

 D6.4
Version 1.0

Author URJC

Dissemination PU

Date 30-12-2019

Status FINAL

D6.4 ElasTest platform toolbox and integrations v2

Project acronym ELASTEST
Project title ElasTest: an elastic platform for testing complex distributed

large software systems

Project duration 01-01-2017 to 31-12-2019

Project type H2020-ICT-2016-1. Software Technologies

Project reference 731535

Project website http://elastest.eu/

Work package WP6

WP leader Guiomar Tuñón de Hita

Deliverable nature Other

Lead editor URJC

Planned delivery date 20-12-2019

Actual delivery date 30-12-2019

Keywords Open source software, cloud computing, software
engineering, operating systems, computer languages,
software design & development

Funded by the European Union

http://elastest.eu/

D6.4 ElasTest platform toolbox and integrations v2

2

License
This is a public deliverable that is provided to the community under a Creative Commons
Attribution-ShareAlike 4.0 International License:

http://creativecommons.org/licenses/by-sa/4.0/

You are free to:

Share — copy and redistribute the material in any medium or format.

Adapt — remix, transform, and build upon the material for any purpose, even
commercially.

The licensor cannot revoke these freedoms as long as you follow the license
terms.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and
indicate if changes were made. You may do so in any reasonable manner, but not
in any way that suggests the licensor endorses you or your use.

ShareAlike — If you remix, transform, or build upon the material, you must
distribute your contributions under the same license as the original.

No additional restrictions — You may not apply legal terms or technological
measures that legally restrict others from doing anything the license permits.

Notices:

You do not have to comply with the license for elements of the material in the
public domain or where your use is permitted by an applicable exception or
limitation.

No warranties are given. The license may not give you all of the permissions
necessary for your intended use. For example, other rights such as publicity,
privacy, or moral rights may limit how you use the material.

For a full description of the license legal terms, please refer to:

http://creativecommons.org/licenses/by-sa/4.0/legalcode

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/legalcode

D6.4 ElasTest platform toolbox and integrations v2

3

Contributors
Name Affiliation
Francisco Gortázar URJC

Francisco Ramón Díaz URJC

Eduardo Jiménez URJC

Micael Gallego URJC

Version history
Version Date Author(s) Description of changes
0.1 03/12/2019 Francisco Gortázar Initial version (DRAFT)
0.2 05/12/2019 Francisco Ramón

Díaz
Description of ElasTest modes

0.3 10/12/2019 Eduardo Jiménez Description of command line options
and component diagrams. Updates on
TestLink and Jenkins.

0.4 12/12/2019 Francisco Gortázar Review of sections 3 and 4. Writing
sections 1, 2, 5

1.0 30/12/2019 Micael Gallego Final Review

D6.4 ElasTest platform toolbox and integrations v2

4

Table of contents
1 Executive summary ... 9

2 Strategic context and objectives ... 9

3 ElasTest Toolbox ... 11
3.1 System Requirements .. 11
3.2 Technologies used for ElasTest distribution .. 12
3.3 Execution modes .. 12
3.4 ElasTest Platform ... 12
3.5 Architecture ... 13
3.6 ElasTest on Kubernetes .. 15

4 ElasTest integrations with external tools .. 16
4.1 Jenkins integration ... 16

4.1.1 Baseline concepts and technologies .. 17
4.1.2 Component Architecture .. 17
4.1.3 Data Model .. 18
4.1.4 Use Cases ... 19

4.2 TestLink Integration ... 25
4.2.1 Baseline concepts and technologies .. 27
4.2.2 Component Architecture .. 27
4.2.3 Data Model .. 29
4.2.4 Use Cases ... 30

5 Conclusions and future work .. 32

6 References .. 33

D6.4 ElasTest platform toolbox and integrations v2

5

List of figures
Figure 1. Toolbox Component Diagram .. 13

Figure 2. Toolbox Component Diagram including external dependencies 14

Figure 3. Platform container “start” command .. 14

Figure 4. Platform container “stop” command ... 15

Figure 5. ElasTest Jenkins Plugin official web page ... 16

Figure 6. ElasTest Jenkins Plugin modules diagram .. 17

Figure 7. Data model of the Jenkins plugin ... 19

Figure 8. ElasTest Jenkins Plugin Configuration .. 19

Figure 9. Jenkins and ElasTest interactions when plugin is configured 20

Figure 10. ElasTest Jenkins Plugin configuration .. 21

Figure 11. Jenkins job build using the ElasTest Jenkins plugin .. 22

Figure 12. Using the plugin in a pipeline job ... 23

Figure 13. Plugin behavior in a pipeline job .. 24

Figure 14. Plugin configuration in a Freestyle Job .. 25

Figure 15. Plugin behavior in a Freestyle Job .. 25

Figure 16. Running a TestLink test plan within ElasTest ... 27

Figure 17. Module diagram of the integration between ElasTest and TestLink 28

Figure 18. TestLink screenshot .. 29

Figure 19. ETM TestLink Data Model .. 29

Figure 20. Execute a TestLink Test Plan in ElasTest .. 31

Figure 21. Execute a TestLink Test Plan in ElasTest with Cross Browsing 32

D6.4 ElasTest platform toolbox and integrations v2

6

List of tables
No tables in this document

D6.4 ElasTest platform toolbox and integrations v2

7

Glossary of acronyms
Acronym Definition
API Application Programming Interface
AWS Amazon Web Services
CI Continuous Integration
CLI Command Line Interface
CNCF Cloud Native Computing Foundation

CPU Central Processing Unit
DoA Description of Actions
EC2 Elastic Compute Cloud
ECE ElasTest Cost Engine
EDM ElasTest Data Manager
EDS ElasTest Device Emulator Service
EJ ElasTest Jenkins Plugin
EMP ElasTest Monitoring Platform
EMS ElasTest Monitoring Service
EPM ElasTest Platform Manager
ERE ElasTest Recommendation Engine
ESS ElasTest Security Service
EUS ElasTest User Emulator Service
FOSS Free and Open-Source software
HTML HyperText Markup Language
IaC Infrastructure as Code
JSON JavaScript Object Notation
K8s Kubernetes

NPM Node.js Package Manager
RAM Random Access Memory
REST Representational State Transfer
RSA Rivest Shamir Adleman
SotA State of the Art
SPA Single Page Application
SUT System Under Test
TE Test Engine
TJob Testing Job
TSS Test Support Service
URL Uniform Resource Locator

D6.4 ElasTest platform toolbox and integrations v2

8

YAML YAML Ain't Markup Language

D6.4 ElasTest platform toolbox and integrations v2

9

1 Executive summary
The present document describes all the software artefacts of the ElasTest Toolbox
enabling the seamless installation and administration of ElasTest in different platforms.
In the current version, ElasTest can be easily installed on several cloud provides
(Openstack and Amazon AWS), on a machine with Docker engine available and on a
Kubernetes cluster on top of any cloud provider. Another important part of the
document is tailored to describe the integrations of ElasTest with external tools. In the
current version, ElasTest provides integrations with Jenkins CI system and with TestLink
test management system.

The rest of the document is structured as follows. In section 2, the strategic context and
objectives of ElasTest Toolbox and integrations are described. Section 3 is describes how
ElasTest Toolbox is able to install and execute ElasTest in a system with Docker and how
to deploy it in AWS cloud provider. In section 4, the integration with external tools, such
as, Jenkins and TestLink is explained. Finally, section 5 includes the conclusions and
future work, and section 6 contains the references.

2 Strategic context and objectives
The ElasTest Project DoA defines two main tasks related to the ElasTest platform
Toolbox and Integrations in WP6. Let us quote literally the description of tasks here to
fix the context of the tasks that need to be accomplished:

Regarding to ElasTest installers, the DoA states the following:

Task 6.3: ElasTest platform toolbox

This task shall be in charge of creating the appropriate mechanism and tools suitable
for distributing ElasTest artifacts inside and outside the consortium. As a result of
executing this task, developers should be able to install and use ElasTest in a seamless
way. For this, this task shall distinguish two types of situations:

• Distribution of ElasTest FOSS artifacts. The ElasTest platform and many of its
modules shall be released basing on FOSS licenses. For the associated software
artifacts, we shall use the widely accepted FOSS mechanism for software distribution
including robust versioning mechanisms as well as repositories such as Maven Central
(for Java artifacts), NPM and Bower (for JavaScript repositories), Docker Hub (for
Docker images), Launchpad (for Debian/Ubuntu packages), etc.

• Distribution of ElasTest proprietary artifacts. For the non-FOSS artifacts, the project
needs to provide the appropriate distribution mechanisms that shall be designed and
implemented in this task.

For complying with this, this task shall assume all additional developments that are
necessary for the installation, administration and management of ElasTest as a
whole. This task shall also assume the generation of the documentation and
guidelines enabling successful installation and use of ElasTest.

D6.4 ElasTest platform toolbox and integrations v2

10

The consortium has decided to distribute almost1 all ElasTest components as Docker2
containers. Docker provides a clean and simple way to package software and is a widely
accepted distribution platform for open source software artefacts. As a result of this,
the standard FOSS repository to publish all ElasTest binary artefacts is DockerHub.
Nevertheless, since DockerHub is a marketplace for providing images only, the
orchestration of all the containers must be managed separately. It is needed to
download required images and start them in the correct order by taking care of the
dependency resolution among all the components. To achieve this task, in the first
period of the project (from M1 to M18) URJC team developed a component called
“ElasTest Platform”. The ElasTest Platform component is also distributed and executed
as a Docker container and needs Docker engine installed to be used. To make the
installation of ElasTest in a cloud provider’s server even easier, URJC team also provided
a CloudFormation description file to deploy ElasTest in AWS with very simple steps.

In this second period of the project (from M19 to M36) URJC team has provided
deployment descriptors for Kubernetes, that allows users to deploy ElasTest on top of a
Kubernetes cluster. Also, ElasTest Platform has been extended to be able to deploy a
Kubernetes cluster if no cluster available, so that users do not need to understand how
this Kubernetes deployment is done. The different deployment modes of ElasTest will
be described in more detail in Section 3.

With regard to ElasTest integrations, the DoA states the following:

Task 6.4: ElasTest toolbox external integrations

As specified in Section 1.1 on Part B of the DoA of this GA, we want ElasTest to be
compatible with current SotA CI tools and methodologies so that developers can use
it without disrupting their common practices. For this, we shall create the appropriate
modules fully integrating ElasTest into, at least, one popular CI tool so that ElasTest
can be used as a plugin of it. The specific CI tool to be used needs to comply with the
following requirements:

• It must be a FOSS CI tool so that the ElasTest FOSS strategy is strengthened by this
integration.

• It must be a very popular CI tool having a strong community spread worldwide.

• The tool must provide an API enabling the creation of extensions and plugins into it.

This task assumes the responsibility of 1) selecting the appropriate CI tool, 2)
developing the appropriate CI extensions and plugins enabling the use of ElasTest into
it, 3) validating the suitability and stability of the plugins and extensions along the
whole duration of the project.

1 Some components are distributed with other formats, like ElasTest Jenkins plugin.
2 https://www.docker.com/

https://www.docker.com/

D6.4 ElasTest platform toolbox and integrations v2

11

During the first period we decided to provide integrations with Jenkins, as a common CI
server in the industry and TestLink, based on our scoping of the industry. However, the
Jenkins integration still required many manual interventions by ElasTest users, which
could stop it from being adopted. During the second period of the project, URJC team
has worked towards a seamless integration of ElasTest with state-of-the-art practices in
Jenkins for an effortless integration of both tools. In addition, several improvements
have been made to the TestLink integration, mostly in support of the ATOS vertical and
its validation experiments within the project as part of Work Package 7, with the
supervision of CNR. Section 4 contains detailed descriptions of the improvements done
within these two integrations.

3 ElasTest Toolbox
Deliverable 6.2 describes ElasTest platform toolbox and integrations for the first period
of the project (from M1 to M18) and can be considered as a previous version of this
document. In it, ElasTest Toolbox is the generic name used as an umbrella for all the
tools, artefacts and procedures designed to facilitate the installation of ElasTest in
different environments. This section will describe the new forms added in the second
period of the project to deploy ElasTest:

● Deploy ElasTest in Mini mode
● Deploy ElasTest in Singlenode mode
● Deploy ElasTest on K8s manually, using ElasTest manifests
● Deploy ElasTest on K8s using the Toolbox and the EPM

In the next subsections, all these main points will be described in more detail.

3.1 System Requirements

ElasTest is a distributed application aimed at testing and gathering data from other
distributed applications (the system under test, SUT). It is expected that ElasTest will
ingest a huge amount of data while tests are run, and the services ElasTest provides for
consuming this data require a lot of resources. The following is a list describing the
resources needed for each ElasTest deployment. These shall be considered as a bare
minimum, and more resources might be needed depending on the use case:

• ElasTest Mini: this version was built as a reduced version requiring less resources.
2 CPUs and 8Gb are the minimum requirements needed for this deployment
mode.

• ElasTest Singlenode: 16Gb and 2 CPUs
• ElasTest EK (ElasTest mini on Kubernetes): 16Gb and 2 CPUs
• ElasTest HEK (Highly elastic ElasTest on Kubernetes): At least a Kubernetes

cluster with two worker nodes with 8Gb and 2CPUs.

D6.4 ElasTest platform toolbox and integrations v2

12

3.2 Technologies used for ElasTest distribution

ElasTest continues to be based on Docker containers, but now its deployment can be
managed with Kubernetes. Kubernetes is an open-source container-orchestration
system for automating application deployment, scaling, and management. It is
considered the de-facto standard for deploying containerized applications in
production, and is supported for many companies through the Cloud Native Computing
Foundation (CNCF). This foundation comprises companies like Amazon, Google,
Microsoft, Oracle, RedHat, Pivotal, among others.

3.3 Execution modes

Currently ElasTest can be executed in one of the following modes:

• ElasTest Mini: Currently this mode is the lightest of the four and it is the default
execution mode. In this mode, Test Engines (TE) cannot be used. It is ideal to try
ElasTest to test the core features and test web applications. In this mode, ETM
acts as a substitute for Logstash, Elasticsearch, RabbitMQ and ESM.

• ElasTest Singlenode: In this mode ElasTest is executed with all the components.
It is the mode recommended for production use in a single virtual or physical
machine. It needs a machine with high computing resources. This mode can take
several minutes to start all services provided by ElasTest.

• EK (ElasTest Kubernetes): In this mode, the same components available in
ElasTest Mini mode are deployed in a Kubernetes cluster.

• HEK (Highly Scalable ElasTest Kubernetes): In this mode, the same components
available in ElasTest Singlenode mode are deployed in a Kubernetes cluster.
Moreover, EDM and EMP are deployed in an elastic way (EMP agents deployed
through all the cluster to gather data from all the nodes)

3.4 ElasTest Platform

The ElasTest platform offers an easy way to manage the installation of ElasTest. To
deploy ElasTest in a single virtual or physical machine the --mode parameter has to be
used with values mini (default) or singlenode values to start with the respective
modes. It uses docker-compose3 under the hood to pull images and manage the
execution of related docker containers.

ElasTest Platform can create a new VM in a cloud platform to deploy ElasTest. Currently,
OpenStack and AWS are supported. To configure VM creation the following
configuration properties have to be used:

● --paas-type: to indicate if it uses OpenStack (default) or AWS
● --paas-url: to indicate url when --pass-type is openstack
● --paas-user: username for OpenStack, access-key for AWS
● --paas-pass: password for OpenStack, secret-access-key for AWS
● --paas-project-name: project_name for OpenStack, region for AWS

3 https://docs.docker.com/compose/

https://docs.docker.com/compose/

D6.4 ElasTest platform toolbox and integrations v2

13

To deploy ElasTest in kubernetes (EK or HEK modes) the parameter --kubernetes
have to be used.

3.5 Architecture

This section describes how ElasTest Platform is architected and how its modules
interact. ElasTest Platform is implemented as a container packaging several Python
script files. The most important ones are the following:

● main: as the name suggests, is the main script that parses received arguments
to execute commands and is responsible for calling the corresponding python
scripts of the “second level”: run, update and pull.

● run: is used to start or stop ElasTest components. It makes use of “third level”
components, like setEnv to modify environment variables from docker-compose
of the ET services, ETImages to get services’ image or checkETM to wait until
ETM is ready.

● update and pull: are used to update ElasTest. They make use of DockerUtils to
update ElasTest components’ docker images and ETImages to obtain those
images through Platform container service files.

● k8sDeployment: is used to communicate ElasTest Platform with the EPM to
deploy instances in OpenStack or AWS and start ElasTest on them.

Figure 1 shows the components and their interactions.

Figure 1. Toolbox Component Diagram

All scripts interact directly or indirectly with Docker, Filesystem and execute commands
in shell as you can see in the Figure 2.

D6.4 ElasTest platform toolbox and integrations v2

14

Figure 2. Toolbox Component Diagram including external dependencies

Figure 3. Platform container “start” command

The message “Start ElasTest Normal Mode Services” of the diagram of Figure 3
represents the action of execute docker-compose command to start the docker-
compose files used to define ElasTest core components. Because docker-compose
command is in charge of pulling needed images and start the containers these low-level

D6.4 ElasTest platform toolbox and integrations v2

15

actions are not shown in the diagram. The rest of the messages of type “Start ElasTest
… Mode Services” perform similar actions but using a different set of core components.

Once ElasTest is started, the user can stop it pressing Ctrl + C in the shell. She also can
stop it executing the platform container using stop command. This command sends a
SIGTERM signal to the platform container launched with start command. Then, it
terminates all components. These interactions can be seen in Figure 4:

Figure 4. Platform container “stop” command

The messages “Stop … Mode Services” in Figure 4 are basically a call to docker-compose
down command, to stop the containers started with the previous docker-compose up
command.

3.6 ElasTest on Kubernetes

As stated above, ElasTest can be deployed in Kubernetes in two different modes: EK and
HEK. These modes can be deployed in an already existing Kubernetes cluster using the
kubernetes manifests found in ElasTest Toolbox GitHub repository. The manifests of the
EK mode are located in elastest-toolbox/kubernetes/ek folder and the ones of HEK
mode are located in elastest-toolbox/kubernetes/hek folder.

Also, ElasTest Platform can be used to deploy a Kubernetes cluster in a cloud provider
first and then deploy ElasTest on top of it. Openstack and AWS are currently supported.
The following command will connect ElasTest Platform to specified cloud provider,
deploy a kubernetes cluster on it and then deploy ElasTest on that Kubernetes cluster:

docker run --rm -v ~/.elastest:/data -v /var/run/docker.sock:/var/run/docker.sock
elastest/platform start --kubernetes --paas-type=value --paas-url=value --paas-
user=value --paas-pass=value --paas-project-name=value

D6.4 ElasTest platform toolbox and integrations v2

16

4 ElasTest integrations with external tools
ElasTest aims to be compatible with current SotA CI tools and methodologies so that
developers can use it without disrupting their common practices. With this objective in
mind we have integrated ElasTest with:

● Jenkins: The leading open source continuous integration tool. It can be extended
with plugins to augment its features and integrate it with other tools.

● TestLink: The leading open source tool for test management, especially with
manual testing.

In the following subsections, these two integrations are described.

4.1 Jenkins integration

The ElasTest Jenkins Plugin (EJ) is a Jenkins plugin whose purpose is to integrate ElasTest
with Jenkins. This plugin allows to use together Jenkins' capacity and experience to
manage the continuous integration of projects and ElasTest’s features for log analysis
and additional capabilities provided by TSSs. Figure 5 shows ElasTest Jenkins plugin
official web page4.

This plugin allows to use ElasTest features from a Jenkins job. Specifically, it allows to
send job logs to ElasTest and also let test code executed in the job to use ElasTest TSSs.
For example, a test executed in a Jenkins job can use browsers provided by EUS TSS.
Also, all the information gathered during test execution in Jenkins can be analyzed in
ElasTest graphical user interface. These features can be used in Freestyle jobs and in
jobs defined with the new Jenkins pipeline syntax.

Figure 5. ElasTest Jenkins Plugin official web page

4 https://plugins.jenkins.io/elastest

D6.4 ElasTest platform toolbox and integrations v2

17

4.1.1 Baseline concepts and technologies

The EJ is developed using the framework for plugin development provided by Jenkins.
This framework provides the necessary tools to extend the Jenkins functionality in a
controlled and homogeneous way. It defines extensibility points (interfaces or abstract
classes) to allow developers to extend or define new Jenkins functionality. It provides its
own HTML rendering template called Jelly5 and uses another framework called Stapler6
to export plugin objects with a REST-like API.

EJ communicates with ElasTest using the ElasTest Tests Manager (ETM) REST API. ETM
core can manage completely the lifecycle of TJobs executed inside ElasTest. But it also
allows external tools to manage part of this lifecycle. This feature is used by Jenkins
plugin to send Jenkins’ jobs log to ElasTest and provide to it TSSs.

4.1.2 Component Architecture

ElasTest Jenkins Plugin is composed by several modules. Figure 6 shows these modules
and the relations between them. It also shows how some of the modules interact with
ElasTest (by means of EMS’s REST API).

Figure 6. ElasTest Jenkins Plugin modules diagram

Jenkins Core

This module represents the Jenkins logic and its main concepts: jobs, builds, context
execution, etc. This module is responsible to execute the actions provided by the plugin.
When a freestyle job is used, ElasTestWrapper module is used. Otherwise, when

5 https://wiki.jenkins.io/display/JENKINS/Basic+guide+to+Jelly+usage+in+Jenkins
6 http://stapler.kohsuke.org/

D6.4 ElasTest platform toolbox and integrations v2

18

pipeline job is used, the module used is ElasTestStep. Job’s log is sent to ElasTest using
ElasTestWriter. Plugin configuration is managed with ElasTestConfiguration.

Plugin Modules

The main modules of the plugin are:

● LogFilter: Implementation of the ConsoleLogFilter class, an abstract class
provided by Jenkins to allow log manipulation.

● ElasTestWriter: Used by Jenkins to send the log traces of a Job builds to ElasTest.
Manages the sending cycle of a message, message composition and message
delivery.

● ElasTestSubmitter: Client used by the ElasTestWriter to send a composed
message to ElasTest. It sends messages to LogStash7 interface provided by
ElasTest.

● ElasTestStep: This component allows the plugin to be used from a Pipeline Job
and generates a new step that you can use in a pipeline script (elastest(){....}).
Prepares the build environment and integrates the Job execution with ElasTest.

● ElasTestWrapper: This component allows the plugin to be used from a Freestyle
Job. From the configuration of a Job, in the Build Environment section you can
select the Integrate with ElasTest option. It prepares the build environment and
integrates the Job execution with ElasTest.

● ElasTestConfiguration: Entity that stores the plugin configuration and that
provides the functionality to test the connection with ElasTest.

● ElasTestService: Interface with ElasTest REST API. It allows to create the external
TJob execution in ElasTest, to check if the TJob execution is ready so the Job
execution can continue and to send the Job execution results to ElasTest.

● BuildListener: Implementation of the RunListener class, an abstract class
provided by Jenkins to receive notifications from every build that happens in
Jenkins. When the build of a job is finished, it starts the process to obtain the
test results and send them to ElasTest.

ElasTest

Represents the ElasTest deployment. The REST API provided by ETM allows ElasTest
Jenkins plugin to create the necessary entities to integrate the execution of a job in
Jenkins with the execution of a TJob in ElasTest.

4.1.3 Data Model

The data model managed by the EJ plugin is shown in Figure 7 and is split into two parts.
On the one hand, the data managed and stored by Jenkins, such as the global
configuration of the plugin and the configuration of the plugin in a Job, and on the other
hand the data used to exchange information between the plugin and ElasTest.

7 https://www.elastic.co/products/logstash

D6.4 ElasTest platform toolbox and integrations v2

19

Figure 7. Data model of the Jenkins plugin

Exchange Data: These classes stored the necessary info to integrate both Jobs, the Job
on the Jenkins side and the TJob on the ElasTest side.

● ElasTestBuild: Main entity that stores all the data related to a construction that
the plugin requires for its proper operation. It contains the workspace path for
the current build and an instance of the ExternalJob class.

● ExternalJob: Main entity of this model with the information exchanged with
ElasTest.

● TestSupportService: Entity that stores the data related to each TSS requested to
ElasTest to be used within the Jenkins job.

Configuration Data: Jenkins has its own way of persisting the information used by a
plugin.

● ElasTestInstallation: This class contains global configuration of the plugin.
● ElasTestBuildWrapper: This class is used for freestyle jobs.
● ElasTestStep: This makes the same as the previous one, but for a pipeline job.

4.1.4 Use Cases

ElasTest Jenkins Plugin offers two main use cases to the user:

● Use case 1: Set up the plugin
● Use case 2: Build a Job that uses the plugin.

In the following subsections, these two uses cases will be described:

Set up the Jenkins plugin

In this use case a user configures the plugin and test if that configuration is right (Figure
8. Plugin Configuration).

Figure 8. ElasTest Jenkins Plugin Configuration

D6.4 ElasTest platform toolbox and integrations v2

20

Figure 9 shows an UML sequence diagram with the interaction between Jenkins and
ElasTest.

Figure 9. Jenkins and ElasTest interactions when plugin is configured

This diagram is expanded in Figure 10 to show how modules interact inside the plugin.

D6.4 ElasTest platform toolbox and integrations v2

21

Figure 10. ElasTest Jenkins Plugin configuration

The components involved in this use case are ElasTestConfiguration component and the
ElasTestService component. The first one is used to store the plugin configuration and
contains the logic that allows to know if ElasTest version is compatible with the plugin
version. The second one contains a client to access ElasTest REST API.

Build a Job that uses the ElasTest Jenkins plugin

The interaction between Jenkins plugin and ElasTest when a job is executed is shown in
the UML sequence diagram of Figure 11.

D6.4 ElasTest platform toolbox and integrations v2

22

Figure 11. Jenkins job build using the ElasTest Jenkins plugin

The actions performed by the modules of the plugin depends on the specific plugin
configuration of the Job. By default, if the plugin is configured in a job then the console
logs are produced when the job is executed, then sent to ElasTest. If a TSS is selected to
be used in the tests executed, then the plugin asks for selected TSSs to ElasTest as shown
in the sequence diagram.

The specific actions performed and the interactions between internal plugin modules
depends on the job type. They are very different if the job is a freestyle job or a pipeline
job.

Using ElasTest in a pipeline Jenkins job

Figure 12 shows how to use ElasTest Jenkins plugin in a pipeline job. In it, EUS service is
requested and surefireReportsPattern is set to send to ElasTest test results when job is
executed. In Figure 13 can be seen how ElasTestStep is the first plugin module be

D6.4 ElasTest platform toolbox and integrations v2

23

invoked. It creates the TJob execution in ElasTest and associates it with the actual
Jenkins job build. Also, is the responsible to set up the build context with the
environment variables needed to allow test code to know the URL of requested TSSs.
Finally, LogFilter is invoked to create ElasTestWriter and ElasTestSubmitter modules to
be used to process the build logs. During the build, Jenkins sends the log traces to
ElasTest and, when the build finishes, Jenkins informs the BuildListener to send build
results to ElasTest.

Figure 12. Using the plugin in a pipeline job

D6.4 ElasTest platform toolbox and integrations v2

24

Figure 13. Plugin behavior in a pipeline job

Using ElasTest in a freestyle Jenkins job

When the plugin is used in a freestyle job (Figure 14), ElasTestWrapper module is the
main plugin module. The behavior is different in pipeline jobs (described before) and in
freestyle jobs (as shown in Figure 15). In this case, when Jenkins invokes the
ElasTestWrapper, the first thing to do is to create a TJob execution in ElasTest and
associate it with the actual build of the Job. Then, LogFilter module is initialized so that
it can be invoked from Jenkins. After that, Jenkins invokes the LogFilter to create the
ElasTestWriter and the ElasTestSubmitter to use them later to process the logs. In the
next step, ElasTestWrapper is invoked again to wait for the TJob execution to be ready
in the ElasTest side. With the data returned by ElasTest (in the updated TJob) the plugin
updates the build execution context in Jenkins. During the build, Jenkins sends the log
traces to ElasTest and, when the build finishes, Jenkins informs the BuildListener and it
sends the build result to ElasTest (including the test reports if the Junit plugin is used in
the job).

D6.4 ElasTest platform toolbox and integrations v2

25

Figure 14. Plugin configuration in a Freestyle Job

Figure 15. Plugin behavior in a Freestyle Job

4.2 TestLink Integration

TestLink is one of the most popular open source tools to define test plans to be
performed manually during a QA test process. It allows to define test cases, test plans,
builds, etc. A test case in TestLink consists of several steps. Every step contains the exact

D6.4 ElasTest platform toolbox and integrations v2

26

actions that should be performed in this step and the expected outcome of this actions.
To verify if the SUT behaves as expected, a tester has to “execute” manually the steps
defined in every selected test case and verify if the obtained results are the expected
ones. If this is the case, then the test case execution is marked as PASSED. However, if
results are different than expected, the test execution is marked as FAILED. Moreover,
the current behaviour needs to be annotated in the test case execution or in some
ticketing system to be managed by the development team. Usually, the not expected
behaviour is caused by a bug that needs to be fixed. The process to register the current
behaviour typically involves executing again the test case to take screenshots of the
steps, log into remote systems where SUT is deployed to gather logs, configuration files,
etc.

Gathering all evidences and describing current behaviour can be time consuming. The
integration between ElasTest and TestLink allows the tester to perform the manual
actions defined in test case steps in a browser provided by ElasTest. In this way, when a
tester marks a test case execution as FAILED, a recording of the interactions with the
browser attached is provided to the test case execution, the browser console is also
attached. Moreover, if a SUT properly configured is being tested in ElasTest, logs and
metrics of the different SUT components are also registered. Using ElasTest integration
with TestLink, tester doesn’t have to register the actual behaviour manually because it
is done automatically. The developers will have all the powerful ElasTest tools to analyze
the information associated to the failed test case like Log Analyzer.

The integration between ElasTest and TestLink is implemented using the TestLink REST
API to import test definitions into ElasTest. When tests’ information is imported into
ElasTest, tester can execute TestLink test plans using ElasTest graphical interface (see
Figure 16). Test execution results are written back to TestLink. The ElasTest URL for that
specific test case execution is added to the comments section of test case execution. In
that way, when a developer sees the bug report associated to this failed execution, she
can analyze all the gathered information using ElasTest tools.

D6.4 ElasTest platform toolbox and integrations v2

27

Figure 16. Running a TestLink test plan within ElasTest

4.2.1 Baseline concepts and technologies

TestLink provides a REST API8 that can be used to perform the same actions that can be
performed using the web interface. For example, creating a test case, define the steps,
execute a test plan, etc. This API is used by ElasTest to import TestLink information to its
own database. Then, when a test plan is executed using ElasTest tools, the result is saved
in TestLink database by means of TestLink REST API.

4.2.2 Component Architecture

The interaction between the high-level modules involved in the TestLink integration is
shown in the Figure 17. The integration is designed to allow the user interacting with
TestLink directly and through ElasTest main web interface.

8 https://metacpan.org/pod/TestLink::API

https://metacpan.org/pod/TestLink::API

D6.4 ElasTest platform toolbox and integrations v2

28

Figure 17. Module diagram of the integration between ElasTest and TestLink

ElasTest Tests Manager (ETM) is the brain of ElasTest and the main entry point for
developers. ETM is implemented with a Single Page Application (SPA) architecture.
ETMGUI is the frontend part implemented with Angular9 and ETMBackend is the
backend part implemented with Java and SpringBoot10. TestLink integration is mainly
implemented in ETMGUI and ETMBackend, but other ElasTest components are used.
For example, EUS Test Support Service is used to provide the browsers used to perform
the tests.

TestLink itself can be started as an ElasTest component if required. This simplifies the
setup and configuration of the interaction between services. Figure 18 shows the
TestLink web interface. TestLink is started within ElasTest by default in singlenode mode.

9 https://angular.io/
10 https://spring.io/projects/spring-boot

D6.4 ElasTest platform toolbox and integrations v2

29

Figure 18. TestLink screenshot

4.2.3 Data Model

The data model of this integration between ElasTest and TestLink is shown in Figure 19.
The Data model is very similar to the model used to store the information about TJobs
executed by ElasTest, but in this case have different properties to maintain the relation
with the external entities stored in TestLink database.

Figure 19. ETM TestLink Data Model

These entities are used to store the following information:

D6.4 ElasTest platform toolbox and integrations v2

30

● ExternalProject: is the basic organizational unit, which groups a series of
ExternalTJob under itself. It’s related with one TestLink Test Project.

● ExternalTJob: is the basic unit for executing a set of tests on an external
application. It can have a series of test cases associated to execute it. It is related
with one TestLink Test Plan.

● ExternalTestCase: is a set of conditions or variables that make up the test of a
simple case. It’s related with one TestLink Test Case.

● ExternalTestExecution: is the execution of an ExternalTestCase that contains
information about it. For example, information like test result (FAILED or
SUCCED) and start/end date are stored. It is linked to one TestLink Test
Execution.

● ExternalTJobExecution: is the execution of an ExternalTJob that contains
information about it. When an ExternalTJob is executed, one execution is
created for each one of its associated ExternalTestCases and its
ExternalTestExecutions are grouped in ExternalTJobExecution. It is not linked to
any TestLink data model.

4.2.4 Use Cases

When a tester wants to execute in ElasTest some tests defined in TestLink, the following
steps are needed:

1. Create the Test Project, Test Plan, Test cases, and the rest of the required entities
in TestLink.

2. Import TestLink tests to ElasTest.
3. Execute a TestLink Test Plan within ElasTest interface.

The first one of these steps is out of the scope of this documentation because it the
usual way to work with TestLink. The other two steps are described in the following
paragraphs.

Run a TestLink Test Plan from ElasTest

When TestLink information are synchronized with ElasTest entities, a TestLink Test Plan
can be executed in ElasTest. In that way, all evidences gathered during the execution
are associated to the execution, making easier to fix bugs when obtained results are not
similar to the expected ones. To execute a Test Plan, the user has to navigate to the
screen of the Test Plan and click on Play button. The internal interactions performed in
this case are shown in Figure 20.

A test plan may have an associated sut, which will be started automatically by ElasTest
when test plan is run.

The execution of a test plan can be terminated in a normal way, that is, by running all
the test cases, but it can also be paused to resume later or simply terminate the
execution abruptly.

D6.4 ElasTest platform toolbox and integrations v2

31

Figure 20. Execute a TestLink Test Plan in ElasTest

Another new feature is the ability to run a test plan with multiple browsers to do cross
browsing. The user will be able to select two or more different browsers to be started
with the test plan. The browsers will be shown during the execution and the user will be
able to interact with any of them. When interacting with one, the events propagate to
the rest, obtaining the same behavior in all of them, which is very useful to test an
application in several browsers simultaneously, which will save time to the tester. Figure
21 shows how this functionality works.

D6.4 ElasTest platform toolbox and integrations v2

32

Figure 21. Execute a TestLink Test Plan in ElasTest with Cross Browsing

5 Conclusions and future work
During the second period of the project we focused on four different objectives
regarding toolbox and integrations: provide a deployment mode with a reduced
resource consumption to ease the triage of the tool, provide support for Kubernetes,
improve the integration with Jenkins, and support our verticals through TestLink
features.

We consider that we covered all of them in a better way that we anticipated. The
ElasTest mini mode was made available short after our first review (end Summer 2018).

D6.4 ElasTest platform toolbox and integrations v2

33

The Kubernetes support is available since September 2019, and it had some interest in
the industry with a couple of companies interested on it (Okteto and Zooplus, see
interest letters in D1.4). The Jenkins integration has been improved, so that all tasks on
instrumentation are automatically performed by ElasTest without user intervention.
And TestLink integration has been improved with the cross browser feature and some
GUI enhancements.

As a general conclusion, ElasTest can be now used in many different environments (on
public or private clouds, on Kubernetes, as standalone), thus increasing the number of
potential users for the platform.

In the future, integrations for specific use cases from the companies with which we are
collaborating are expected.

6 References
[1] Java Tools and Technologies Landscape 2016:

https://zeroturnaround.com/rebellabs/java-tools-and-technologies-landscape-
2016/

[2] Docker containers. https://www.docker.com/what-container
[3] ElasTest AWS Stack JSON file.

https://raw.githubusercontent.com/elastest/elastest-toolbox/master/AWS/cloud-
formation-latest.json

[4] D2.2: SotA revision document v1

https://zeroturnaround.com/rebellabs/java-tools-and-technologies-landscape-2016/
https://zeroturnaround.com/rebellabs/java-tools-and-technologies-landscape-2016/
https://www.docker.com/what-container
https://raw.githubusercontent.com/elastest/elastest-toolbox/master/AWS/cloud-formation-latest.json
https://raw.githubusercontent.com/elastest/elastest-toolbox/master/AWS/cloud-formation-latest.json

	1 Executive summary
	2 Strategic context and objectives
	3 ElasTest Toolbox
	3.1 System Requirements
	3.2 Technologies used for ElasTest distribution
	3.3 Execution modes
	3.4 ElasTest Platform
	3.5 Architecture
	3.6 ElasTest on Kubernetes

	4 ElasTest integrations with external tools
	4.1 Jenkins integration
	4.1.1 Baseline concepts and technologies
	4.1.2 Component Architecture
	Jenkins Core
	Plugin Modules
	ElasTest

	4.1.3 Data Model
	4.1.4 Use Cases
	Set up the Jenkins plugin
	Build a Job that uses the ElasTest Jenkins plugin

	4.2 TestLink Integration
	4.2.1 Baseline concepts and technologies
	4.2.2 Component Architecture
	4.2.3 Data Model
	4.2.4 Use Cases

	5 Conclusions and future work
	6 References

