validator as a service, has been conceptually designed and can be integrated into build
pipelines but as of yet has not been deployed onto the CI/CD infrastructure8 of ElasTest.

3.1.10 TSS Documentation

Please see [D5.1].

3.1.11 TSS Creation

Please see [D5.1].

8 http://ci.elastest.io/jenkins/

 D5.2 ElasTest Test Support Services v2

17

4 ElasTest Test Support Services
In this section each of the five core ElasTest Test Support Service (TSS) is described. All
of these services are available from the main ElasTest repository9 and are available
under the open source Apache 2.0 license10, unless otherwise specified.

4.1 ElasTest User Impersonation Service

4.1.1 Introduction

The ElasTest User Impersonation Service (EUS) TSS is devoted to providing the
appropriate technologies for impersonating users in end-to-end tests. This is achieved
by handling GUIs (Graphical User Interfaces) using automation techniques.

In the second period of the project we focused into expand other functionalities more
related with elasticity and Quality of Experience, as specified in the DoA. However, due
to demands of the verticals, we also included specific features to enable a boost in
productivity for them. Currently, EUS provides the ability to impersonate users
manipulating web applications with Chrome and Firefox, and support can be expanded
to other browsers, e.g. Opera or Edge, and to allow the impersonation of mobile
applications too.

On the one hand, the EUS can now deploy browsers on an infrastructure provided by
AWS or on a cluster of Kubernetes when ElasTest is running in EK (ElasTest Kubernetes)
or HEK (Highly Scalable ElasTest Kubernetes) modes, so that the resources used by
ElasTest can be increased when the workload is high.

On the other hand, the EUS now provides a measure that indicates the quality of a video
stream with respect to the user experience, for example, by comparing the video
streamed and received between two participants in a call.

Finally, we included specific use-case-driven features like cross browsing, which allows
testers to perform a manual testing session on a browser and reproduce automatically
and in parallel the human interactions on another, different, browser. This is especially
useful when the same tests need to be exercised using two different browsers, for
instance, Chrome and Firefox.

4.1.2 Features

The list of high-level capabilities provided by EUS at the moment of this writing is the
following:

1. Use browsers manually.

2. Drive browsers GUIs in an automated way.

3. Automate and assess WebRTC applications.

9 https://github.com/elastest
10 https://opensource.org/licenses/Apache-2.0

 D5.2 ElasTest Test Support Services v2

18

4. New: Measure the end-user's perceived quality by means of QoE and QoS

indicators.

5. Record of browser in automated and manual sessions.

6. New: Multimedia QoE video can be analysed using different full-reference
algorithms:

a. Video Multi-Method Assessment Fusion (VMAF) 11.
b. Structural Similarity Index (SSIM) 12.
c. Peak Signal-to-Noise Ratio (PSNR) 13.
d. Visual Information Fidelity in Pixel Domain (VIFp)
e. Multi-Scale SSIM (MS-SSIM) 14.
f. Human Visual System-based PSNR (PSNR-HVS and PSNR-HVS-M) 15.

7. New: Start multiple browsers at once (Cross Browsing)

These capabilities are exposed by EUS by means of a REST API. The definition to this
REST API has been defined using Open API notation. This specification is available on the
EUS GitHub repository16. Moreover, this API can be reviewed in a web friendly format in
the official ElasTest documentation17.

4.1.3 Baseline Concepts and Technologies

The concepts and technologies for the EUS are the same as in [D5.1]:

• EUS provides a Browser as a Service (BaaS) capability
• It is built on top of popular technologies such as Selenium18 , an extension of the

W3C WebDriver recommendation19.
• To manage the browser instances controlled by Selenium, EUS uses Docker

containers.
• These containers can also be initiated with Kubernetes and in an AWS instance,

making use of a public AMI image created by the ElasTest project.
• For managing the life cycle of containers, EUS is using the service of ElasTest

Platform Manager (EPM) core component.

4.1.4 Component Architecture

The following figure shows how the EUS class diagram looks like after implementing the
latest functionalities and modifications.

11 https://github.com/Netflix/vmaf
12 http://www.imatest.com/docs/ssim/
13 https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio
14 https://en.wikipedia.org/wiki/Structural_similarity#Multi-Scale_SSIM
15 https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio#Variants
16 https://github.com/elastest/elastest-user-emulator-service/blob/master/api.yaml
17 https://elastest.io/docs/api/eus/
18 https://www.seleniumhq.org/
19 https://www.w3.org/TR/webdriver/

 D5.2 ElasTest Test Support Services v2

19

Figure 2 EUS Class diagram

4.1.4.1 Sequence Diagrams

To explain how the new functionalities added to the EUS work, two sequence diagrams
are described below (Figure 3).

In the class diagram above, you can see several classes that did not exist in the previous
version of this document. Some of these classes included in the hierarchy under the class
PlatformManager (BrowserDockerManager, BrowserAWSManager and
Browserk8sManager) are responsible for provisioning the browsers in the different
platforms with which ElasTest works (Docker, AWS and K8s).

The following sequence diagram imported from the previous version of this document
illustrates how to create and delete a browser within the T-Job life cycle, but in this case
the EPM will be able to provision the browser on one of the platforms mentioned above.

 D5.2 ElasTest Test Support Services v2

20

Figure 3 EUS Sequence Diagram of Creation

The following picture (Figure 4) shows the sequence diagram the process of calculating
QoE metrics for video, which is calculated from the original video emitted by one end
and the video received by another end.

It is assumed that two browsers were previously created: BrowserPresenter (the one
that sends the video) and BrowserViewer (the one that receives it).

The EUS API will be called by a GET request whose path is
“/session/{sessionIdPresenter}/webrtc/qoe/meter/start” and will be
sent as parameters: (1) the sessionId of the BrowserPresenter and the path of the
original video inside it; and (2) the sessionId of the BrowserViewer and the path of
the video received inside it.

The EUS will start the QoEMeterService, get the two videos from the browsers to send
them to the service and call you asynchronously to calculate the metrics. The REST
request is then answered. When the asynchronous process finishes, the EUS will recover
the Comma Separated Value (CSV) files generated in the service, it will calculate the
average of the metrics for each one of the CSVs and it will save everything in the
execution folder, so that it is attached in the execution. Finally, the true value will be
assigned to a variable that designates the state of end of the process and meanwhile the
test will be in charge of polling the EUS to ask for the state.

 D5.2 ElasTest Test Support Services v2

21

Figure 4 EUS Sequence Diagram of the Process of Calculating QoE

4.1.5 Implementation Details

● The main repository of the EUS is here20.

● The API of the EUS is available here21.

● Other than the reporting of testing from WP6 in D6.3, further code coverage can
be viewed at codecov22.

4.1.6 Contributions

As a result of the efforts on task 5.1 (EUS), we have published a paper on the Journal of
Computing on understanding and estimating quality of experience in the context of
WebRTC applications [EUS1]. The findings of this study enabled us to write another
paper on the Journal of Electronics, about practical evaluation of video quality for
WebRTC applications using the VMAF algorithm [EUS2]. The results from this paper were
implemented as part of the EUS, along with some of the state-of-the-art algorithms, and

20 https://github.com/elastest/elastest-user-emulator-service
21 https://elastest.io/docs/api/eus/
22 https://codecov.io/gh/elastest/elastest-user-emulator-service

 D5.2 ElasTest Test Support Services v2

22

can be used seamlessly and transparently to assess the quality of video-based
applications that use this WebRTC W3C standard.

Current efforts are on providing an integral way of assessing audio and video quality.
This feature is still to be integrated in the ElasTest platform, but URJC is already writing
a paper that will be submitted by end December 2019. URJC, the leaders of the EUS,
attended and presented at SeleniumConf 2019 based on their experiences of Selenium.

4.1.7 Progress Beyond the State of the Art

The EUS component pushes forward the state-of-the-art on web testing by providing
specific support for assessing the quality of experience of WebRTC applications
automatically during a test run. To the best of our knowledge this has not been provided
by any other testing tool.

Furthermore, we have set ground on evaluating and managing QoE in the context of the
WebRTC standard and adapted streaming QoE algorithms to this real-time
communication standard.

 D5.2 ElasTest Test Support Services v2

23

4.2 ElasTest Device Emulator Service

4.2.1 Introduction

ElasTest Device Emulator Service (EDS) is a test support service available in ElasTest
which provides the functionality of emulating the behaviour of sensors and actuators. It
is possible for SuT and/or T-Jobs to access facilities of EDS through a REST API for the
purpose of requesting a specific type of emulated sensor or actuator, and further wire
the requested emulated devices together to form an application. This application
depends on the cause and effect relationship provided by the sensor and actuator
respectively. For a more detailed understanding refer to [D5.1].

4.2.2 Features

The features provided by EDS are the following:

1. Dedicated gateway that can handle all the REST requests. The gateway is also
responsible in directing incoming requests to subscribed applications. It also acts
as a placeholder for values pushed by applications.

2. Dedicated backend application that supports dynamic initialization of sensors.
3. Method to wire the emulated devices together to form IoT applications.
4. Method to change the behaviour of the emulated devices during run-time and

in turn affect the behaviour of the application.

More details can be found in the previous [D5.1].

4.2.3 Baseline Concepts and Technologies

EDS relies on OpenMTC, a reference implementation of the oneM2M machine to
machine (M2M) communication standard. EDS implements the functionality of device
emulation using OpenMTC and opens up through the REST API so that external
applications can make use of EDS.

More details can be found in the previous [D5.1].

4.2.4 Component Architecture

Although, the component architecture, the API and sequence diagrams have not
changed since [D5.1], efforts have gone into making sure that EDS is suitable for using
the vertical demonstrator use cases. Apart from the already mentioned features in
[D5.1], improvement was made such that it was possible to modify the behaviour of the
emulated device during run time. This feature was used in the validation experiments of
WP7.

The improvements made can be accessed using the following request on the Device
Emulator (DE).

Method URL Description

POST /onem2m/{DE name}/request Post a request to DE

 D5.2 ElasTest Test Support Services v2

24

The JSON object in the POST request can contain a “modify” field containing the
following sub-fields used to change the configuration of the DE during run time:

Sub-field Type Value Action

onoff String ON Switch on the DE, either sensor or
actuator.

onoff String OFF Switch off the DE, either sensor or
actuator.

period Integer Increase or decrease the data
generation period of the sensor.

delay Integer Increase or decrease the
actuation delay of the actuator.

min Integer Minimum value of uniform
distribution using which sensor
samples a data point.

max Integer Maximum value of uniform
distribution using which sensor
samples a data point.

4.2.5 Implementation Details

● The main repository of EDS is available on GitHub23.

● The API documentation is available here24.

● Other than the reporting of testing from WP6 in D6.3, further code coverage can
be viewed at codecov25.

4.2.6 Contributions

The EDS provides an extendable framework for the purpose of device emulation.
Together with ElasTest, EDS brings together testing IIoT applications with CI. EDS is
developed around OpenMTC which is also a FIWARE enabler. Specific contributions
include:

1. Identification of basic devices used to compose an IIoT application. This enables
user construct complex applications using basic devices as building blocks.

2. Implementation of a generic device emulator, able to inherit a device model and
furthermore use the device model to emulate a specific device.

23 https://github.com/elastest/elastest-device-emulator-service
24 http://elastest.io/docs/api/eds/
25 https://codecov.io/gh/elastest/elastest-device-emulator-service

 D5.2 ElasTest Test Support Services v2

25

3. The user can now register an application with the framework and request
specific devices and wire them together in any fashion. The oneM2M gateway in
EDS enables this functionality, where a user can publish or subscribe to oneM2M
container. Such a container can act as placeholders for either sensor data or
actuator signals or act as a data compartment for isolating application activities.

4. Ability to change the behaviour of a specific device during run time, such that it
affects a required aspect of the application.

5. Not restricted to the given set of devices, a user can easily extend the device
emulators to further emulate other devices. The device emulators can also be
extended as function emulators, which can emulate a functionality of an IIoT
application.

4.2.7 Progress Beyond the State of the Art

The component progresses the state of the art in the following ways:

• Provides a component as a service for device impersonation compliant with the
oneM2M standard, focusing on the industrial environment.

• Not only does the component act as a standalone service, but when paired with
other components and facilities offered by ElasTest, it is possible to achieve
higher testing efficiency, specifically for testing IIoT/IoT applications.

These progresses are validated by the State of the Art report, as presented in section
4.16 "Device impersonation" of D2.4: SotA Revision v2. The EDS component can be
easily integrated into existing oneM2M compliant domains so that the penetration
effort for using ElasTest for the purpose of testing, is reduced.

 D5.2 ElasTest Test Support Services v2

26

4.3 ElasTest Monitoring Service

4.3.1 Introduction

The ElasTest Monitoring Service (EMS) eases the development of T-Jobs by correlating
events received from the SuT, and optionally from the T-Jobs and other services. Tests
are simpler and more reusable because the EMS is programmable using a domain-
specific language (DSL) specifically tailored for testing. In a nutshell, the EMS receives
“events” from the SuT that are correlated, and trigger responses to the T-Job (depending
on the condition described by the T-Jobs in the subscription to the EMS). Both input and
output events can contain rich information.

The Monitoring Machines (MoM) and the Stampers are the core elements of the EMS.
They provide the DSL that simplifies the description of whether a test passes or fails.

The Stampers remain the same as in the previous version of this deliverable.

The expressivity of the MoMs language has been augmented to describe new properties
based on the feedback of industrial partners.

4.3.2 Features

In the new version, we have included the following features:

• Support for "nested" structured input events encoded as JSON. Before, the
payload of a message was a flat string, that was opaque to the EMS, and could
only be sent to the T-Job without further analysis. Consequently, only meta-data
in the event was available for the analysis. Now, the DSL allows to interpret a
string field (e.g. the payload) in a JSON object (the input event), allowing to
directly decode the string to a JSON object itself, provided that it has the correct
structure of a serialized JSON.
Consider for example the following event, in JSON notation:

{"timestamp":"2019-11-06T15:47:32Z","message":"{"value": 5}"}

We can use the new getJSON feature of the EMS to unmarshal the value of the
field "message" and access its numeric field "value" in the following way:

stream num cpuload := e.getJSON(message).getnum(value)

This has proven very useful in simplifying tests for the IoT vertical.

• Support for the emission of structured output as JSON. Before, the payload of
the output events could only be a value from the set of datatypes supported by
the EMS. Now, the language permits to define templates of output events that
get filled dynamically with the values computed as observations by the EMS. In
this manner, the T-Job can receive rich and structured information and not only
pass/fail. This greatly simplifies the reporting and investigation of the causes of
a test failure. This feature was also requested by the IoT vertical. For example,

 D5.2 ElasTest Test Support Services v2

27

we can define a template for a trigger directive that includes (a) the value of the
numeric stream cpuload in a field with the same name and (b) the id of the CPU
in a string field, over a channel #cpuload whenever the boolean stream or
predicate highload becomes true using the following line:

trigger highload do emit `{“cpuload”: “%cpuload”, “cpuname”: “%name”}` on #cpuload

• The Monitoring Machines can interpret a timestamp in a string field as a

numeric value, which allows to calculate durations and delays. This can be used
to define tests in terms of the absence or presence of events within an interval
of time. Take for example the following two events:

{"timestamp":"2019-11-06T15:47:32Z","message":"{"value": 35 }"}

We can get the timestamp of this event as the seconds elapsed since the Unix
epoch using:

stream num epoch := e.getnum(timestamp)

• The Monitoring Machine language now allows accessing the value of streams at
previous instants. This feature allows to perform a computation between
successive values of the same stream. In particular, in combination with the
support for timestamps, this feature allows to compute the delay between two
successive events. Following the previous example, we can define a stream to
calculate the delay between every two successive events:

stream num epochdiff = epoch - last epoch

• An important new feature is parameterization. The new Monitoring Machines
language allows defining many streams at once using a vector notation, which
makes it easier to scale tests to many components, by reducing duplications of
stream definitions. For example, if the input events contain a field with the CPU
id like this:

{“cpuid”: 2, “cpuload”: 85}

we can get the load of every CPU in a different stream using the following line:

stream num cpuload [i:0..7] := if e.getnum(cpuid) = i
 then e.getnum(cpuload)

With this feature the IoT vertical can uniformly define tests that check many
different sensors at once, without redefining the test.

• Else values. The EMS language now supports assigning a value to a stream when
a condition is not met, via a newly added If-then-else operator. For example,
we can now define a default value for a stream if it is missing a field:

 D5.2 ElasTest Test Support Services v2

28

stream num cpuload := if e.path(cpuload)

then e.getnum(cpuload)

else 0

Before, the else value could not be assigned a value and the stream would be
undefined.

• The event subscribers can connect to a websocket server at port 8181 in the EMS
to receive events sent to the #websocket channel. This simplifies the
development of T-Jobs as the websocket interface is simpler than the other
interfaces previously offered (RabbitMQ and Logstash).

The EMS can now be used to perform offline monitoring, which allows to rerun a test
over the dump of an ElasTest T-Job execution. This can be used to re-evaluate a passed
test or to evaluate a new test on a finished execution, as long as the action performed
upon the SuT are compatible between the executed test and the new test. This
compatibility can also be easily monitored offline. For example, a test that exercises a
web service can be used to check the property that every request is answered timely,
even though the original test was not about checking response times. With the offline
testing feature, the new test will check that every request was responded timely using
the dumped trace, without the need of rerunning the System Under Test. This feature
has the potential to define few executions and check them post-mortem simplifying test
suites and reducing costs.

4.3.3 Baseline Concepts and Technologies

The concepts and technologies are the same as in [D5.1]:

• The EMS defines a REST API to describe the methods in the configuration
endpoint. The backend that serves the API was developed using Go-swagger26.

• The EMS uses Logstash27 as the input layer to receive events from different
sources, and also as the output layer to deliver events to different subscribers.

• The part of the engine that performs the computation according to the definition
of the Monitoring Machines and the Stampers was written in Go.

• We use Pigeon28 to generate the parser for the MoMs and the Stampers.
• For interprocess communication, we use Protocol Buffers29.

26 https://github.com/go-swagger/go-swagger
27 https://www.elastic.co/products/logstash
28 https://github.com/mna/pigeon
29 https://developers.google.com/protocol-buffers

 D5.2 ElasTest Test Support Services v2

29

4.3.4 Component Architecture

The design and architecture have remained the same as reported in [D5.1], even
though the functionality of the subcomponents is more sophisticated.

Figure 5 EMS Architecture

The EMS can be configured by the Stampers/MoMs deployers via the Monitoring
Machines and Stampers Manager to correlate events that are sent by the Event
Publishers. The input events are handled by an Events Broker in the Monitoring Service
and sent to the engine. The Pre-Stamper in the engine will assign a channel to every
input event, and the deployed Monitoring Machines will compute and possibly generate
output events. These newly created output events are passed through the Post-
Stamper, then routed to the Events Dispatcher and finally output to the registered Event
subscribers. The state of the EMS can be flushed at any time to the initial state by an
external Flusher exercising the Flush performer.

A more detailed explanation of every architectural component and their interactions
can be found in [D5.1].

Use Case Diagrams
The use cases of the Monitoring Service remain unchanged: the external components
can publish events, manage the Monitoring Machines and the Stampers, subscribe to
receive events, or reset the service to its initial state.

 D5.2 ElasTest Test Support Services v2

30

Figure 6 EMS Use Cases

More in-depth explanation of the use cases, along with their sequence diagrams can be
found in [D5.1].

Apart from the endpoints for event publication listed in [D5.1], the EMS now offers a
websocket endpoint for event subscription at port 3232.

4.3.5 Implementation Details

● The main repository of the EMS is here30.

● The API of the EMS is available here31.

● Other than the reporting of testing from WP6 in D6.3, further code coverage can
be viewed at codecov32.

4.3.6 Contributions

In a nutshell, the main contributions of the Monitoring Service are:

30 https://github.com/elastest/elastest-monitoring-service/
31 http://elastest.io/docs/api/ems/
32 https://codecov.io/gh/elastest/elastest-monitoring-service

 D5.2 ElasTest Test Support Services v2

31

• Striver, a language for defining and monitoring properties over timed event
streams online33.

• dLola, a framework to monitor properties online in a distributed manner34.

• i2kit, an orchestration tool that creates virtual machines using Linuxkit, reducing
their footprint and keeping the advantages of this method35.

• “Tests orchestrator” is a tool to define a TiL based on the composition of several
ElasTest T-Jobs. This is still a work in progress and not specifically a KPI of the
EMS itself. The EMS was identified as a component that could boost the potential
of test orchestrations to support data transfer between related tests.

• A framework to analyse the dumped traces of an execution offline.

The influence of each contribution in the Monitoring Service is explained in the following
section.

4.3.7 Progress Beyond the State of the Art

The EMS component consists of a very efficient monitoring service that is at the same
time descriptive for easing the description of tests. Particularly, this component goes
beyond the state of the art in:

• The design of novel algorithms from runtime verification which guarantees
theoretical resource bounds, implemented in the core evaluation engine.

• The design of a DSL, called monitoring machines, that offers the test designer
the possibility to simplify the description of tests.

• An offline prototype of the monitoring service that allows to evaluate queries
offline, enabling the check of tests from the dumps of already executed tests.

• The implementation using development technologies that are very efficient in
the use of resources, including memory, like the Go programming language.

• The design and correct implementation of a decentralized evaluation algorithms
for the core language.

During the development of the project, it was identified that the resources required by
the platform were sometimes prohibitive, which was a risk of the adoption of the
technology. Even though the main direction followed by the project was to port the
platform to Kubernetes, which allows elasticity and scalability, we also designed in this
component an alternative solution that goes beyond the state of the art:

33
https://www.researchgate.net/publication/328797226_Striver_Stream_Runtime_Verification_for_Real-
Time_Event-Streams_18th_International_Conference_RV_2018_Limassol_Cyprus_November_10-
13_2018_Proceedings
34 https://www.researchgate.net/publication/336247644_Decentralized_Stream_Runtime_Verification
35
https://www.researchgate.net/publication/323471324_i2kit_A_Tool_for_Immutable_Infrastructure_De
ployments_based_on_Lightweight_Virtual_Machines_specialized_to_run_Containers

 D5.2 ElasTest Test Support Services v2

32

i2kit: a tool that allows to convert docker Pods into VMs, which immediately enables
scalable platforms by elasticity.

 D5.2 ElasTest Test Support Services v2

33

4.4 ElasTest Big Data Service

4.4.1 Introduction

The ElasTest Big-Data Service (EBS) is a Test Support Service that provides an on-demand
computing engine based on Apache Spark36 to be utilized by tests inside ElasTest. The
purpose of EBS is to allow tests (T-Jobs) or other components to define their
computation requirements using Spark API and use it to perform complex distributed
calculations on top of the Spark engine.

4.4.2 Features

There were no new features added in EBS, but in the service was updated in order to
deploy it on Kubernetes. The objectives of auto-scaling and Spark optimization are
addressed by the new version using Kubernetes tools and techniques Updates are
required, however, to allow for complete communication with the Spark cluster.

4.4.3 Baseline Concepts and Technologies

The main purpose of EBS is to provide a scalable and disposable parallelised computing
engine to any tests or other components that require it. This computing engine is based
on Apache Spark, which is the most widely adopted distributed processing engine
currently available. Spark does not only provide a very fast compute engine, but it can
also integrate with a wide variety of data sources, allowing for easier future extensions.

The current version of EBS was designed and provided as a computing engine separate
from all data persistence services. This approach allows spark clusters to be
commissioned and decommissioned on demand, but there is not data-locality
awareness on Spark jobs since all data are stored outside EBS docker. However,
deployment on Kubernetes splits the EBS in several independent services and establish
communication protocols and policies for providing a valid service to the EBS user, who
uses an expandable Spark cluster and stores data on HDFS.

4.4.4 Component Architecture

The architecture of the EBS has not changed since D5.1. The current architecture is
shown in the below image (Figure 7).

36 https://spark.apache.org

 D5.2 ElasTest Test Support Services v2

34

Figure 7 EBS FMC Diagram

For further details on this, please see [D5.1].

4.4.5 Implementation Details

● The EBS code repository can be found on GitHub37 and is licensed using Apache
2.0.

● Within that repository, there is documentation38 detailing how to run, use and
extend the EBS.

● The API of the EBS can be viewed online here39.

● Other than the reporting of testing from WP6 in D6.3, further code coverage can
be viewed at codecov40.

37 https://github.com/elastest/elastest-bigdata-service
38 https://github.com/elastest/elastest-bigdata-service/tree/master/docs
39 https://elastest.io/docs/api/ebs/
40 https://codecov.io/gh/elastest/elastest-bigdata-service

 D5.2 ElasTest Test Support Services v2

35

4.4.6 Contributions

Since EBS is mostly implementation work, its research is targeted in exploiting
containerized scalable computing architectures for commercial purposes.

More specifically, demand for deploying applications in external customer data centres
introduces increased complexity in describing distributed application prerequisites to
infrastructure teams. This complexity is extended by the huge diversity of infrastructure
architectures due to the multitude of options in that sector (i.e. public/private clouds,
bare metal systems, distributed operating systems and container orchestration systems)
are all options that may be used alone or in different combinations in order to create
the best approach for each case.

In this ecosystem, having a scalable distributed computing engine in the form of a single
component, able to be deployed in the majority – if not all – of the aforementioned
solutions, without maintaining different configurations, is a huge key to success for
software vendors and integrators. It is therefore our main target to bullet-proof, extend
and productize the usage of EBS as a reusable, portable and scalable computing engine
as a standalone system or a software component of a larger solution. Deploying on
Kubernetes and a new API for Spark are steps towards easier encapsulation inside an
existing complex infrastructure.

4.4.7 Progress Beyond the State of the Art

There were not any plans for developing beyond the state of the art for EBS.

 D5.2 ElasTest Test Support Services v2

36

4.5 ElasTest Security Service

4.5.1 Introduction

The ElasTest Security Service (ESS) enables testing the security of cloud-based web
applications. ESS can be leveraged to detect common web application weaknesses and
sophisticated privacy attacks.

4.5.2 Features

In the first half of the project we implemented support for testing 40 common web
application weaknesses (detailed in [D5.1]).

In the second half of the project we have developed support for the automatic detection
of Cross-Origin State Inference (COSI) attacks, a class of browser side-channel privacy
leaks41 that enable inferring the state of a user at a target site. Such leaks can be used
to launch different attacks against a user logged into a remote target website (e.g.,
Amazon, LinkedIn) such as login detection, user deanonymization, account type
detection, and access detection. Automatic detection of COSI attacks is a novel feature
of ESS, not available in prior web testing tools.

In addition to COSI detection, the final ESS release has also integrated support for
TestLink42, which complements the support for tests written programmatically using
TJobs that was implemented in the first half of the project.

4.5.3 Baseline Concepts and Technologies

What are COSI attacks? COSI stands for Cross-Origin State Inference. In a COSI attack,
the attacker convinces the user to visit a malicious web page, e.g., by sending the victim
an email with the malicious URL. The malicious web page infers the state of the visiting
victim user at a target web site (e.g., Amazon, LinkedIn). COSI attacks can have serious
consequences such as user deanonymization, login detection, account detection, and
access detection. For example, the attacker can infer that the victim is logged into the
target site (and thus owns an account at the site), which is dangerous for privacy-
sensitive sites. The attacker may also be able to deanonymize the user, e.g., determining
that the victim is the author of a blog that criticizes the board of directors of a company.

COSI attacks are a type of browser side-channel attacks, where a malicious web page
leverages cross-origin interaction features available in web browsers as side-channels to
infer sensitive information about the state of a user in a target site. Since the target site
has a different origin, COSI attacks allow violating the same-origin policy implemented
by the browser43.

How does the COSI attack detection work? As input to the COSI attack detection
functionality, the tester provides a TJob that contains different state scripts. A state
scripts automatically logs into the target site using a configurable browser and the

41 https://github.com/xsleaks/xsleaks
42 http://testlink.org
43 https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy

 D5.2 ElasTest Test Support Services v2

37

credentials of an account with a specific configuration. For example, we may create
multiple user accounts with different configurations, e.g., premium and free accounts,
two users that own different blogs, or authors that have submitted different papers to
a conference management system. During the state script execution, the ESS identifies
the state-dependent URLs (SD-URLs) associated to the SuT. SD-URLs are those SuT URLs
that respond differently depending on the state of the requester. Once the SD-URLs
have been identified, they are matched with an attack class database to identify
whether any COSI attacks are possible. The identified attacks are combined to create
attack pages and they are reported to the tester. The tester can verify the attacks using
the generated attack pages.

4.5.4 Component Architecture

The following figure (Figure 8) details the architecture of the COSI attack detection

functionality implemented by the ESS.

Figure 8 ESS Architecture Update

4.5.5 Implementation Details

● The link to the ESS code is repository is here44.

● The API documentation is available here45.

● Other than the reporting of testing from WP6 in D6.3, further code coverage can
be viewed at codecov46.

4.5.6 Contributions

The following are the main contributions achieved during the development of the ESS.
These contributions are detailed in our paper [ESS1] and as accepted at NDSS19 [ESS2]:

• We developed a novel approach to identify and build complex COSI attacks that
differentiate more than two states and support multiple browsers.

44 https://github.com/elastest/elastest-security-service
45 https://elastest.io/docs/api/ess/
46 https://codecov.io/gh/elastest/elastest-security-service

 D5.2 ElasTest Test Support Services v2

38

• We discovered a novel browser side-channel based on the
window.postMessage feature that affects the three major browsers (Chrome,
Firefox, Edge) and can be leveraged to attack popular web sites.

• We performed the first systematic study of COSI attacks, identifying 40 attack
classes, of which 19 generalize prior attacks and 21 are new variations.

• We applied the COSI attack detection functionality to 62 targets, including four
stand-alone web applications (GitLab47, GitHub48, HotCRP49, OpenCart50) and 58
popular web sites from the Alexa top 500. We found COSI attacks against all of
them: account deanonymization attacks in 36, account type detection attacks in
5, SSO status attacks in 12, and access detection attacks in 5. The detected
attacks include, among others, deanonymization attacks for determining if the
victim is:

• the reviewer of a paper in the HotCRP conference management system,
• the owner of a blog in blogger.com,
• the owner a GitLab/GitHub repository.
• We have responsibly disclosed the identified attacks to the affected vendors.

Many of them have already fixed the issues (e.g., linkedin.com, amazon.com, and
HotCRP) or plan to fix them soon (e.g., Google).

4.5.7 Progress Beyond the State of the Art

As part of the research we did for the privacy checking functionality, we make the
following advancements with respect to the state of the art.

• We have presented COSI attacks as a comprehensive category that covers attacks
previously considered separate under different names such as login detection
attacks, login oracle attacks, cross-site search attacks, URL status identification
attacks, and cross-site frame leakage attacks.

• We have developed a novel approach to identify and build complex COSI attacks that
differentiate more than two states and support multiple browsers.

• We have implemented the first automated tool for detecting COSI attacks. Previous
web testing tools do not provide this functionality.

47 https://about.gitlab.com/
48 https://github.com/
49 https://github.com/kohler/hotcrp
50 https://www.opencart.com/

 D5.2 ElasTest Test Support Services v2

39

5 Conclusions
The work of WP5 has resulted in an integrated platform including the five Test Support
Services that adhere to a common design, implementation and deployment approach.
Along with this, research activities have taken place and have been published.
Specifically, for each TSS we conclude:

● EUS: it enables the impersonation of end-users in tests through GUI
instrumentation. During the second half of the project, this service has evolved
into a fully capable QoE manager, by providing several algorithms that enable
end users to assess real-time communication applications in an effortless way.
The research carried out in the EUS has led to the publication of two papers on
QoE [EUS1, EUS2], and a third one including audio and video assessment is being
written at the moment of the submission of this deliverable.

● EDS: it enables impersonating/emulating behaviour of sensors and actuators

towards building IIoT applications. EDS uses OpenMTC, a reference
implementation of M2M communication standard oneM2M. The service can be
integrated into existing IIoT application infrastructure with minimal effort.
Combined with the facilities offered by ElasTest, a tester can leverage EDS for
not only rapid prototyping of IIoT applications, but also can construct test cases
and execute such tests to check the correct operation of the application. In
addition, it is possible to change the behaviour of the emulated device at
runtime, which opens the possibility for testing robustness. The ultimate goal of
providing EDS is to help the tester realize large and complex IIoT applications and
test them with relative ease. The advantages are the following:

1. Rapid prototyping: To realize a full scale IIoT application, the

corresponding device modules are first procured and then
interconnected. This process is time consuming and expensive, in
addition, there is no guarantee that at the end the application is worth
the investment. Using device impersonation, it is possible to
economically assess the feasibility.

2. Ease of testing with ElasTest: With device impersonation, rapid
prototyping brings testing processes which also can vary in size and
complexity depending on the scale of testing. EDS with ElasTest, is able
to address the issue of simplifying testing activity for IIoT applications

To conclude, EDS was able to provide the facilities required for IIoT applications
for rapid prototyping and simplifying testing processes. It has been primarily
used in the IIoT vertical demonstrator of WP7.

● EMS: it eases the development of TJobs by correlating events received from the

SuT, and optionally from the TJobs and other services. In the second half of the
project, we have extended it with features to facilitate the development of tests,

 D5.2 ElasTest Test Support Services v2

40

inspired by verticals, particularly by the IoT verticals. Most of the functionality
could be provided by the core engine of the EMS without deep changes. This
engine of the service is a novel real-time stream runtime verification engine,
known as Striver and published in the main conference on runtime verification -
which is a very powerful illustration of how a good theory can be very practical.
The main new developments for the user have been with respect to the DSL
language provided, known here as monitoring machines, which essentially is pre-
processed and evaluated by the core engine. The main additions were the
facilities incorporated for structured input and output events (as JSONs), the
ability to encode and reason about time and time passage, and parameterized
streams specifications. These have been empirically proven to be very valuable
to simplify the development and reuse of tests. One final aspect was the offline
mode of the EMS that allows to check test specifications against dumps of traces,
as long as the actions upon the SuT are compatible (between the actual test run
previously and the new test), which can also be monitored. Finally, one of the
most interesting lessons is that the EMS enables new possibilities beyond the
goals of the project, for example to increase the expressivity of test
orchestrations allowing data communication between different but related tests
within a test suite. This is collaborative work between IMDEA, URJC and CNR that
will continue beyond the end of the project.

● EBS: provides an ElasTest user a Spark-based computation engine for handling

big data sets, performing calculations and manipulating data. The results can be
stored in Hadoop Filesystem (HDFS) within ElasTest. The service can be used for
parsing and analysing logs, statistical analysis of any kind of measurement and
for manipulating any result set no matter how big it is. A REST API for interacting
with EBS is also provided to simplify access on the service, send commands and
receive the results. EBS is designed as a self-contained service and can be
deployed independently and add the power of Spark engine in any environment.
The deployment on Kubernetes will make EBS service more flexible and scalable
either within ElasTest or as an independent service.

● ESS: it enables the security testing of cloud-based Web applications. The main

benefit of using ESS over other web security testing tools is that it is the first tool
to enable automatic detection of Cross-Origin State Inference (COSI) attacks. In
addition, it supports the detection of 40 common Web application security
weaknesses51. As part of the research we did for ESS, we advanced the state-of-
the art by presenting COSI attacks as a comprehensive category, introducing a
novel approach to identify and build complex COSI attacks, and discovering a
novel browser leak based on window.postMessage that affects Chrome,
Firefox, and Edge. To measure the effectiveness of the COSI attack detection we
tested four stand-alone web applications and 58 popular web sites, finding
previously unknown COSI attacks against each of them. We responsibly disclosed

51 https://www.owasp.org/images/b/b0/OWASP_Top_10_2017_RC2_ Final.pdf

 D5.2 ElasTest Test Support Services v2

41

the identified attacks to the affected vendors and many of the vulnerabilities
have already been patched.

 D5.2 ElasTest Test Support Services v2

42

6 Appendix

6.1 References

[D5.1] D5.1 ElasTest Test Support Services v1 (06/30/18). Last accessed 18.11.2019.
https://elastest.eu/resources/deliverables/D5.1_ElasTest_Test_Support_Services_v1_
FINAL.pdf

[TSS1] J. Gilbert, Cloud Native Development Patterns and Best Practices. Packt
Publishers, 2018.

[TSS2] DIVA: Docker image vulnerability analysis, appearing in: Rui Shu, Xiaohui Gu,
William Enck: A Study of Security Vulnerabilities on Docker Hub. CODASPY 2017: 269-
280, https://doi.org/10.1145/3029806.3029832

[TSS3] Clair: Vulnerability Static Analysis for Containers. Last updated 2019-11-12.
https://github.com/quay/clair

[TSS4] Hadolint: Dockerfile linter, validate inline bash, written in Haskell. Last updated
2019-11-07. https://github.com/hadolint/hadolint

[EUS1] García, B., Gallego, M., Gortázar, F. et al. Computing (2019). Understanding and
estimating quality of experience in WebRTC applications. Journal of Computing, 101:
1585. https://doi.org/10.1007/s00607-018-0669-7

[EUS2] Boni García, Luis López-Fernández, Francisco Gortázar, & Micael Gallego.
(2019). Practical Evaluation of VMAF Perceptual Video Quality for WebRTC
Applications. Journal of Electronics. http://doi.org/10.3390/electronics8080854

[ESS1] A. Sudhodanan, S. Khodayari and J. Caballero, “Cross-Origin State Inference
(COSI) Attacks: Leaking Web Site States through XS-Leaks,” arXiv, 2019.

[ESS2] Avinash Sudhodanan, Soheil Khodayari and Juan Caballero, “Cross-Origin State
Inference (COSI) Attacks: Leaking Web Site States through XS-Leaks,” Network and
Distributed System Security Symposium (NDSS), 2020.

