

 D6.3
Version 2.0

Author NAEVATEC

Dissemination PU

Date 31-12-2019

Status FINAL

D6.3: ElasTest Continuous Integration and

Validation System v2

Project acronym ELASTEST

Project title ElasTest: an elastic platform for testing complex distributed

large software systems

Project duration 01-01-2017 to 31-12-2019

Project type H2020-ICT-2016-1. Software Technologies

Project reference 731535

Project website http://elastest.eu/

Work package WP6

WP leader Guiomar Tuñón de Hita

Deliverable nature PUBLIC

Lead editor Guiomar Tuñón de Hita

Planned delivery date 31-12-2019

Actual delivery date 31-12-2019

Keywords Open source software, cloud computing, continuous

integration, continuous validation,

Funded by the European Union

http://elastest.eu/

D6.3: ElasTest Continuous Integration and Validation System v2

2

License

This is a public deliverable that is provided to the community under a Creative Commons

Attribution-ShareAlike 4.0 International License:

http://creativecommons.org/licenses/by-sa/4.0/

You are free to:

Share — copy and redistribute the material in any medium or format.

Adapt — remix, transform, and build upon the material for any purpose, even

commercially.

The licensor cannot revoke these freedoms as long as you follow the license

terms.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and

indicate if changes were made. You may do so in any reasonable manner, but not

in any way that suggests the licensor endorses you or your use.

ShareAlike — If you remix, transform, or build upon the material, you must

distribute your contributions under the same license as the original.

No additional restrictions — You may not apply legal terms or technological

measures that legally restrict others from doing anything the license permits.

Notices:

You do not have to comply with the license for elements of the material in the

public domain or where your use is permitted by an applicable exception or

limitation.

No warranties are given. The license may not give you all of the permissions

necessary for your intended use. For example, other rights such as publicity,

privacy, or moral rights may limit how you use the material.

For a full description of the license legal terms, please refer to:

http://creativecommons.org/licenses/by-sa/4.0/legalcode

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/legalcode

D6.3: ElasTest Continuous Integration and Validation System v2

3

Contributors

Name Affiliation

Guiomar Tuñón NAEVATEC

Eduardo de la Iglesia NAEVATEC

Francisco Ramón Díaz URJC

Magda Kacmajor IBM

Piyush Harsh ZHAW

Felipe Gorostiaga IMDEA

Luis Miguel Danielsson IMDEA

Varun Gowtham TUB

Orlando Ávila ATOS

Kimon Moschandreou

REL

Francisco Gorostiaga URJC

Micael Gallego URJC

Version history

Version Date Author(s) Description of changes

DRAFT00 17/09/2019 Guiomar Tuñón Revision of the document’s FINAL_V1

DRAFT01 25/11/2019 Guiomar Tuñón Added Info from requirements

traceability spreadsheet

DRAFT02 28/11/2019 Guiomar Tuñón,

Magda Kacmajor,

Andy Edmonds,

Luis Miguel

Danielsson

E2E tests review from partners.

DRAFT03 04/12/2019 Eduardo de la

Iglesia

Added Kubernetes sections

DRAFT04 04/12/2019 Guiomar Tuñón Added missing end-to-end tests

D6.3: ElasTest Continuous Integration and Validation System v2

4

Table of contents

1 Executive summary ... 8

2 Strategic context and objectives .. 9

3 CI environment ... 10

3.1 Self-hosted Services ... 10

3.1.1 ElasTest Stable Instance. .. 10

3.1.2 ElasTest Nightly K8s Cluster. .. 10

3.2 Tools. .. 11

3.2.1 Tool chain (M3 – M36). .. 11
 ElasTest .. 12
 ElasticSearch [9] ... 13
 Kibana [10] ... 13

3.2.2 Add-ons and auxiliary tools (M3 – M36). ... 14
 Flannel [15] .. 14
 Fluentd [16].. 15

3.3 Security and User Access .. 15

3.4 Maintenance .. 15

4 Methodology and Procedures ... 17

4.1 Jenkins Jobs Naming ... 17

4.2 Testing .. 17

4.2.1 Unitary and integration (component) .. 17

4.2.2 End-to-end tests. .. 17
 End-to-end tests traceability ... 18
 API End-to-end tests per component. ... 20
 Integrated GUI end-to-end tests .. 41
 End-to-end tests global overview .. 59

5 Resume & conclusion. ... 60

6 References .. 60

ANNEXES .. 62

A1. Maintenance Window Procedure Template (updated) 62

A1.1. General Information ... 62

Affected tools / SW ... 62

Template to be filled on each Maintenance Window one row per tool.................................. 62

Motivation... 62

Risks .. 62

Contact information. ... 62

Upgrade Plan .. 62

A1.2. Procedure ... 63

A1.2.1. Notification .. 63

A1.2.2. System shutdown... 63
A1.2.2.a Main Instance. .. 63
A1.2.2.b Slaves. ... 63
A1.2.2.c ElasTest K8s Nightly. ... 63

A1.2.3. Back Up .. 64
A1.2.3.a Main Instance. .. 64

D6.3: ElasTest Continuous Integration and Validation System v2

5

A1.2.3.b Slaves. ... 64
A1.2.3.c ElasTest K8s Nightly. ... 64

A1.2.4. Upgrade ... 66
A1.2.4.a Main Instance. .. 66
A1.2.4.b Slaves. ... 67
A1.2.4.c ElasTest K8s Nightly Master. ... 68
A1.2.4.d ElasTest K8s Nightly Node(s). ... 71

A1.2.5. Test and Confirmation ... 73

A1.2.6. Roll Back .. 74
A1.2.6.a Main Instance. .. 74
A1.2.6.b Slaves. ... 74
A1.2.6.c ElasTest K8s Nightly Master: ... 74
A1.2.6.d ElasTest K8s Nightly Node(s): ... 74

A1.2.7. Open System and Result Notification. ... 74

A1.3. Results .. 75

A1.3.1. Table of results .. 75

A1.3.2. Actions to be executed after upgrade ... 75
A1.3.2.a Main Instance ... 75
A1.3.2.b Slaves .. 75
A1.3.2.c ElasTest Nightly ... 75

A1.4. Logs .. 75

A1.5. Issues .. 76

D6.3: ElasTest Continuous Integration and Validation System v2

6

List of Figures

Figure 1. Status of tested requirements ... 19

Figure 2. AWS disable inbound rules .. 64

Figure 3. AWS EC2. Create Image ... 65

Figure 4. AWS EC2. Configuration of the Image ... 65

Figure 5. AWS EC2. Available Image ... 65

Figure 6. AWS enable inbound rules .. 75

List of Tables

Table 1. CI environment main tools. .. 12

Table 2. CI environment auxiliary tools and add-ons. .. 14

Table 3. Maintenance schedule. ... 17

D6.3: ElasTest Continuous Integration and Validation System v2

7

Glossary of acronyms

Abbreviation Full definition

APIs Application programming interfaces

AMI Amazon Machine Images

AWS Amazon Web Services

CI Continuous Integration

CV Continuous Validation

E2E End-to-end

ECR Elastic Container Registry

GUI Graphical User Interface

OS Operating System

SW Software

UI User Interface

QoE Quality of Experience

SuT Software under Test

SiL Systems in the Large

TiL Test in the Large

TSS Test support service

TORM Test Orchestration and Recommendation Manager

QoS Quality of Service

UAT User Acceptance Testing

IPR Intellectual Property Rights

D6.3: ElasTest Continuous Integration and Validation System v2

8

1 Executive summary

The present document describes the evolution in the design, architecture and

maintenance of the ElasTest Continuous Integration (CI) and Continuous Validation (CV)

System used in the project. This system has been designed and maintained in the

context of the Work Package 6 (WP6) “Continuous Integration & Validation”.

This document describes the evolution in the design, architecture and maintenance of

the ElasTest CI environment, completing the previous deliverable 6.1 ElasTest

Continuous Integration and Validation System:

- Description of the strategic objectives.

- Description of the environment design, architecture and evolution.

- Description of the available tools in the environment.

- Description of the executed maintenance.

- Description of the CI and CV methodology.

The present version of the document includes the work done during the 18 months of

work (July 2018– December 2019) and in some cases, it would refer to previous work

described in the 6.1 ElasTest Continuous Integration and Validation System and in

specific cases, it would include all the work done in the 33 months (March 2017 –

December 2019).

The initial environment devised for running CI/CV tasks for the project started with a

single instance that ran the main tools related to the software development process and

from the first release of the ElasTest platform it has grown having now four instances,

each one with a clear objective regarding the tasks that are meant to be executed over

them:

I. Main Instance. Holds the main tools related to the software development

process – CI server, repositories, credential generator, etc. –

II. ElasTest Nightly Instance. Hosts the latest developed version of ElasTest (not

necessarily stable). This instance main objective is to provide an ElasTest

platform where latest changes on the code could be tested.

III. ElasTest Stable Instance. Host the latest stable version of ElasTest. This instance

will be used to test the ElasTest Nightly Instance with ElasTest, as specified in the

DoA.

IV. ElasTest Nightly K8s Cluster. This “instance” is a Kubernetes’ cluster with two

nodes (one master, one slave with the objective of deploying a nightly version of

ElasTest so it can be tested nightly and compare executions between Nightly and

K8s Nightly in order to grant that both deployments are working, and ElasTest

platform and each component works as expected.

In order to have a complete and intensive test suite for the whole ElasTest platform all

the components have contributed with specific test suits for their components, these

tests have been continuously changing as the set of functionalities of the components

have expanded and mutated. In the deliverable these suites are described as they are at

the moment of writing, whereas these descriptions could be updated until the last

release of the platform.

D6.3: ElasTest Continuous Integration and Validation System v2

9

2 Strategic context and objectives

The ElasTest CI environment and methodology has been designed with the objective of

providing the project with a complete set of tools and procedures that must grant the

appropriate level of quality of each component and the right integration of all of them.

The CI methodology comprises all the tasks that assure:

• High quality of each of the components from development to release.

• High quality of integration between components.

• High quality of ElasTest as a whole.

• High quality of the CI methodology and CI environment.

The CI environment comprises all the tools that help to achieve and maintain the highest

levels of quality in all the steps of the development, testing and release.

The specific configuration of the consortium and the diverse licenses (public/Apache 2.2

and Proprietary) of the components are managed within the CI tasks and tools to grant

the appropriate access and dissemination of each component.

The following sections contain the details of the CI Environment [Section 3], the CI and

CV methodology [Section 4], and a resume of all the work done and the milestones

achieved [Section 5].

D6.3: ElasTest Continuous Integration and Validation System v2

10

3 CI environment

The CI environment is composed by a set of tools managed by Naeva Tec and available

to the consortium partners.

The CI environment has two kinds of applications/tools: self-hosted services and

provided services. Self-hosted services are those that have been deployed on our own

managed servers. Those are fully managed by Naeva Tec. This requires the CI

administrator (Naeva Tec) to manage security, access policy, system stability and

maintenance (corrective and upgrades). On the other hand, provided services are those

that hosted on the providers premises or clouds and serve the technologies and services

mainly through an accessible web URL.

During the second part of the project we have been updating the tools but no new tools

have been deployed, as the procedures were well defined and accepted by all the

components and the initial set of tools where enough.

3.1 Self-hosted Services

The self-hosted Services described in 6.1 ElasTest Continuous Integration and Validation

System have been maintained, and we have updated and stabilize the ElasTest Stable

instance and added an ElasTest K8s cluster.

3.1.1 ElasTest Stable Instance.

The ElasTest Stable instance contains the ElasTest platform running in single-node

mode. This instance is updated with each released version of ElasTest, manually. It can

be accessed by all the consortium through a static IP, and it is closed to the rest of the

world.

This instance can be used by partners to execute test against the nightly ElasTest

manually or through the Jenkins jobs (See 4.2.2. End-to-end tests.)

This instance was remade from 0 on month 20 in order to be launched in a newer and

bigger AWS instance.

3.1.2 ElasTest Nightly K8s Cluster.

The ElasTest Nightly K8s Cluster is our newest “instance” created with the sole objective

of validating the changes made to the components in order to be compatible with a

Kubernetes deployment.

This instance is redeployed nightly in order to assure that the latest changes are tested.

It consists of a single master Kubernetes cluster with a single node on it. It is deployed

on both twin servers in AWS with the same capacity that the ElasTest Stable instance. In

order to test multi-node distribution of pods on the same cluster, the master is

configured to also allow pods to be deployed on it.

The cluster was initially deployed installing Kubernetes manually, through kubeadm and

controlling the cluster via kubectl. As long as Kubernetes does not ships with a default

D6.3: ElasTest Continuous Integration and Validation System v2

11

network implementation, it just defines the model to other tools on how to implement

it, we have installed Flannel.

As add-ons to the Kubernetes cluster, we have deployed Fluentd as a data collector, to

get all cluster information ready to be exploited by ElasticSearch.

3.2 Tools.

In this section, we make a compendium of all the tools used in the project since the M3

but we will just define the ones added in this second part of the project. For the rest

please refer to 6.1 ElasTest Continuous Integration and Validation System.

3.2.1 Tool chain (M3 – M36).

Name Type License
Self-

hosted
Access Description

GitHub[1]

Source

code

repository

Proprietary No Public

GitHub is a Web-

based Git version

control repository hosting

service. It is mostly used

for computer code. It offers

all of the distributed version

control and source code

management (SCM)

functionality of Git as well as

adding its own features.

Jenkins[2] CI Server OSS (MIT) Yes

Consort

ium

only

Jenkins is a self-contained,

open source automation

server which can be used to

automate all sorts of tasks

such as building, testing, and

deploying software.

DockerHub[3

]

Docker

image

repository

Proprietary No Public

The Docker Hub Registry is

free to use for public

repositories. Plans with

private repositories are

available in different sizes.

All plans allow collaboration

with unlimited people.

OSSRH[4]

Maven and

Gradle

artifact

repository

OSS

(Eclipse)
No Public

Sonatype OSSRH (OSS

Repository Hosting)

uses Sonatype Nexus

Repository Manager to

provide repository hosting

service for open source

project binaries.

Nexus

Repository

Manager

OSS[5]

Maven and

Gradle

artifact

repository

OSS

(Eclipse)
Yes

Consort

ium

only

Nexus Repository OSS is a

universal repository

manager with support for all

http://links.sonatype.com/products/nexus/pro/home
http://links.sonatype.com/products/nexus/pro/home

D6.3: ElasTest Continuous Integration and Validation System v2

12

major package formats and

types.

Private User

Registry[6]

Custom

user access

manager

Proprietary Yes

Consort

ium

only

Private User Registry is a

service developed by Naeva

Tec to manage the access to

private Nexus Repository

and Amazon ECR, providing

access to only Consortium

members to the resources

published there.

ElasTest[7][7

]
--

OSS

(Apache)
Yes

Consort

ium

only

An elastic platform to ease

end to end testing.

Amazon

ECR[8]

Docker

image

repository

Proprietary No

Consort

ium

only

Amazon Elastic Container

Registry (ECR) is a fully-

managed Docker container

registry that makes it easy

for developers to store,

manage, and deploy Docker

container images.

ElasticSearch

[9]

Search and

Analytics

engine

OSS

(Elastic)
Yes Internal

ElasticSearch is a distributed,

RESTful search and analytics

engine capable of addressing

a growing number of use

cases. As the heart of the

Elastic Stack, it centrally

stores your data so you can

discover the expected and

uncover the unexpected.

Kibana [10]
Web

Console

OSS

(Elastic)
Yes

Consort

ium

only

Kibana lets you visualize

your ElasticSearch data and

navigate the Elastic Stack so

you can do anything from

tracking query load to

understanding the way

requests flow through your

apps

Table 1. CI environment main tools.

 ElasTest

ElasTest is the tool developed within this project context, and it is used in two contexts

on the CI / CV System:

• As object of the tests, the platform that should be tested before it can be

released.

• As part of the tools for testing the SW, the platform that is used for testing.

https://aws.amazon.com/docker/

D6.3: ElasTest Continuous Integration and Validation System v2

13

We use this tool in two different contexts we have deployed the ElasTest platform twice,

and we have aliased them as Nightly and Stable.

3.2.1.1.1 Nightly

The Nightly context makes reference to the ElasTest instances (Nightly and Nightly K8s)

that are fun with the aim of providing the latest ElasTest version of every component so

end-to-end integrated tests can be run.

These ElasTest instances provide all partners a place to test their own components on a

production-like environment. Partners can access the ElasTest Nightly (or ElasTest

Nightly K8s) UI to do manual testing, check the look and feel, and of course run

automated tests with Jenkins jobs. And also automatized tests use these instances as

object of the tests as part of the CV procedure.

ElasTest Nightly and ElasTest Nightly K8s have been deployed on AWS following the

specification shared in the ElasTest Community [7] validating in this way the correctness

of the documentation.

3.2.1.1.2 ElasTest Stable

Since March 2018 we have also a stable version of ElasTest running that is being used

for testing the ‘ElasTest Nightlies’ with ElasTest. This ElasTest is mainly used by the

partners through the Jenkins plugin installed in our CI Server.

 ElasticSearch [9]

ElasticSearch by Elastic is an OpenSource distributed, RESTful search and analytics

engine. As the heart of the Elastic Stack, it centrally stores the data from all components

of ElasTest and also from the Kubernetes cluster.

ElasticSearch receives inputs from Fluentd and from every log of the cluster, making it

available to all Consortium partners so they can check what is happening in their

components without accessing to the containers where the components are running. It

also aggregates the log from the Kubernetes cluster itself allowing a central point for

checking the health of the system.

 Kibana [10]

Kibana by Elastic is an OpenSource web console that exposes the data collected by

Fluentd and aggregated and indexed by ElasticSearch.

Kibana allows the partners to check what is happening in their components in a visual

way. They can visualize all data and navigate through the ElasticSearch engine so they

can track the work of every element of ElasTest.

D6.3: ElasTest Continuous Integration and Validation System v2

14

3.2.2 Add-ons and auxiliary tools (M3 – M36).

Name Type License
Self-

hosted
Access Description

Codecov

[11]

Cobertura

reports

analyser

OSS

(Apache

2.2)

No Public

Codecov provides highly

integrated tools to group, merge,

archive and compare coverage

reports. Whether your team is

comparing changes in a pull

request or reviewing a single

commit, Codecov will improve

the code review workflow and

quality.

SonarClou

d [12]

Code

review

tool

OSS

(LGPL-

3.0)

No Public

Analyse the quality of your

source code to detect bugs,

vulnerabilities

and code smells throughout the

development process.

ElasTest

Jenkins

Library*

[13]

Jenkins

library for

manage

ElasTest

OSS

(Eclipse)
-- Public

Developed groovy library to be

used within Jenkins to help to

launch ElasTest and manage

ElasTest nodes. Developed in the

context of the ElasTest project.

ElasTest

Jenkins

Plugin

[14]

Jenkins

plugin to

communic

ate with

ElasTest

OSS

(Apache

2.2)

--- Public
Plugin to make use of a running

ElasTest within a Jenkins job.

Flannel

[15]

Kubernete

s network

implement

ation

OSS

(Apache

2)

--- Internal

Flannel is a virtual network that

gives a subnet to each host for

use with container runtimes.

Fluentd

[16]

Data

collector

OSS

(Apache

2)

--- Internal

Fluentd is an open source data

collector, which lets you unify

the data collection and

consumption for a better use

and understanding of data.

* Deprecated

Table 2. CI environment auxiliary tools and add-ons.

 Flannel [15]

Flannel by CoreOS is an OpenSource implementation of the Kubernetes network model.

It is used to communicate Kubernetes nodes and all contained infrastructure as services

and pods.

Kubernets does not ship with network implementation, just a model on how to

implement it. So to communicate all the elements, a compatible implementation must

be installed. We have chosen Flannel because it is one of the simplest implementation

available with all the necessary resources.

D6.3: ElasTest Continuous Integration and Validation System v2

15

Flannel is installed using its remote description file thought the kubectl tool:

$ sudo kubectl apply -f

https://raw.githubusercontent.com/coreos/flannel/master/Documentatio

n/kube-flannel.yml

This installs the Roles, DeamonSets and Services needed to implement the network

infrastructure.

 Fluentd [16]

Fluentd by Fluent is an OpenSource tool, which lets you unify the data collection and

consumption for better use and understanding of data.

Fluentd decouples data sources from backend systems by providing a unified logging

layer in between. So all data collected by Fluentd is injected as data output to

Elastisearch for log handling.

Fluentd is installed along with Elastisearch and Kibana with local scripts based on the

provided by Fluent.

3.3 Security and User Access

During this second part of the project, there has been some personnel leaving and

others joining. Partners have used the proposed Spreadsheet (GitHub & Component

management) to declare these changes and access have been kept updated so people

leaving have been maintained as project collaborator in the GitHub repositories, but

unlinked from the appropriate Partner Team, so they wouldn’t be able to access to the

private information and tools, assuring privacy mainly of the private artifacts.

3.4 Maintenance

The CI environment is regularly updated for maintaining the set of tools in a stable,

secure and updated state.

The maintenance has been scheduled to be carried every three months with a full

upgrade to the latest stable version of each of the hosted tools. Also, Exceptional

maintenances have been taken into account for critical or important bugs or security

issues. Each of the actuations held on the environment are documented and these

documents are kept for future reference and available for all the partners to read.

At the moment the following actuations have been run/ scheduled in the environment:

Date Name Cause Status Description

03/07/2017

20170703 -

Maintenance

Window

Scheduled Done
OS, Jenkins, Nginx and

Docker updates.

02/10/2017

20171002 -

Maintenance

Window

Scheduled Done
OS, Jenkins, Nginx,

Docker, Docker

D6.3: ElasTest Continuous Integration and Validation System v2

16

Compose, aws-cli

updates.

20/11/2017

20171120 -

Maintenance

Window -

Exceptional

Security Done OS, Jenkins updates.

22/12/2017

20171222 -

Maintenance

Window -

Exceptional

Security Done OS, Jenkins updates.

16/01/2018

20180116 -

Maintenance

Window

Scheduled
Done with

issues

OS, Jenkins, Nginx,

Docker, Docker

Compose, aws-cli

updates.

26/02/2018

20180226 -

Maintenance

Window -

Exceptional

Security Done OS, Jenkins updates.

02/04/2018

20180402 -

Maintenance

Window

Scheduled Done

OS, Jenkins, Nginx,

Docker, Docker

Compose, aws-cli

updates.

02/07/2018

20180702 -

Maintenance

Window

Scheduled Done

OS, Jenkins, Nginx,

Docker, Docker

Compose, aws-cli

updates.

04/10/2018

20181001 -

Maintenance

Window

Scheduled Done

OS, Jenkins, Nginx,

Docker, Docker

Compose, aws-cli

updates.

24/10/2018

20181024 -

Exceptional

Maintenance

Window

Security Done OS, Jenkins updates.

10/01/2019

20190110 -

Maintenance

Window

Scheduled Done

OS, Jenkins, Nginx,

Docker, Docker

Compose, aws-cli

updates.

22/02/2019

20190222-

Maintenance

Window -

Exceptional

Security Done OS, Jenkins updates.

01/04/2019

20190401 -

Maintenance

Window

Scheduled Done

OS, Jenkins, Nginx,

Docker, Docker

Compose, aws-cli

updates.

01/07/2019

20190701 -

Maintenance

Window

Scheduled Done
OS, Jenkins, Nginx,

Docker, Docker

D6.3: ElasTest Continuous Integration and Validation System v2

17

Compose, aws-cli

updates.

07/10/2019

20191007 -

Maintenance

Window

Scheduled Done

OS, Jenkins, Nginx,

Docker, Docker

Compose, aws-cli

updates.

Table 3. Maintenance schedule.

4 Methodology and Procedures

The following section describes the new procedures defined to interact with the

environment, tools and maintaining them. Only those that have suffered some changes

are described in this document. For Basic Rules and Best practises, Jenkins login, Jenkins

Tagging slaves and jobs, Private User Registry, Development environment configuration

for AWS ECR and development see 6.1 ElasTest Continuous Integration and Validation

System.

4.1 Jenkins Jobs Naming

In addition to the previously described job naming we have added the following rule for

those e2e testing jobs using ElasTest to test ElasTest nightly and ElasTest K8s:

• End to end test nightly/K8s ElasTest jobs: <component_acronym>-e2e-elastest

• Comparative nightly vs K8s pipeline: <component_acronym>-e2e-composed -

tests

4.2 Testing

4.2.1 Unitary and integration (component)

During the second part of the project, we have applied the pivot strategy for the unitary

and integration testing KPI. While we thought of having a good code coverage with

unitary and integration tests in the first releases was a good idea, during first months of

2019 we decided that once the components were quite stable, maintaining the unitary

and integration tests updated was very costly for some components and these tests

doesn’t grant correct functionality, we wouldn’t enforce unitary test coverage for

components, and focus testing efforts in the End-to-end tests. So code coverage was

maintained on best-effort as each team considered appropriate.

Even in best-effort approach, 5 components reached thresholds over 70% and 3 more

over 50%.

4.2.2 End-to-end tests.

In this second period of the project, the WP6 has focused on the End-to-end tests for

each component and in the platform as a whole.

D6.3: ElasTest Continuous Integration and Validation System v2

18

Following the approach devised at the beginning of the project, we have worked in the

3 stage plan, continuing with the work presented in the first review. Also, we have added

a 4th stage at the moment we pivoted to Kubernetes native testing platform, to ensure

all the work done in previous stages was reused and applied to this new architecture of

the platform.

The stages defined are:

1. Component end-to-end: Components provide end-to-end tests that ensure the

behaviour of the component and all the services that it makes use of. This kind

of tests are usually held against the component API and can be launch against

the component running as a part of the ElasTest platform, or against an isolated

instance of the component if applies. These kind of tests aren’t applicable to all

the components, see section 4.2.2.3.

2. Platform end-to-end, traditional tools: Most components have defined their

own end-to-end tests that test their behaviour within the ElasTest platform

through the GUI. These tests reproduce use cases that would make use of the

component tested. The assertion clauses are focused on the component tested.

Only components that have no GUI are excluded from these end-to-end tests.

This way once we run all the component end-to-end tests we have an idea of the

actual behaviour of the whole platform. These tests are run by Jenkins jobs

nightly.

3. Platform end-to-end, ElasTest: All the Jenkins jobs of stage 2 have been

converted on TJobs that make use of the ElasTest plugin. These TJobs connect

with Stable ElasTest and make use of the advanced features such as browser

recording, providing the developers extra possibilities in the analysis of the

results. In the Stable ElasTest, all the TJobs executed for all components are in

the same project having an overall status of the platform nightly.

4. Platform end-to-end, ElasTest K8s: Without major changes, we configured the

ElasTest K8s as a new SuT in the ElasTest stable in the same project where stage

3 TJobs where executing. In this way all Jenkins jobs where 100% reused by

adding just a configuration parameter selecting which SuT the job should test.

With this simple modification we could test the K8s with the same End-to-end

tests, and use ElasTest (Stable) feature of execution comparison to check

differences in the tests execution between the K8s version and nightly,

detecting functionalities that didn’t work in the same way in the nightly version

and K8s version making it simpler to detect deviations and bugs.

 End-to-end tests traceability

During this second part of the project, we have worked together with WP2 in order to

maintain a detailed track of the requirements defined, developed, deployed and tested.

With the inclusion of the tests in the traceability procedure we not only traced when a

requirement was made available, but we could assure the functionality was behaving as

expected, and it wouldn’t break on future releases.

D6.3: ElasTest Continuous Integration and Validation System v2

19

We have maintained regular meetings to review the status of the tests and the platform.

And focus on those requirements not tested. Some of those requirements are not

testable by themselves through the GUI but the functionality is used “behind the scenes”

by the tests of other components.

Figure 1. Status of tested requirements

In order to maintain automatic traceability, the provided Requirements Spreadsheet

devised by WP2 workgroup, added a dedicated column to the main sheet where a

requirement could be declared as not automated tested, and a specific sheet to define

the tests developed by each component and which requirement were tested by that

test.

In Figure 1. Status of tested requirements a graphic visualisation of the tested

requirements is presented. As expected not all the requirements are tested for nearly

all the components, this is because with the followed approach for development we first

develop the feature, and then the end-to-end test, prioritising the new features over

automated tests. It is also true that even if there isn’t an automated test developed all

requirements are tested manually and on best effort also tested to avoid regressions.

The tests are described in a table format as follows

Test ID Traceable test ID Test Name Descriptive Name

Requirements
tested

List of requirements IDs tested by the test

Description Short description of the test

Step by Step Step by step of the actions run by the test.

D6.3: ElasTest Continuous Integration and Validation System v2

20

 API End-to-end tests per component.

Each component can be tested as a black box using ElasTest, to assert the validation of

the provided APIs, and expected behaviour. Each component can define its own method

of validation and test execution scheduled. These tests are mandatory for those

functionalities that are executed by API but doesn’t have a GUI directly executing these

functionalities.

In the following subsections, there is a description component by component of all the

tests executed in Jenkins with the ElasTest plugin that is executed every night.

4.2.2.3.1 ElasTest Big Data Service

Test ID API-EBS-001 Test Name tJobExecutionon_SPARK

Requirements
tested

EBS1, EBS2, EDM3

Description Test SPARK and EDM functionality

Step by Step

1. Create a new project

2. Create a new TJob

3. Execute the TJob

4. Wait for the end of the TJob execution

5. Check if the execution finished correctly

6. Delete TJob and execution

4.2.2.3.2 ElasTest Cost Engine

Test ID API-ECE-001
Test
Name

RESTDriverTest-
testRESTDriver4ETM

Requirements
tested

ECE01

Description Test whether ETM API service is online or not

Step by Step

1. Initialize the test system
2. Do a GET request to retrieve a list of registered TJobs from ETM
API endpoint
3. Check HTTP status code - 200 representing a successful test

Test ID API-ECE-002 Test Name
RESTDriverTest-
testRESTDriver4ESM

Requirements
tested

ECE02

D6.3: ElasTest Continuous Integration and Validation System v2

21

Description Test whether ESM API endpoint is online or not

Step by Step
1. Initialize the test system
2. Do a GET on catalogue list API endpoint of ESM service instance
3. Check HTTP status code - 200 represents a successful test

Test ID API-ECE-003 Test Name
ControllerTest-
getStaticAnalysisDataTest

Requirements
tested

ECE03

Description Test static analysis form for a selected TJob

Step by Step

1. Initialize the test system
2. Populate the request parameters with one of preconfigured
TJobs
3. Add support services parameters in the http request object
4. Perform a function call on the controller method that controls
the display of static analysis resource usage form
5. Check the HTML page being returned to verify correct behaviour

Test ID API-ECE-004
Test
Name

ControllerTest-
showStaticAnalysisTest

Requirements
tested

ECE03

Description
Test static analysis results page for a selected TJob post form
submit

Step by Step

1. Initialize the test system
2. Populate the usage form with mock data values via HTTP request
parameters
3. Add support services usage parameters in the http request
object
4. Perform a function call on the controller method that controls
the display of static analysis results
5. Check the HTML page being returned to verify correct behaviour

Test ID
API-ECE-
004

Test
Name

ControllerTest-
showDynamicAnalysisTest

Requirements
tested

ECE06

Description Test dynamic cost analysis generation for a selected TJob

D6.3: ElasTest Continuous Integration and Validation System v2

22

Step by Step

1. Initialize the test system
2. Populate the HTTP request object with a predetermined TJob
3. Populate the HTTP request object with a predetermined list of
support services and associated values
4. Call the controller method that controls the display of true costs
for a selected TJob
5. Verify the returned HTML template page name for ascertaining
the correct behaviour of the service

4.2.2.3.3 ElasTest Device emulator Service

Test ID API-EDS-001 Test Name TestApplication

Requirements
tested

EDS1, EDS2, EDS3, EDS4, EDS5, EDS6, EDS7

Description A test application to make use of the features of EDS

Step by Step

1. Minimal EDS is started as a container of image eds-base. It starts
the gateway and orchestrator.

2. TJob is able to communicate with minimal EDS.

3. Implemented application logic performs as intended

4. Application logic is able to receive values from the sensor and
able to direct actions to the actuator.

5. The EDS orchestrator is able to create, start and teardown
devices as required by the user application.

6. Start multiple copies of the same application, still all applications
get distinct emulated devices and can perform independently.

7. Reusable code for the emulated device, customizable by the user
as required in the application.

4.2.2.3.4 ElasTest Instrumentation Manager

Test ID API-EIM-001 Test Name PacketLossTestsSession

Requirements
tested

EIM1, EIM2, EIM3,EIM4, EIM5, EIM6, EIM15

Description Execute API operations [POST, GET, DELETE]

D6.3: ElasTest Continuous Integration and Validation System v2

23

Step by Step

1. Create a new agent

2. Verify GET operation latency

3. Injection rule 0% dropped networks

4. Verify GET operation latency (SLO latency <=150ms)

5. Unmonitor

6. Delete agent

Test ID API-EIM-002 Test Name PacketLossTests0

Requirements
tested

EIM1, EIM2, EIM3,EIM4, EIM5, EIM6, EIM15

Description Execute API operations [POST, GET, DELETE]

Step by Step

1. Register an agent

2. Verify GET operation latency

3. Injection rule 0% dropped networks

4. Verify GET operation latency (SLO latency <=150ms)

5. Unmonitor

6. Delete agent

Test ID API-EIM-003 Test Name PacketLossTests25

Requirements
tested EIM1, EIM2, EIM3, EIM4, EIM5, EIM6, EIM15

Description Execute API operations [POST, GET, DELETE]

Step by Step

1. Register an agent

2. Verify GET operation latency

3. Injection rule 25% dropped networks

4. Verify GET operation latency (SLO latency <=150ms)

5. Unmonitor

6. Delete agent

D6.3: ElasTest Continuous Integration and Validation System v2

24

Test ID API-EIM-004 Test Name PacketLossTests50

Requirements
tested

EIM1, EIM2, EIM3,EIM4, EIM5, EIM6, EIM15

Description Execute API operations [POST, GET, DELETE]

Step by Step

1. Register an agent

2. Verify GET operation latency

3. Injection rule 50% dropped networks

4. Verify GET operation latency (SLO latency <=150ms)

5. Unmonitor

6. Delete agent

Test ID API-EIM-005 Test Name PacketLossTests75

Requirements
tested

EIM1, EIM2, EIM3,EIM4, EIM5, EIM6, EIM15

Description Execute API operations [POST, GET, DELET]

Step by Step

1. Register an agent

2. Verify GET operation latency

3. Injection rule 75% dropped networks

4. Verify GET operation latency (SLO latency <=150ms)

5. Unmonitor

6. Delete agent

Test ID API-EIM-006 Test Name ControllabilityMonitoring

Requirements
tested

EIM1, EIM2, EIM3,EIM4, EIM5, EIM6, EIM8, EIM9

Description Execute API operations [POST, GET, DELETE]

Step by Step

1. Register an agent

2. Install monitoring beats [packetbeat, metricbeat, filebeat]

3. Verify GET operation latency

4. Injection rule 25% dropped networks

5. Verify GET operation latency (SLO latency <=150ms)

6. Unmonitor (Controllability and Monitoring beats)

7. Delete agent

D6.3: ElasTest Continuous Integration and Validation System v2

25

Test ID API-EIM-007 Test Name Monitoring

Requirements
tested

EIM1, EIM2, EIM3,EIM4, EIM5, EIM6, EIM7, EIM8, EIM9

Description Execute API operations [POST, GET, DELETE]

Step by Step

1. Register an agent

2. Install monitoring beats [packetbeat, metricbeat, filebeat]

3. Verify GET operation latency

4. Injection rule 25% dropped networks

5. Verify GET operation latency (SLO latency <=150ms)

6. Unmonitor (Controllability and Monitoring beats)

7. Delete agent

Test ID API-EIM-008 Test Name CpuCommands1

Requirements
tested

EIM1, EIM2, EIM3,EIM4, EIM5, EIM6, EIM14

Description Execute API operations [POST, GET, DELETE]

Step by Step

1. Register an agent

2. Verify GET operation latency

3. CPU overload: run for 30 seconds with 3 cpu stressors

4. Verify GET operation latency (SLO latency <=150ms)

5. Unmonitor (Controllability and Monitoring beats)

6. Delete agent

Test ID API-EIM-001 Test Name CpuCommands2

Requirements
tested

EIM1, EIM2, EIM3,EIM4, EIM5, EIM6, EIM15

Description Execute API operations [POST, GET, DELETE]

Step by Step

1. Register an agent

2. Verify GET operation latency

3. CPU overload: run for 30 seconds with 68 cpu stressors

4. Verify GET operation latency (SLO latency <=150ms)

5. Unmonitor (Controllability and Monitoring beats)

D6.3: ElasTest Continuous Integration and Validation System v2

26

6. Delete agent

4.2.2.3.5 ElasTest Monitoring Platform

Test ID API-EMP-001 Test Name
APIOfflineTest-
testcreateSpace

Requirements
tested

EMP01

Description
Test to check if monitoring spaces can be created successfully via
the EMP REST API

Step by Step

1. Initialize the test system with a dummy user and preset
credentials

2. send a request to create a monitoring space with an empty
body, the results should be HTTP 400 code

3. send a request to create a new space and together with valid
user credentials, the result should be HTTP 201 status

4. send a request to create the same space, as it is a duplicate
space, the result should be HTTP status code 409

Test ID API-EMP-002 Test Name
APIOfflineTest-
testcreateSeries

Requirements
tested

EMP02

Description
Test to check if monitoring series can be created successfully via
the EMP REST APIs

Step by Step

1. Initialize the test system with a dummy user and preset
credentials and an existing monitoring space

2. send a request to create a monitoring series with an empty
body, the results should be HTTP 400 code

3. send a request to create a new series and together with valid
user credentials, the result should be HTTP 201 status

4. send a request to create the same series, as it is a duplicate
series within the same monitoring space, the result should be HTTP
status code 409

Test ID API-EMP-003 Test Name
APIOfflineTest-
testgetEndpointInfo

D6.3: ElasTest Continuous Integration and Validation System v2

27

Requirements
tested

EMP03

Description
Test to check if Kafka endpoints can be retrieved for configuration
of agents via EMP REST APIs

Step by Step

1. Initialize the test system with a dummy user and pre-set
credentials

2. send a request to retrieve agent connection details but without
valid credentials, the result should be HTTP status 401

3. send a request again but now with valid credentials, the
response should be with HTTP status code 200

Test ID API-EMP-004 Test Name KafkaTestProducer-testsend

Requirements
tested

EMP04

Description Test to check if test messages can be sent to Kafka message bus

Step by Step

1. initialize the Kafka cluster

2. Initiate a test message sending and check the returned status

3. Is successful, the returned status should be boolean true

Test ID API-EMP-005 Test Name
InfluxDBClientTest-
.testaddPoint

Requirements
tested

EMP05

Description
Test to check if the InfluxDB endpoints are functional and test
samples can be added

Step by Step

1. Initialize the test system

2. Setup InfluxDB cluster preconfigured with a valid user account,
and database with test measurement preconfigured

3. Send a test EMP agent message to the preconfigured InfluxDB
endpoint

4. Check the status returned, it should be true for successful
insertion

Test ID API-EMP-006 Test Name
InfluxDBClientTest-
testGetLastPoints

D6.3: ElasTest Continuous Integration and Validation System v2

28

Requirements
tested

EMP08

Description
Test to check if InfluxDB interface is functional and can respond to
query commands

Step by Step

1. Initialize the test system
2. Setup InfluxDB cluster preconfigured with a valid user account,
and database with test measurement preconfigured
3. Initiate InfluxDB DB query using preconfigured credentials
against test database and measurement
4. On a successful connection, the last inserted data should be
returned.

Test ID API-EMP-007 Test Name PingWorkerTest-testrun

Requirements
tested

EMP11

Description
Test to verify whether EMP ping functionality where the liveness of
the target system can be ascertained is working as expected or not

Step by Step

Test ID API-EMP-008 Test Name APIControllerTest-getRootAPI

Requirements
tested

EMP14

Description
Test to quickly verify whether EMP REST server is functional or not
by asking for a list of supported API calls

Step by Step

4.2.2.3.6 ElasTest Monitoring Service

Test ID API-EMS-001 Test Name
EMS Double download E2E
Test

Requirements
tested

EMS1, EMS6, EMS7, EMS8, EMS9, EMS13

Description Assertion of valid data retrieved. (Bandwidth)

Step by Step

1. Create a new project

2. Create a new SuT

3. Create a new TJob

D6.3: ElasTest Continuous Integration and Validation System v2

29

4. Execute the TJob that download two files in parallel and assess
that it uses twice the bandwidth.

5. Check if the execution finished correctly

Test ID API-EMS-002 Test Name EMS Elasticsearch E2E Test

Requirements
tested

EMS2, EMS10, EMS13

Description Test valid events sent to the elastic search

Step by Step

1. Create a new project

2. Create a new SuT

3. Create a new TJob

4. Execute the TJob that:

 4.1 Sends some events to the EMS.

 4.2 The TJob subscribes the Elastcisearch under test.

 4.3 It sends more events.

 4.4 It unsubscribes the Elasticsearch.

 4.5 It sends more events.

 4.6 Assesses that only the events in the middle were received.

5. Check if the execution finished correctly

Test ID API-EMS-003 Test Name EMS RabbitMQ E2E Test

Requirements
tested

EMS3, EMS6, EMS7, EMS8, EMS9, EMS11, EMS12, EMS13, EMS16

Description Test if the RabbitMQ is subscribed to certain channels.

Step by Step

1. Create a new project

2. Create a new SuT

3. Create a new TJob

4. Execute the TJob that:

 4.1 Test if the RabbitMQ under test is subscribed to the correct
channels.

 4.2 Monitoring machines and stampers are deployed and
undeployed while the TJob sends events to the EMS.

 4.3 Assertion if only certain events made it to the SuT.

5. Check if the execution finished correctly.

D6.3: ElasTest Continuous Integration and Validation System v2

30

Test ID API-EMS-004 Test Name
EMS RPC Orchestration E2E
Test

Requirements
tested

EMS9, EMS13, EMS16, EMS17, EMS19, EMS21, EMS23

Description
Test the if-then-else, the previous operator, output JSON data and
output through the WebSocket channel

Step by Step

1. Use Orchestration Library in Jenkins to start a standalone EMS
2. start a SuT
3. configure EMS with the proper specification
4. exercise the SuT with sequential Tjobs (orchestrating Jenkins
Jobs)
5 Those Tjobs use the EMS to perform data-driven orchestration
6. the EMS is used to check if the sequence of Tjobs is a good
sequence conforming to a use case of the SuT

Test ID API-EMS-005 Test Name EMS-EDS demo

Requirements
tested

EMS9, EMS13, EMS17, EMS20

Description Test the vector notation in a realistic scenario

Step by Step

1. Create a new project
2. Create two SuT called 'good' and 'evil'
3. Create four TJob with environment variables:
 a. 6, linked to 'good' SuT
 b. 10, linked to 'good' SuT
 c. 6, linked to 'evil' SuT
 d. 10, linked to 'evil' SuT
4. Execute all TJobs
5. Check that only TJob '10, evil' fails.

4.2.2.3.7 ElasTest Service Manager

Test ID API-ESM-001 Test Name
TestCatalogController-
test_catalog

Requirements
tested

ESM5

Description Basic test of the catalogue

Step by Step
1. Send GET request against /v2/catalog

Validate that the response is successful

D6.3: ElasTest Continuous Integration and Validation System v2

31

Test ID API-ESM-002 Test Name
TestCatalogController-
test_request_no_version_header

Requirements
tested

ESM5

Description Bad request – No header

Step by Step

1. Send GET request against /v2/catalog, excluding the version
header

Validate response is unsuccessful

Test ID API-ESM-003 Test Name
TestCatalogController-
test_register_service

Requirements
tested

ESM5

Description Test of a valid service registration

Step by Step
1. Send a PUT against /v2/et/catalog containing a new service

Validate that the service was successfully registered

Test ID API-ESM-004
Test
Name

TestCatalogController-
test_double_svc_registration_deny

Requirements
tested

ESM5

Description Bad request – double svc registration

Step by Step

1. Send a PUT against /v2/et/catalog containing an existing
service

Validate that the response was unsuccessful

Test ID API-ESM-005 Test Name
TestCatalogController-
test_store_manifest

Requirements
tested

ESM5

Description Validate manifest storage

Step by Step 1. Send a PUT against /v2/et/catalog containing a new service

D6.3: ElasTest Continuous Integration and Validation System v2

32

2. Send a PUT against /v2/et/manifest containing a new
manifest that is related to the registered service

Validate that the response was successful

Test ID API-ESM-006 Test Name
TestCatalogController-
test_update_service

Requirements
tested

ESM6

Description Validate service update

Step by Step

1. Create a new service
2. Create a second new service locally
3. Submit the second manifest as the update of the existing

manifest

Validate that the request was successful

Test ID API-ESM-007 Test Name
TestCatalogController-
test_update_manifest

Requirements
tested

ESM6

Description Validate update the service manifest

Step by Step

1. Create a new service manifest
2. Create a second new service manifest locally
3. Submit the second manifest as the update of the existing

manifest

Validate that the request was successful

Test ID API-ESM-008 Test Name
TestCatalogController-
test_get_manifest

Requirements
tested

ESM6

Description Test get service manifest

Step by Step

1. Create a service
2. Create a manifest associated with the service
3. Get the manifest

Validate the request was successful

D6.3: ElasTest Continuous Integration and Validation System v2

33

Test ID API-ESM-009 Test Name
TestCatalogController-
test_list_manifests

Requirements
tested

ESM6

Description Test manifest list

Step by Step
1. Issue a GET against /v2/et/manifest

Validate the request was successful

Test ID API-ESM-010 Test Name
TestServiceInstancesController-
test_request_no_version_header

Requirements
tested

ESM1

Description Bad request – no version in the header

Step by Step

1. Send GET request against /v2/catalog, excluding the version
header

Validate response is unsuccessful

Test ID API-ESM-011 Test Name
TestServiceInstancesController-
test_create_service_instance

Requirements
tested

ESM1

Description Validate the creation of a service instance

Step by Step

1. Generate a unique ID for the service instance to be created
2. Send a PUT against /v2/service_instances/{instance_id}

Validate that the request was successful

Test ID API-ESM-012
Test
Name

TestServiceInstancesController-
test_create_instance_with_same_id

Requirements
tested

ESM1

Description Bad request – instance with the same id

Step by Step

1. Generate a unique ID for the service instance to be created
2. Send a PUT against /v2/service_instances/{instance_id}
3. Send another PUT against

/v2/service_instances/{instance_id}

D6.3: ElasTest Continuous Integration and Validation System v2

34

Validate that the second request was unsuccessful

Test ID
API-ESM-
013

Test
Name

TestServiceInstancesController-
test_create_instance_with_nonexistant_plan

Requirements
tested

ESM1

Description Bad Request – instance with no plan

Step by Step

1. Create a service instance without an associated plan and
submit the request

Validate that the request failed

Test ID
API-ESM-
014

Test
Name

TestServiceInstancesController-
test_create_service_instance_with_params

Requirements
tested

ESM1, ESM4

Description Validate the creation of an instance with parameters

Step by Step

1. Create a service instance with parameters and submit the
request

Validate that the request succeeded

Test ID API-ESM-015 Test Name
TestServiceInstancesController-
test_service_bind_unbind

Requirements
tested

ESM4

Description Validate bind and unbind of a service

Step by Step

1. Create a service instance with parameters and submit the
request

2. Create a binding request against the created service
instance

3. Validate that the request succeeded
4. Create an unbinding request against the created service

instance

Validate that the request succeeded

D6.3: ElasTest Continuous Integration and Validation System v2

35

Test ID API-ESM-016 Test Name
TestServiceInstancesController-
test_update_service_instance

Requirements
tested

Description Validate the update of a service instance

Step by Step
1. Create and submit a new service update request

Validate the request was successful

Test ID API-ESM-017 Test Name
TestServiceInstancesController-
test_all_instance_info

Requirements
tested

ESM2

Description Validate the population of the instance info

Step by Step

1. Create a set of new service instances
2. Issue a GET on the newly created service instances

Validate that all the service instances information was returned
successfully (greater than zero)

Test ID API-ESM-018 Test Name
TestServiceInstancesController-
test_instance_info

Requirements
tested

ESM2

Description Validate the correction of the information of the instance

Step by Step

1. Create a new service instance
2. Issue a GET on the newly created service
3. Validate that all the service information was returned

successfully

Validate that a networking parameter is present, as a validation
test

Test ID API-ESM-019 Test Name
TestServiceInstancesController-
test_last_operation_status

Requirements
tested

ESM2

Description Validate retrieving the last operation status

D6.3: ElasTest Continuous Integration and Validation System v2

36

Step by Step

1. Create a new service instance
2. Issue a GET to get the status of the last operation executed

upon the service instance

Validate that the response is valid and successful

Test ID API-ESM-020
Test
Name

TestServiceInstancesController-
test_deprovision_service_instance

Requirements
tested

ESM3

Description Validate the deprovision of a service instance

Step by Step

1. Create a new service instance
2. Issue a DELETE on the service instance endpoint
3. Validate that the request was successful and the service

instance no longer exists.

4.2.2.3.8 ElasTest Test Manager

Test ID API-ETM-001 Test Name
ProjectApiItTest-
testCreateProject

Requirements
tested

ETM1

Description Creates a new project in ElasTest

Step by Step
1. Create a new project

2. Check if the project is correctly created

Test ID API-ETM-002 Test Name
ProjectApiItTest-
testGetProjects

Requirements
tested

ETM1

Description Retrieves all projects in ElasTest

Step by Step
1. Create N projects

2. Check if the projects were created

Test ID API-ETM-003 Test Name
ProjectApiItTest-
testGetProjectById

D6.3: ElasTest Continuous Integration and Validation System v2

37

Requirements
tested

ETM1

Description Gets a project by id

Step by Step

1. Create a project to retrieve

2. Send request

3. Check if returned project name matches with the sent project
name

Test ID API-ETM-004 Test Name
ProjectApiItTest-
testDeleteProject

Requirements
tested

ETM1

Description Deletes a project identified by the id provided

Step by Step

1. Create a project to delete

2. Send delete request

3. Check if the deletion operation was successful

Test ID API-ETM-005 Test Name SutApiItTest-testCreateSut

Requirements
tested

ETM3

Description Creates a new SUT in ElasTest

Step by Step

1. Create a new project

2. Create a new SUT

3. Check if the SUT is correctly created

Test ID API-ETM-006 Test Name SutApiItTest-testModifySut

Requirements
tested

ETM3, ETM2

Description Modifies an existing SUT

Step by Step

1. Create a new project

2. Create a new SUT

3. Retrieve the SUT from ElasTest

4. Modify and save the SUT

D6.3: ElasTest Continuous Integration and Validation System v2

38

5. Check if the SUT has been modified correctly

Test ID API-ETM-007 Test Name SutApiItTest-testGetSuts

Requirements
tested

ETM3, ETM2

Description Retrieves all SUTs in ElasTest

Step by Step

1. Create a new project

2. Create n new SUTs

3. Retrieve SUTs in ElasTest

4. Check if they have been retrieved

Test ID API-ETM-008 Test Name SutApiItTest-testDeleteSut

Requirements
tested

ETM3, ETM2

Description Deletes an existing SUT

Step by Step

1. Create a new project

2. Create a new SUT

3. Delete the new SUT

4. Check if the SUT has been deleted correctly

Test ID API-ETM-009
Test
Name

SutApiItTest-
testCreateSutWithCommandsContainer

Requirements
tested

ETM3, ETM2

Description Creates a SuT with commands container

Step by Step

1. Create a new project

2. Create a new SUT

3. Check if the SUT has been deleted correctly

Test ID API-ETM-010 Test Name TJobApiItTest-testCreateTJob

Requirements
tested

ETM4, ETM5

D6.3: ElasTest Continuous Integration and Validation System v2

39

Description Creates a new TJob

Step by Step

1. Create a new project

2. Create a new TJob

3. Check if the TJob is correctly created

Test ID API-ETM-011 Test Name
TJobApiItTest-
testModifyTJob

Requirements
tested

ETM4, ETM5

Description Modifies an existing TJob

Step by Step

1. Create a new project

2. Create a new TJob

3. Retrieve the TJob from ElasTest

4. Modify and save the TJob

5. Check if the TJob has been modified correctly

Test ID API-ETM-012 Test Name TJobApiItTest-testGetTJobs

Requirements
tested

ETM4, ETM5

Description Retrieves all TJobs in ElasTest

Step by Step

1. Create a new project

2. Create n new TJobs

3. Retrieve TJobs in ElasTest

4. Check if they have been retrieved

Test ID API-ETM-013 Test Name
TJobApiItTest-
testGetTJobById

Requirements
tested

ETM4, ETM5

Description Retrieves a TJob for a given id

Step by Step

1. Create a new project

2. Create a new TJobs

3. Retrieve the TJob from ElasTest

D6.3: ElasTest Continuous Integration and Validation System v2

40

4. Check if the TJob have been retrieved

Test ID API-ETM-014 Test Name TJobApiItTest-testDeleteTJob

Requirements
tested

ETM4, ETM5

Description Deletes an existing TJob

Step by Step

1. Create a new project

2. Create a new TJob

3. Delete the new TJob

4. Check if the TJob has been deleted correctly

Test ID API-ETM-015 Test Name
TJobExecutionApiItTest-
testExecuteTJobWithSut

Requirements
tested

ETM6

Description Execute a TJob with SUT and check the results.

Step by Step

1. Create a new project

2. Create a new SUT

3. Create a new TJob that uses the SUT

4. Execute the TJob

5. Wait for the end of the TJob execution

6. Check if the execution finished correctly

7. Delete TJob and execution

Test ID API-ETM-016 Test Name
TJobExecutionApiItTest-
testExecuteTJobWithoutSut

Requirements
tested

ETM6

Description Execute a TJob without SUT and check the results.

Step by Step

1. Create a new project

2. Create a new TJob

3. Execute the TJob

4. Wait for the end of the TJob execution

D6.3: ElasTest Continuous Integration and Validation System v2

41

5. Check if the execution finished correctly

6. Delete TJob and execution

Test ID API-ETM-017
Test
Name

TJobExecutionApiItTest-
testExecuteTJobWithoutSutAndGetLogs

Requirements
tested

ETM6

Description Execute a TJob with SUT and check the results.

Step by Step

1. Create a new project

2. Create a new TJob

3. Execute the TJob

4. Check logs

5. Wait for the end of the TJob execution

6. Check if the execution finished correctly

7. Delete TJob and execution

Test ID API-ETM-018
Test
Name

TJobExecutionApiItTest-
testExecuteTJobWithoutSutAndStop

Requirements
tested

ETM6

Description Execute a TJob and stop it before it is finished

Step by Step

1. Create a new project

2. Create a new TJob

3. Execute the TJob

4. Stop TJob execution

5. Check if the execution finished correctly

6. Delete TJob and execution

 Integrated GUI end-to-end tests

ElasTest is a set of components that should be tested as a whole and following user

paths through the GUI.

As the use of the GUI is an essential part of the GUI end-to-end test, all these tests make

use of the ElasTest User impersonation Service (Browsers as a service) from the Stable

ElasTest so all these tests have videos available for each of their executions. These tests

D6.3: ElasTest Continuous Integration and Validation System v2

42

have been greatly advanced during the second period as all components with relevant

GUI user paths not have their test up and running but make intensive use at least of one

of the Services of the ElasTest.

In the document, we have described the test running nightly under the premise of

ElasTest in ElasTest and only those of them that have a relevant GUI interaction.

4.2.2.4.1 ElasTest Big Data Service

Test ID GUI-EBS-001 Test Name TJob Execution

Requirements
tested EBS1, EBS2, EDM3

Description Test EBS and EDM functionality through the Graphic User Interface

Step by Step

1. Create a new project

2. Create a new TJob. The TJob downloads a file from
https://norvig.com/big.txt and feeds it to the SPARK engine. The file
contains a very long text and SPARK computes how many times
occurs each word. The result is stored on Hadoop (EDM 1 and EDM2)

3. Execute the TJob

4. Wait for the end of the TJob execution

5. Check if the execution finished correctly

6. Delete TJob and execution

4.2.2.4.2 ElasTest Cost Engine

Test ID GUI-ECE-001 Test Name
ECEElasTestInElasTestTest-
check4ece

Requirements
tested ECE1, ECE2

Description Verify that ECE is integrated with the ElasTest UI and is accessible
via the side navigation panel by end-users.

https://norvig.com/big.txt

D6.3: ElasTest Continuous Integration and Validation System v2

43

Step by Step

1. Reset the test system, set browser dimensions to a pre-specified
dimensions
2. Retrieve the ElasTest URL from the environment parameters
3. Using selenium drivers, click the sidebar link for test engines
4. Wait for the page to load
5. Navigate to the ECE link and click on the start engine button
6. Wait for the button state changes to view engine icon
7. Click the View Engine button once the engine has been started
8. Switch the focus to the iFrame which contains the ECE UI
9. Assert that the HTML element corresponding to ECE UI element
has been displayed in the browser

4.2.2.4.3 ElasTest Device emulator Service

Test ID GUI-EDS-001 Test Name
EDS example application
execution

Requirements
tested EDS1, EDS2, EDS3, EDS4, EDS5, EDS9, EDS10, EDS11

Description
Test if EDS is available to the user, if available, request for devices,
wire them together with application logic and run the application
for a limited duration.

Step by Step

1. Open ElasTest page.

2. Create a new project and enter into the project.

3. Create a new SuT and configure the SuT.

4. Create a new TJob and configure the TJob and assign the
already created SuT to the TJob.

5. Run the test.

6. Test verdict is obtained based on individual verdicts of the tests
in the TJob.

7. The video recorded in the GUI test helps in debugging issues
during test execution.

4.2.2.4.4 ElasTest Instrumentation Manager

Test ID GUI-EIM-001 Test Name EimTJobE2ETest-testTJob

D6.3: ElasTest Continuous Integration and Validation System v2

44

Requirements
tested

EIM-001, EIM-002, EIM-003, EIM-004, EIM-005, EIM-006, EIM-007,
EIM-008, EIM-009

Description Basic TJob creation (base case for packet loss comparison)

Step by Step

1. Create a new project

2. Create a new TJob

3. Execute the TJob

4. Wait for the end of the TJob execution

5. Check if the execution finished correctly

6. Delete TJob and execution

Test ID GUI-EIM-002 Test Name PacketLossTestsSession

Requirements
tested

EIM-001, EIM-002, EIM-003, EIM-004, EIM-005, EIM-006, EIM-007,
EIM-008, EIM-009, EIM-014

Description TJob base test with a % of packet loss injected

Step by Step

1. Create a new project

2. Create a new TJob

3. Execute the TJob

4. Verify GET operation latency

5. Injection rule variable% dropped networks

6. Verify GET operation latency (SLO latency <=150ms)

7. Check if the execution finished correctly

8. Delete TJob and execution

Test ID GUI-EIM-003 Test Name
EimTJobE2ETest-testTJob-
generalTestTJob

Requirements
tested EIM05, EIM06, EIM07, EIM08, EIM09

Description Basic TJob creation (base case for CPU command)

D6.3: ElasTest Continuous Integration and Validation System v2

45

Step by Step

1. Create a new project

2. Create a new TJob

3. Execute the TJob

4. Wait for the end of the TJob execution

5. Check if the execution finished correctly

6. Delete TJob and execution

Test ID GUI-EIM-004 Test Name
EIMTjobCpuCommands-
testTJob

Requirements
tested

EIM-001, EIM-002, EIM-003, EIM-004, EIM-005, EIM-006, EIM-007,
EIM-008, EIM-009, EIM-015

Description TJob test with CPU overload

Step by Step

1. Create a new project

2. Create a new TJob

3. Execute the TJob

4. Verify GET operation latency

5. CPU overload: run for X seconds with Y CPU stressors

6. Verify GET operation latency (SLO latency <=150ms)

7. Check if the execution finished correctly

8. Delete TJob and execution

4.2.2.4.5 ElasTest Jenkins

Test ID GUI-EJ-001 Test Name
ElasTestPluginE2ETest-
testPipelineJob

Requirements
tested EJ1, EJ2, EJ5, EJ11, EJ12

Description Test that the Jenkins plugin works correctly

Step by Step
1. Install on Jenkins the plugin from a hpi file

2. Configure plugin

D6.3: ElasTest Continuous Integration and Validation System v2

46

3. Create a pipeline Job

4. Execute the Job

5. Go to ElasTest

6. Wait until the TJob is finished

4.2.2.4.6 ElasTest Monitoring Platform

Test ID GUI-EMP-001 Test Name EMPElasTestInElasTestTest

Requirements
tested EMP9, EMP16, EMP19

Description
Verify that EMP preconfigured dashboard is integrated in the
ElasTest Torm UI and can be accessible by end-users

Step by Step

1. Reset the test system, set browser dimensions to prespecified
dimensions.

2. Retrieve the elastest url from the environment parameters.

3. Using selenium driver click the navigation sidebar to access the
Platform Monitoring dashboard.

4. Get details on the iFrame element which shows the monitoring
dashboard.

5. Check the src value of the iFrame object.

6. Check the value to correspond to the expected value that is
returned by the emp service.

4.2.2.4.7 ElasTest Recommendation Engine

Test ID GUI-ERE-001 Test Name
EreEnd2EndTests-
verifyPreprocessUserData

Requirements
tested ERE1, ERE4, ERE6, ERE14

Description Verify that user can load a pre-process their training data

Step by Step

1. Open TORM Dashboard;

2. Select Test Engines in side menu;

3. Click on 'ere' to start it and wait for the spinner to complete;

4. Open More Options menu;

5. Select Admin option;

D6.3: ElasTest Continuous Integration and Validation System v2

47

6. Select Pre-process tab;

7. Select Repository Type - Remote;

8. Enter a remote repository url;

9. Select storage type - local/Alluxio;

10. Launch pre-processing and wait for the process to complete;

11. Verify success message

12. Open Submit Dataset tab;

13. Verify that pre-processed dataset is available for submission;

14. Select Delete checkbox

15. Verify that delete action returned success

16. Stop ERE engine

Test ID GUI-ERE-002 Test Name
EreEnd2EndTests-
verifyAskRecommender

Requirements
tested ERE7, ERE8, ERE9, ERE11

Description
Verify that the user can enter recommendation query and the
engine returns a valid result.

Step by Step

1. Open TORM Dashboard;

2. Select Test Engines in side menu;

3. Click on 'ere' to start it and wait for the spinner to complete;

4. Open More Options menu;

5. Select Default Settings option;

6. Expand dropdown and select a model to query;

7. Save and return to main page;

8. Open New Recommendation wizard;

9. Enter a text into Area field;

10. Enter a text into Task field;

11. Click OK and wait for the spinner to complete;

12. Verify that Generated Testcase pane contains the result;

13. Verify that Reusable Testcases table contains results;

14. Verify first row in Reusable Testcases table:

 14-2. Verify class name is present and valid;

 14-3. Verify test case name is present and valid;

D6.3: ElasTest Continuous Integration and Validation System v2

48

 14-4. Verify similarity score is present and valid;

15. Stop ERE engine

Test ID GUI-ERE-003 Test Name
EreEnd2EndTests-
verifyPreprocessInlineHelp

Requirements
tested ERE13

Description verify that inline help displays correctly on the pre-processing tab

Step by Step

1. Navigate to ElastTest Test Engines

2. Navigate to Admin Dashboard

3. Navigate to pre-process tab

4. Click on local repository help icon and verify that help message is
correct

5. Click on remote repository help icon and verify that help
message is correct

6. Click on repository name help icon and verify that help message
is correct

7. Click on local storage type help icon and verify that help message
is correct

8. Click on Alluxio storage local help icon and verify that help
message is correct

9. Click on additional properties help icon and verify that help
message is correct

Test ID GUI-ERE-004 Test Name
EreEnd2EndTests-
verifySubmitDatasetInlineHelp

Requirements
tested ERE13

Description verify that inline help displays correctly on data submit tab

Step by Step

1. Navigate to ElastTest Test Engines

2. Navigate to Admin Dashboard

3. Navigate to submit dataset tab

4. Click on datasets help icon and verify that help message is
correct

5. Click on delete help icon and verify that help message is correct

D6.3: ElasTest Continuous Integration and Validation System v2

49

Test ID GUI-ERE-005 Test Name
EreEnd2EndTests-
verifyTrainInlieHelp

Requirements
tested ERE13

Description verify that inline help displays correctly on the train tab

Step by Step

1. Navigate to ElastTest Test Engines

2. Navigate to Admin Dashboard

3. Navigate to train tab

4. Click on data collections help icon and verify that help message is
correct

Test ID GUI-ERE-006 Test Name
EreEnd2EndTests-
verifySubmitDataset

Requirements
tested ERE2

Description verify that user can submit a pre-processed dataset

Step by Step

1. Navigate to ElastTest Test Engines

2. Navigate to Admin Dashboard

3. Navigate to submit dataset tab

4. From Datasets drop-down list select specific dataset

5. Click on Submit button

Test ID GUI-ERE-007 Test Name
EreEnd2EndTest-
verifyTrainModel

Requirements
tested ERE3

Description verify that user can train submitted dataset

Step by Step

1. Navigate to ElastTest Test Engines

2. Navigate to Admin Dashboard

3. Navigate to train tab

4. From Data Collections drop-down list select specific data
collection

5. Click on Train button

D6.3: ElasTest Continuous Integration and Validation System v2

50

Test ID GUI-ERE-008 Test Name
EreEnd2EndTests-
verifyPreprocessUserDataAlluxio

Requirements
tested ERE1, ERE4, ERE6, ERE14

Description Verify that user can load a pre-process their training data

Step by Step

1. Open TORM Dashboard;

2. Select Test Engines in side menu;

3. Click on 'ere' to start it and wait for the spinner to complete;

4. Open More Options menu;

5. Select Admin option;

6. Select Pre-process tab;

7. Select Repository Type - Remote;

8. Enter a remote repository url;

9. Select storage type - Alluxio;

10. Launch pre-processing and wait for the process to complete;

11. Verify success message

12. Open Submit Dataset tab;

13. Verify that pre-processed dataset is available for submission;

14. Select Delete checkbox

15. Verify that delete action returned success

16. Stop ERE engine

Test ID GUI-ERE-009 Test Name
EreEnd2EndTests-
verifySubmitDatasetAndDelete

Requirements
tested ERE2

Description verify that user can submit pre-processed dataset and delete

Step by Step

1. Navigate to ElastTest Test Engines

2. Navigate to Admin Dashboard

3. Navigate to submit dataset tab

4. From Datasets drop-down list select specific dataset

5. Click on Submit button

D6.3: ElasTest Continuous Integration and Validation System v2

51

Test ID GUI-ERE-010
Test
Name

EreEnd2EndTests-
verifyGetRecommendationsInlineHelp

Requirements
tested ERE13

Description
verify that inline help displays correctly on the recommendation
page

Step by Step

1. Navigate to ElastTest Test Engines

2. Navigate to Default settings and set model

3. Navigate to new Recommendation

4. Insert in Area description “description”

5. Click in Area description help icon and compare help content

6. Insert in Task description “description”

7. Click in Task description help icon and compare help content

8. Click OK

9. Click in Recommended test case help icon and compare help
content

10. Click in Test cases recommended for re-use help icon and
compare help content

Test ID GUI-ERE-011
Test
Name

EreEnd2EndTests-
verifyGetRecommendationsAllContent

Requirements
tested ERE8

Description verify that content and functionality on the recommendation page

Step by Step

1. Navigate to ElastTest Test Engines

2. Navigate to Default settings and set model

3. Navigate to new Recommendation

4. Insert in Area description “description”

5. Click in Area description help icon and compare help content

6. Insert in Task description “description”

7. Click in Task description help icon and compare help content

8. Click OK

9. Click in Recommended test case help icon and compare help
content

D6.3: ElasTest Continuous Integration and Validation System v2

52

10. Click in Test cases recommended for re-use help icon and
compare help content

11. verify Show details content

12. verify scroll works

13. verify New recommendation button works - wizard display
again

14. verify close button works

15. verify description contents displayed correctly

Test ID GUI-ERE-012
Test
Name

GetRecommendationsAllContentTrial-
verifyGetRecommendationsInlineHelp

Requirements
tested ERE13, ERE16

Description verify inline help in the trial version user interface

Step by Step

1. Navigate to ElastTest Test Engines

2. Open New Recommendation wizard

3. Find Area input field and insert description of test Area

4. Click on the corresponding inline help icon

5. Verify inline help text displays correctly

6. Find Task input field and insert description of testing Task

7. Click on the corresponding inline help icon

8. Verify inline help text displays correctly

9. Click OK

10. Find the 'Recommended test case' section and click on the
corresponding inline help icon

11. Verify inline help text displays correctly

10. Find the 'Tests recommended for re-use' section and click on
the corresponding inline help icon

11. Verify inline help text displays correctly

Test ID
GUI-ERE-
013

Test
Name

GetRecommendationsAllContentTrial-
verifyGetRecommendationsAllContentTrial

Requirements
tested ERE8, ERE16

D6.3: ElasTest Continuous Integration and Validation System v2

53

Description
Verify the content and functionality on the recommendation page
in the trial version

Step by Step

1. Navigate to ElastTest Test Engines

2. Open New Recommendation wizard

3. Find Area input field and insert description of test Area

4, Find Task input field and insert description of testing Task

5. Click OK

6. Wait for the Result Page to display

7. Verify that the Area description displayed in the Details section
matches the text inserted in step 3

8. Verify that the Area description displayed in the Details section
matches the text inserted in step 4

9. Verify that the Queried Model description displayed in the
Details section is: GenericModel.

10. Verify the result displayed in the "Recommended test case"
section

11. Verify top result displayed in the "Tests recommended for re-
use" section

12. Verify that scroll widget works

13. Verify that Close button works

14. Verify that New Recommendation wizard opens again

4.2.2.4.8 ElasTest Security Service

Test ID GUI-ESS-001 Test Name
e2e-
test.test_create_exec_tjob

Requirements
tested

1. ETM1, ETM2, ETM3, ETM4, ETM5, ETM6, ETM7, ETM8, ETM9,
ETM18, ESS3

Description
Create a TJob that uses EUS-issued web browser to visit a web site
and execute a test

Step by Step

1. Visit the ElasTest Dashboard.

2. Create a TJob that uses EUS for opening a web browser and
testing the login functionality of the FullTeaching web application
and start the ESS scan.

3. Tick the EUS and ESS boxes among the Test Support Services for
the TJob

4. Executes the TJob and waits for it to finish.

D6.3: ElasTest Continuous Integration and Validation System v2

54

6. Checks if the Execution has finished correctly and the ESS test
results have been displayed

4.2.2.4.9 ElasTest Test Manager

Test ID GUI-ETM-001 Test Name
EtmWebappE2eTest-
testCreateChromeTest

Requirements
tested

ETM1, ETM2, ETM3, ETM4, ETM5, ETM6, ETM7, ETM8, ETM9,
ETM11, ETM18, ETM22, ETM26, ETM27

Description
Test that creates a Project, a SuT and a TJob with EUS and executes
it.

Step by Step

1. First navigates to the ElasTest GUI (Dashboard).

2. Checks if the Project to create already exists and if not, it is
created.

3. Checks if the SuT already exists to create within the Project and
if it is not, it is created

4. Checks if the TJob already exists to create within the Project and
if it is not, it is created (with SuT and EUS)

5. Executes the TJob and waits for it to finish.

6. Checks if the Execution has finished with FAIL result

Test ID GUI-ETM-002 Test Name
EtmWebappE2eTest-
testCreateMultiTest

Requirements
tested

ETM32, ETM1, ETM2, ETM3, ETM4, ETM5, ETM6, ETM7, ETM8,
ETM9

Description
Test that creates a Project, a SuT and a Multi-Axis TJob with EUS
and executes it.

Step by Step

1. First navigates to the ElasTest GUI (Dashboard).

2. Checks if the Project to create already exists and if not, it is
created.

3. Checks if the SuT already exists to create within the Project and
if it is not, it is created

4. Checks if the TJob already exists to create within the Project and
if it is not, it is created (with SuT and EUS)

5. Executes the TJob and waits for it to finish.

6. Checks if the Execution has finished with FAIL result

D6.3: ElasTest Continuous Integration and Validation System v2

55

Test ID
GUI-ETM-
003

Test
Name

EtmLogAnalyzerE2eTest-
testExecuteAndCheckLogsInLogAnalyzer

Requirements
tested ETM6, ETM7, ETM8, ETM10, ETM18, ETM22, ETM27

Description
Test that executes an existent TJob and checks the logs in
LogAnalyzer when the execution has finished.

Step by Step

1. First navigates to the ElasTest GUI (Dashboard).

2. Navigates to the Project.

3. Executes the TJob and waits for it to finish.

4. Checks if the Execution has finished with SUCCESS result.

5. Navigates to LogAnalyzer from the button of the Execution.

6. Checks if there are logs.

Test ID GUI-ETM-004 Test Name
EtmTestLinkFullteachingE2eTest-
tlFullteachingDataTest

Requirements
tested ETM9, ETM12, ETM13, ETM22, ETM26, ETM27, ETM31

Description
Test that creates sample data in TestLink, syncs them with ElasTest
and executes Test Plan.

Step by Step

1. Checks if TestLink is started and if not, starts it.

2. Create data into TestLink.

3. Navigates to the TestLink section of ElasTest GUI.

4. Syncs TestLink data with ElasTest

5. Checks if data exists in ElasTest (if has been sync successfully)

6. Executes the Test Plan

Test ID
GUI-ETM-005 Test Name EtmHelpPageE2eTest-

checkElasTestVersion

Requirements
tested ETM15, ETM22, ETM27

Description Test that navigates to the Help page and checks ElasTest version

Step by Step 1. First navigates to the ElasTest GUI (Dashboard).

2. Navigates to Help page

D6.3: ElasTest Continuous Integration and Validation System v2

56

3. Checks the ElasTest version

Test ID GUI-ETM-006 Test Name
EtmHelpPageE2eTest-
checkElasTestMainServices

Requirements
tested ETM16, ETM22, ETM27

Description
Test that navigates to Help page and checks if the main services table
is not empty

Step by Step

1. First navigates to the ElasTest GUI (Dashboard).

2. Navigates to Help page

3. Checks if Main Services table is not empty

Test ID GUI-ETM-007 Test Name
EtmTestEnginesE2eTest-
startAndStopTestEngine

Requirements
tested ETM14, ETM22, ETM27

Description Test that starts and stops a Test Engine

Step by Step

1. First navigates to the ElasTest GUI (Dashboard).

2. Navigates to Test Engines page.

3. Starts first test engine (ECE) by clicking start button.

4. Waits until 'Ready' status appears

5. Stops the test engine by clicking stop button.

6. Waits until 'Not initialized' status appears.

Test ID GUI-ETM-008 Test Name
EtmTestSupportServicesE2eTest-
startAndStopTss

Requirements
tested ETM19, ETM22, ETM27

Description Test that starts and stops a Test Engine

Step by Step

1. First navigates to the ElasTest GUI (Dashboard).

2. Navigates to Test Support Services page.

3. Select EUS TSS.

4. Starts EUS by clicking Create Instance button.

D6.3: ElasTest Continuous Integration and Validation System v2

57

5. Waits until 'Ready' status appears

6. Stops the TSS by clicking stop button.

7. Waits until 'Not initialized' status appears.

Test ID
GUI-
ETM-
009

Test
Name

EtmLogComparatorE2eTest-
testExecuteAndCompareLogsWithLogComparator

Requirements
tested ETM28, ETM33, ETM5, ETM6, ETM8

Description
Test that executes a TJob twice with different parameters to obtain
a successful and a failed execution and compares its logs with
LogComparator.

Step by Step

1. First navigates to the ElasTest GUI (Dashboard).

2. Navigates to Project.

3. If TJob already exists, deletes it.

4. Creates TJob.

5. Runs TJob with default parameters and waits for success result.

6. Runs TJob with other parameters and waits for fail result.

7. Navigates to TJob

8. Select All executions (2)

9. Click to "Compare Executions"

10. Check that the log comparator is not empty in any of the
view/comparison combinations

4.2.2.4.10 ElasTest User Impersonation Service

Test ID GUI-EUS-001 Test Name
EusSupportServiceE2eTest-
testSupportService

Requirements
tested EUS1, EUS6, EUS8

Description Check that EUS works fine as an independent TSS

Step by Step

1. Navigate to ETM

2. Start a EUS TSS

3. Select a Chrome browser and start a session

4. Wait until the browser is loaded

D6.3: ElasTest Continuous Integration and Validation System v2

58

5. Navigate to elastest.io

6. Closer browser

7. View session recording

8. Remove recording

Test ID GUI-EUS-002 Test Name
EusTJobE2eTest-testTJob-
EusTJobE2eTest

Requirements
tested EUS1, EUS6, EUS8

Description Check that the EUS works properly together with a TJob

Step by Step

1. Navigate to ETM

2. Create a new project

3. Create a new TJob that uses the EUS

4. Run the new TJob

5. Wait for the EUS GUI

6. Closer browser

7. Wait until TJob has successfully finished

Test ID GUI-EUS-003 Test Name
EusWebRtcE2eTest-
testCreateOpenViduWebRTC

Requirements
tested EUS1, EUS6, EUS7, EUS8

Description Check if WebRTC metrics are sent to the ETM from the browser

Step by Step

1. Navigate to ETM

2. Create a new project

3. Create a new TJob that uses the EUS

4. Run the new TJob

5. Wait until TJob has successfully finished

6. Check if there are webRTC metrics

Test ID GUI-EUS-004 Test Name
EusAWSBrowserE2eTest-
testBrowserInAWSTest

D6.3: ElasTest Continuous Integration and Validation System v2

59

Requirements
tested

EUS1, EUS6, EUS8, EUS11

Description Check if WebRTC metrics are sent to the ETM from the browser

Step by Step

1. Navigate to ETM

2. Create a new project

3. Create a new TJob that uses the EUS

4. Run the new TJob

5. Wait until TJob has successfully finished

6. Check if there are webRTC metrics

 End-to-end tests global overview

In order to have a general overview in the status of each component in the nightly

version of ElasTest we have created a dashboard in Jenkins that reflects the last end-to-

end test job executed for each component

It is common that as shown in the image some components fail whenever other

component implements a change, so developers get a notification and they start to look

for the bugs using the available tools in ElasTest Stable.

D6.3: ElasTest Continuous Integration and Validation System v2

60

5 Resume & conclusion.

The work done in the context of the WP6 has been quite successful. We have set a

complete CI & CV environment fully maintained, providing the consortium partners with

a whole set of integrated tools and procedures to test and deploy their developments.

In addition to the most common tools that are used in professional environments, we

have also added ElasTest itself as a tool to test each component and the integration

itself. This has proved to be an exceptional way to tests not only component by

component and the integration between them but a way of having first-hand feedback

for the platform itself.

Being the final objective of this project to build a platform to ease software end-to-end,

and improve the quality of the Software under Test. We have focused on the quality of

the platform itself being the development of automated tests a must for all the

components. This has led to a fully usable platform, where the requirements

implemented are being tested on a nightly basis.

Regarding the integrations, we have taken into account actual feedback from companies

that are already testing intensively their products or offering testing as a service. So we

could focus on the integration with their preferred tools i.e. Jenkins and TestLink.

6 References

[1] GitHub - development platform inspired by the way you work. -

https://github.com/

[2] Jenkins – Build great thinks at any scale- https://jenkins.io

[3] DockerHub - Dev-test pipeline automation, 100,000+ free apps, public and

private registries - https://hub.docker.com/

[4] OSSRH – The Central Repository: Serving Open Source Components Since 2002 -

http://central.sonatype.org/

[5] Nexus Repository Manager OSS - The world's only repository manager with FREE

support for popular formats. - https://www.sonatype.com/nexus-repository-oss

[6] Private User Registry - Manage the creation of user access to private resource -

https://ci.elastest.io/user-registry/

[7] ElasTest - An elastic platform to ease end to end testing – https://elastest.io

[8] Amazon ECR - Amazon Elastic Container Registry -

https://aws.amazon.com/ecr/?nc1=h_ls

[9] ElasticSearch - https://www.elastic.co/products/elasticsearch

[10] Kibana - https://www.elastic.co/products/kibana

[11] CodeCov.io - Enhancing development workflows and improving code quality. -

https://codecov.io/

[12] SonarCloud - https://about.sonarcloud.io/

[13] ElasTest Jenkins Library - https://github.com/elastest/ci-elastest-jenkins-lib

[14] ElasTest Jenkins Plugin - https://wiki.jenkins.io/display/JENKINS/ElasTest+Plugin

[15] Flannel - https://github.com/coreos/flannel

[16] Fluentd - https://www.fluentd.org

https://github.com/
https://jenkins.io/
https://hub.docker.com/
http://central.sonatype.org/
https://www.sonatype.com/nexus-repository-oss
https://ci.elastest.io/user-registry/
https://elastest.io/
https://aws.amazon.com/ecr/?nc1=h_ls
https://www.elastic.co/products/elasticsearch
https://www.elastic.co/products/kibana
https://codecov.io/
https://about.sonarcloud.io/
https://github.com/elastest/ci-elastest-jenkins-lib
https://wiki.jenkins.io/display/JENKINS/ElasTest+Plugin
https://www.fluentd.org/

D6.3: ElasTest Continuous Integration and Validation System v2

61

D6.3: ElasTest Continuous Integration and Validation System v2

62

ANNEXES

A1. Maintenance Window Procedure Template (updated)

A1.1. General Information

 Affected tools / SW

Template to be filled on each Maintenance Window one row per tool.

SW to be

upgraded

Old

version

New

version
Documentation Location

<name of the tool>

Currently

installed

tool

Proposed

version

Link to the official

documentation of

the proposed

version

host /

container in

host / image

Motivation

[Scheduled maintenance window]

[Critical request]

o ¿Who has requested it?

o ¿Why has been defined as critical?

Risks

• [Docker] The images that use the host Docker could fail until their own Docker is

upgraded.

• [Jenkins] Some Jobs may need to be reconfigured to work.

• ...

Contact information.

 Partner
User

(Name)
Email

Requester

Upgrade responsible Naeva Tec

Notify to
ALL WP6 elastest-wp6@googlegroups.com

Upgrade Plan

 Date and Time Duration*

Start {_DATE_} 07:15 am 2 h

Init communication {_DATE_} 07:15 am 5 min

Back Up {_DATE_} 07:20 am 15 min

mailto:elastest-wp6@googlegroups.com

D6.3: ElasTest Continuous Integration and Validation System v2

63

Upgrade {_DATE_}07:35 am 1 h

Test and confirmation {_DATE_} 08:35 am 25 min

Rollback {_DATE_} 09:00 am 10 min

Communication of results {_DATE_} 09:15 am 5 min

End of the Upgrade {_DATE_} 09:15 am

A1.2. Procedure

A1.2.1. Notification

WP6 users will be notified through the mailing list at the beginning of the upgrade

procedure. Expected maintenance time will be reminded in this email.

A1.2.2. System shutdown.

A1.2.2.a Main Instance.

The administrators will check the CI environment is available for the upgrade.

• No jobs are being executed

• No user processes are executing.

If there are slaves up, they will be stopped.

The security group will disable public http access to the instance only access from Naeva

Tec will be accepted. ()

A1.2.2.b Slaves.

 No actions required

A1.2.2.c ElasTest K8s Nightly.

Stop the service through the script provided:

$ /usr/local/bin/kubernetes-evacuate

This will finish all pods from both master and slaves

The security group will disable public http access to the instance only access from Naeva

Tec will be accepted. (Figure 2. AWS disable inbound rules)

D6.3: ElasTest Continuous Integration and Validation System v2

64

Figure 2. AWS disable inbound rules

A1.2.3. Back-Up

A1.2.3.a Main Instance.

[1] Push user Registry Image:

$ $(aws ecr get-login --no-include-email)

$ cd ci-containersEnviroment/private-user-registry

$ docker ps #get the id of the private-user-registry container

$ docker commit <private-user-registry_id> 842800759158.dkr.ecr.eu-west-

1.amazonaws.com/elastest/private-user-registry:AAAAMMDD

$ Docker push 842800759158.dkr.ecr.eu-west-

1.amazonaws.com/elastest/private-user-registry:AAAAMMDD

[2] Create Snapshot (Figure 3. AWS EC2. Create Image)

• Select instance: elastest-ci

• AMI Backup -> Image / Create Image. (Figure 4. AWS EC2. Configuration

of the Image)

▪ name: elastestci_AAAAMMDD

▪ description: AAAAMMDD_Maintenance_Window

[3] Wait until Image status is: available. (Figure 5. AWS EC2. Available Image)

A1.2.3.b Slaves.

 No actions required

A1.2.3.c ElasTest K8s Nightly.

The process must be done to all EC2 involved in the cluster, both the master and the

node.

[1] Create Snapshot: (Figure 3. AWS EC2. Create Image)

• Select instance: Nightly-K8s-Master

• AMI Backup -> Image / Create Image. (Figure 4. AWS EC2. Configuration

of the Image)

▪ name: nigthly_K8_master_AAAAMMDD

D6.3: ElasTest Continuous Integration and Validation System v2

65

▪ description: AAAAMMDD_Maintenance_Window

Wait until Image status is: available. (Figure 5. AWS EC2. Available Image)

Figure 3. AWS EC2. Create Image

Figure 4. AWS EC2. Configuration of the Image

Figure 5. AWS EC2. Available Image

[2] Create Snapshot: (as sawn in Figure 3. AWS EC2. Create Image)

• Select instance: Nightly-K8s-Slave

• AMI Backup -> Image / Create Image. (Figure 4. AWS EC2. Configuration

of the Image)

▪ name: nigthly_slave_AAAAMMDD

▪ description: AAAAMMDD_Maintenance_Window

Wait until Image status is: available. (Figure 5. AWS EC2. Available Image)

D6.3: ElasTest Continuous Integration and Validation System v2

66

A1.2.4. Upgrade

A1.2.4.a Main Instance.

• Kernel (5min):

o Update and upgrade

$ sudo apt update

$ sudo apt upgrade

o If unused packages:

$ sudo apt autoremove

o Reboot

$ sudo reboot

• Docker:

o All the containers will be stopped.

$ Docker stop $(Docker ps -a -q)

o Docker Images will be cleared.

$ Docker rmi -f $(Docker images -q)

o Docker will be upgraded in the host with:

$ sudo add-apt-repository “deb [arch=amd64]

https://download.docker.com/linux/ubuntu $(lsb_release -cs) stable"

$ sudo apt update

$ sudo apt-get install docker-ce=<DOCKER_NEW_VERSION>

• Docker Compose:

o Run this command to download the latest version of Docker Compose:

$ sudo curl -L

https://github.com/docker/compose/releases/download/<docker-

compose_NEW_VERSION>/docker-compose-`uname -s`-`uname -m` -o

/usr/local/bin/Docker-compose

o Apply executable permissions to the binary:

$ sudo chmod +x /usr/local/bin/Docker-compose

o Test the installation.

$ Docker-compose --version

• AWS cli

o uninstall old version

$ sudo apt-get remove awscli

o install new version

$ sudo curl "https://s3.amazonaws.com/aws-cli/awscli-bundle.zip" -o

"awscli-bundle.zip" && sudo unzip awscli-bundle.zip

&& sudo ./awscli-bundle/install -i /var/lib/aws -b /usr/bin/aws

• User-Registry

o Log in in aws ecr:

D6.3: ElasTest Continuous Integration and Validation System v2

67

$ $(aws ecr get-login --no-include-email)

o Modify docker-compose.yml to retrieve backup instead of clean image.

o Start container:

$ Docker-compose up -d

• Jenkins: <JENKINS_NEW_VERSION>

o Retrieve Dockerfile and setup from GitHub

$ git pull

o remove related containers that could be stuck

$ Docker-compose rm

o Start and build containers:

$. ./env/generate_docker_env.sh

$ Docker-compose up --build -d

o Plugins and jobs will be upgraded (after nginx start).

• Nexus

o remove related containers that could be stuck

$ Docker-compose rm

o The nexus Image will be built and started

$ Docker-compose up --build -d

• Nginx:

o remove related containers that could be stuck

$ Docker-compose rm

o Nginx Image will be upgraded to <NGINX_NEW_VERSION> and the

container rebuilt and restarted

• Jenkins plugins and jobs

o Update all Jenkins plugins

A1.2.4.b Slaves.

• Launch Slaves AMI:

o Select launch instance: elastest-slave-basic-AMI

o Apply the steps 2- 5 into the instance

• Kernel (5min):

o Update and upgrade

$ sudo apt update

$ sudo apt upgrade

o If unused packages:

$ sudo apt autoremove

o Reboot

$ sudo reboot

D6.3: ElasTest Continuous Integration and Validation System v2

68

• Docker:

o All the containers will be stopped.

$ Docker stop $(Docker ps -a -q)

o Docker Images will be cleared.

$ Docker rmi -f $(Docker images -q)

o Docker will be upgraded in the host with:

$ sudo add-apt-repository “deb [arch=amd64]

https://download.docker.com/linux/ubuntu $(lsb_release -cs) stable"

$ sudo apt update

$ sudo apt-get install docker-ce=<DOCKER_NEW_VERSION>

• Docker Compose:

o Run this command to download the latest version of Docker Compose:

$ sudo curl -L

https://github.com/docker/compose/releases/download/<docker-

compose_NEW_VERSION>/docker-compose-`uname -s`-`uname -m` -o

/usr/local/bin/Docker-compose

o Apply executable permissions to the binary:

$ sudo chmod +x /usr/local/bin/Docker-compose

o Test the installation.

$ Docker-compose --version

• AWS cli

o uninstall old version

$ sudo apt-get remove awscli

o install new version

$ sudo curl "https://s3.amazonaws.com/aws-cli/awscli-bundle.zip" -o

"awscli-bundle.zip" && sudo unzip awscli-bundle.zip

&& sudo ./awscli-bundle/install -i /var/lib/aws -b /usr/bin/aws

• AMI creation:

o Select instance: elastest-slave-basic-AMI : (Figure 3. AWS EC2. Create

Image)

o Image / Create Image. (Figure 4. AWS EC2. Configuration of the Image)

▪ name: elastest-slave-basic-AMI-v<new_version>

▪ description: AAAAMMDD_Maintenance_Window

• Jenkins

o In the Jenkins substitute old AMI with new AMI

A1.2.4.c ElasTest K8s Nightly Master.

The process must be done for the master and the nodes

• Kernel (5min):

o Update and upgrade

D6.3: ElasTest Continuous Integration and Validation System v2

69

$ sudo apt update

$ sudo apt upgrade

o If unused packages:

$ sudo apt autoremove

o Reboot

$ sudo reboot

• Docker:

o All the containers will be stopped.

$ Docker stop $(Docker ps -a -q)

o Docker Images will be cleared.

$ Docker rmi -f $(Docker images -q)

o Docker will be upgraded in the host with:

$ sudo add-apt-repository “deb [arch=amd64]

https://download.docker.com/linux/ubuntu $(lsb_release -cs)

stable"

$ sudo apt update

$ sudo apt-get install docker-ce=<DOCKER_NEW_VERSION>

• Docker Compose:

o Run this command to download the latest version of Docker Compose:

$ sudo curl -L

https://github.com/docker/compose/releases/download/<docker-

compose_NEW_VERSION>/docker-compose-`uname -s`-`uname -m` -o

/usr/local/bin/Docker-compose

o Apply executable permissions to the binary:

$ sudo chmod +x /usr/local/bin/Docker-compose

o Test the installation.

$ Docker-compose --version

• AWS cli

o uninstall old version

$ sudo apt-get remove awscli

o install new version

$ sudo curl "https://s3.amazonaws.com/aws-cli/awscli-

bundle.zip" -o "awscli-bundle.zip" && sudo unzip awscli-

bundle.zip && sudo ./awscli-bundle/install -i /var/lib/aws

-b /usr/bin/aws

• Kubernetes - kubeadm:

Only one version can be upgraded at a time. Is possible to upgrade from 1.a to 1.b, and

from 1.a.x to 1.a.(x+1), but no to 1.a.(x+2). Must be done step by step

o Find latest version

$apt update

D6.3: ElasTest Continuous Integration and Validation System v2

70

$apt-cache policy kubeadm

o Run this command to check whether the availability of a new version of

Kubernetes:

replace x in 1.16.x-00 with the latest patch version

$sudo apt-mark unhold kubeadm && \

$sudo apt-get update && apt-get install -y kubeadm=1.16.x-00

&& \

$sudo apt-mark hold kubeadm

o Verify that the download works and has the expected version:

$sudo kubeadm version

o Drain the control plane node (this cordons the master node):

$ sudo kubectl drain $MASTER --ignore-daemonsets

o On the control plane node, run:

$ sudo sudo kubeadm upgrade plan --ignore-preflight-errors

ControlPlaneNodesReady

o If exit on this step is like this, go on with the upgrade. Otherwise, the

system cannot be upgraded and has to be migrated to a new fresh

Kubernetes installation:

…

kubeadm upgrade apply v1.16.0

Note: kubeadm upgrade also automatically renews the certificates that it

manages on this node. To opt-out of certificate renewal the flag --certificate-

renewal=false can be used.

o Choose a version to upgrade to, and run the appropriate command.

(Replace x with the patch version you picked for this upgrade):

$sudo kubeadm upgrade apply v1.16.x

o Test the installation.

$ sudo kubeadm version

o Apply upgrades to Container Network Interface (flannel)

$sudo kubectl apply -f

https://github.com/coreos/flannel/blob/master/Documentation/ku

be-flannel.yml

D6.3: ElasTest Continuous Integration and Validation System v2

71

o Uncordon the control plane node

kubectl uncordon $MASTER

• Kubernetes - kubectl:

o Upgrade the kubelet and kubectl on all control plane nodes

$sudo apt-mark unhold kubelet kubectl && \

$sudo apt-get update && apt-get install -y kubelet=1.16.x-00

kubectl=1.16.x-00 && \

$sudo apt-mark hold kubelet kubectl

o Restart the kubelet

$sudo systemctl restart kubelet

A1.2.4.d ElasTest K8s Nightly Node(s).

The nodes go through a similar process

• Kernel (5min):

o Update and upgrade

$ sudo apt update

$ sudo apt upgrade

o If unused packages:

$ sudo apt autoremove

o Reboot

$ sudo reboot

• Docker:

o All the containers will be stopped.

$ Docker stop $(Docker ps -a -q)

o Docker Images will be cleared.

$ Docker rmi -f $(Docker images -q)

o Docker will be upgraded in the host with:

$ sudo add-apt-repository “deb [arch=amd64]

https://download.docker.com/linux/ubuntu $(lsb_release -cs)

stable"

$ sudo apt update

$ sudo apt-get install docker-ce=<DOCKER_NEW_VERSION>

• Docker Compose:

o Run this command to download the latest version of Docker Compose:

D6.3: ElasTest Continuous Integration and Validation System v2

72

$ sudo curl -L

https://github.com/docker/compose/releases/download/<docker-

compose_NEW_VERSION>/docker-compose-`uname -s`-`uname -m` -o

/usr/local/bin/Docker-compose

o Apply executable permissions to the binary:

$ sudo chmod +x /usr/local/bin/Docker-compose

o Test the installation.

$ Docker-compose --version

• AWS cli

o uninstall old version

$ sudo apt-get remove awscli

o install new version

$ sudo curl "https://s3.amazonaws.com/aws-cli/awscli-

bundle.zip" -o "awscli-bundle.zip" && sudo unzip awscli-

bundle.zip && sudo ./awscli-bundle/install -i /var/lib/aws

-b /usr/bin/aws

• Kubernetes - kubeadm:

Only one version can be upgraded at a time. Is possible to upgrade from 1.a to 1.b,

and from 1.a.x to 1.a.(x+1), but no to 1.a.(x+2). Must be done step by step

o Find latest version

$apt update

o Run this command to check whether the availability of a new version of

Kubernetes:

replace x in 1.16.x-00 with the latest patch version

$sudo apt-mark unhold kubeadm && \

$sudo apt-get update && apt-get install -y kubeadm=1.16.x-00

&& \

$sudo apt-mark hold kubeadm

o Verify that the download works and has the expected version:

$sudo kubeadm version

o Drain the control plane node (this cordons the node):

$ sudo kubectl drain $NODE --ignore-daemonsets

o Upgrade the kubelet configuration:

$ sudo kubeadm upgrade node

o Test the installation.

$ sudo kubeadm version

D6.3: ElasTest Continuous Integration and Validation System v2

73

• Kubernetes - kubectl:

o Upgrade the kubelet and kubectl the nodes

$sudo apt-mark unhold kubelet kubectl && \

$sudo apt-get update && apt-get install -y kubelet=1.16.x-00

kubectl=1.16.x-00 && \

$sudo apt-mark hold kubelet kubectl

o Restart the kubelet

$sudo systemctl restart kubelet

o Uncordon the node

kubectl uncordon $NODE

o Test the installation.

$ sudo kubectl version

A1.2.5. Test and Confirmation

[Test-Jenkins-01] Login in Jenkins

[Test-Jenkins-02] Run basic jobs.

[Test-Jenkins-02-01] Run job hello-world/mvn-hello-world

[Test-Jenkins-02-02] Run job hello-world/hello-world-Docker-image-pipeline

[Test-Jenkins-03] Plugins?

[Test-Nexus-01] Web interface (Login and query)

[Test-Nexus-02] Publish artifact: run Jenkins job: hello-world/private-mvn-release

[Test-Nexus-03] Retrieve artifact.

[Test-UserRegistry-01] Log In

[Test-UserRegistry-02] Regenerate access.

[Test-DockerSibling-01] Run job hello-world/hello-world-Docker-image-pipeline.

[Test-DockerSibling-02] Run job hello-world/pipeline-Docker-privateRegistry

[Test-AMI-01] After AMI update test reboot and Docker TCP ports (if not check Docker

tcp procedure)

https://ci.elastest.io/jenkins/view/examples/job/hello-world/job/private-mvn-release/

D6.3: ElasTest Continuous Integration and Validation System v2

74

A1.2.6. Roll Back

A1.2.6.a Main Instance.

o The instance of the AWS EC2 will be switched off. (elastest-ci)

o A new instance of the AWS EC2 will be launched with the backed-up AMI

with the same configuration and IP as the old one.

o Elastic IP will be assigned to the rolled back instance.

o The Docker Images will be rolled back (the Dockerfile recovered and the

images recreated with the old values)

A1.2.6.b Slaves.

o New image wouldn’t be saved so no extra actions required

A1.2.6.c ElasTest K8s Nightly Master:

o The instance of the Master on AWS EC2 will be switched off. (Nightly-

K8s-Master)

o A new instance of the AWS EC2 will be launched with the backed-up AMI

with the same configuration and IP as the old one.

o Elastic IP (named Nightly-k8s-Master) will be assigned to the rolled back

instance.

A1.2.6.d ElasTest K8s Nightly Node(s):

o The instance of the Node on AWS EC2 will be switched off. (Nightly-K8s-

Slave)

o A new instance of the AWS EC2 will be launched with the backed-up AMI

with the same configuration and IP as the old one.

o Elastic IP (named Nightly-k8s-Slave) will be assigned to the rolled back

instance.

A1.2.7. Open System and Result Notification.

o The instances will be configured to accept external requests

D6.3: ElasTest Continuous Integration and Validation System v2

75

Figure 6. AWS enable inbound rules

A1.3. Results

A1.3.1. Table of results

Phase Result
Time and

duration

Back UP SUCCESS / FAILURE / WARN

Upgrade SUCCESS / FAILURE / WARN

Test and

Confirmation
SUCCESS / FAILURE / WARN

Rollback
NOT RUN / SUCCESS / FAILURE /

WARN

A1.3.2. Actions to be executed after upgrade

A1.3.2.a Main Instance

A1.3.2.b Slaves

A1.3.2.c ElasTest Nightly

A1.4. Logs

<if applies>

D6.3: ElasTest Continuous Integration and Validation System v2

76

A1.5. Issues

Any issue that is detected and is suspected to be related to the upgrade should be

registered here.

