Version 1.0

Author CNR

Dissemination PU

Elas

Status FINAL

D7.3 Public demonstrator artifacts

Project title ElasTest: an elastic platform for testing complex distributed
large software systems

Project duration 01-01-2017 to 31-12-2019

Project type H2020-ICT-2016-1. Software Technologies

Project reference 731535

Project website http://elastest.eu/

Work package WP7

WP leader Antonia Bertolino (CNR)

Deliverable nature Other

Lead editor Antonia Bertolino, Eda Marchetti (CNR)

Planned delivery date 31-12-2019

Actual delivery date 30-12-2019

Keywords Open source software, cloud computing, software
engineering, operating systems, computer languages,
software design & development

Funded by the European Union

D7.3 Public demonstrator artifacts C/J EIaS

License

This is a public deliverable that is provided to the community under a Creative
Commons Attribution-ShareAlike 4.0 International License:

http://creativecommons.org/licenses/by-sa/4.0/

You are free to:
Share — copy and redistribute the material in any medium or format.

Adapt — remix, transform, and build upon the material for any purpose, even
commercially.

The licensor cannot revoke these freedoms as long as you follow the license
terms.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license,
and indicate if changes were made. You may do so in any reasonable manner,
but not in any way that suggests the licensor endorses you or your use.

ShareAlike — If you remix, transform, or build upon the material, you must
distribute your contributions under the same license as the original.

No additional restrictions — You may not apply legal terms or technological
measures that legally restrict others from doing anything the license permits.

Notices:

You do not have to comply with the license for elements of the material in the
public domain or where your use is permitted by an applicable exception or
limitation.

No warranties are given. The license may not give you all of the permissions
necessary for your intended use. For example, other rights such as publicity,
privacy, or moral rights may limit how you use the material.

For a full description of the license legal terms, please refer to:

http://creativecommons.org/licenses/by-sa/4.0/legalcode

@O0

D7.3 Public demonstrator artifacts

Contributors

Zahoor Ahmed

TUB

7Y Elas

Antonia Bertolino CNR

Antonello Calabro CNR

Varun Gowtham TUB

Eda Marchetti CNR

Guiomar Tufidn

Naeva Tec

Marisol Prieto

ATOS WORLDLINE

Version history

0.1 30/09/2019 CNR Proposed structure of document

0.2 09/10/2019 CNR More detailed TOC

0.3 02/12/2019 Naeva Tec Inputs for FullTeaching demonstrators

0.4 09/12/2019 TUB Inputs for TUB demonstrators

0.5 14/12/2019 CNR Editing and revision

0.6 16/12/2019 Naeva Tec More inputs for FullTeaching
demonstrators

0.7 16/12/2019 CNR More editing

0.8 19/12/2019 ATOS WL Internal review

1.0 30/12/2019 CNR Final revision

D7.3 Public demonstrator artifacts C/J EIaS

Table of contents

1. EXECULIVE SUMMAIY..cciteuiiiiieiiiiieeiiiiieiiiinesisirsesisimsssssimssssssmssssssssssssssssssssssssssssens 8
2. Naeva Tec artifactsccccceiiiiiiiienniiiiiiiiniiiiiiiirireesssssrresssssssssneesssssssssnns 9
2.1. The Full Teaching demoONStrator....c..ccoociiiiiiiiiieee et e e e e e e e e e e e e e naranaees 9
2.1.1. Feqatures & REQUITEMENTSuuueuueeeieieieeeeeee e e e e e e e ettt st s s e s s e e e e aaeeaaas 9
2.1.2. AFCRITECEUIE ...ttt a e e e e e e et ettt e e e e e e e e e s e s stsssaaaaaaaaeeaaaas 15
B G T (- Yo 11 ol - SO PP PP PPPPPN 16
2.1.4. FUll TEACRING LOST SUITEeereeeieeee ettt a e e e e ettt e e e e e e e e e te s tasaraaaaaaeeaaaas 16
2.1.5. Full Teaching testing demO...............ccoeeecuuiuiiiiiiiiaeeeeeeeectcttetaaa e e e e e e sescsciatvaaaaaaaeeaeans 20
2.2. The OpenVidu demMONSTrator....ccciie e e e e ettt e e e e e e e ecccrre e e e e e e e e e e e e s eabrbraraeeeeaeaeesesannnns 20
2.2.1. Features & REQUITEMENTS.uuuuueuieeeieieeeeeeeee e e e e e e ettt s s sea s e e aaeeeeas 20
2.2.2. AFCRITECEUIEeveeeeeeeee ettt ettt a e e e e e e et e sttt e e e e e e e e s se s ttssaaaaaaaaeeaaaas 21
2.2.3. RESOUICES..ccceuveeeeieeeiitieeee e eeesee e e e et ttee s e e e ettt tte e s e e ettt ee e e e e eetasaessaasetssasssaassssaanasaanenes 21
2.2.4. Mini-demonsStrator tESt SUILEcceeeececciiiiiieeaeeeeeeececceisttaaaaaeeeeesesecstasaaaaaaaaeeaaans 22
2.2.5. Full Teaching testing demO...............ccoeeecuuiiiiiiiiesaeeeeeeeectitteaaaa e e e e e e sescssiasaaaaaaaaeeaeaas 22
2.3. The banking CCS demMONSTIratoriiiieiiieccciiiiieeeee et e e e e e e e e rrr e e e e e e e e e e e eennnns 23
2.4, Naeva TeC fEeADACK. ... e e e et e e e e e e e e e e esannes 23
N U 1= - T o) Vot 25
% B I o Tl 1 o e [T g T 4] = o] YU USPUUURN 25
3.2. Description of application used in QE........ccccuiiiieeieeiii e e e eeeccirrrree e e e e e e e e e e raanns 26
3.2.1. HOT QECRIEECTUIE .vevvveeeeeeeeeeeeeee et a e e e e e e e ettt e e e e e e e e e s e sttssaaaaaaaaeeaaaas 26
3.2.2. 1IOT tESt @NVIFONMENT ..ottt ettt e e e ettt see e e e e e e tse e s e e s tataaeeasaeenes 27
3.3. Description of application Used in CCSuuiiiiiieiiie e e e eeeccrerrree e e e e e e e e e e eaanes 29
3.3.1. EMBERS QICRItECIUIE ... eeeeeeeetttttaa e e e e e e ettt e s e e e e e e e sestssaaaaaaaaeeaaaas 30
R S | (o B B =Y 1B =P PP UPPPPPRN 31
34,1, TESEING iN QE ...ttt e e ettt e e e et re e e e e et rr e e e e ettt aaaaaaaas 31
3.4.2. TESEING iN CCS .ottt e ettt e e e e ettt e e e e e et ee s e e e aetaaessaaasasaeeesaeenes 33
3.5. lloT testing demo and tULOrial......eeeeeei i e e e e e e e 35
T NV L= (Y=Y | o T Yol U PPRUURN 35

D7.3 Public demonstrator artifacts C/J EIaS

List of figures

Figure 1: FUlITEAChING WD SIte..ccviiiii i e e e e e 9
FIUIE 2: PSEUOO COUISE ...uuuiiiiiiiiiiieee e e e ee ettt e e e e e e e e e e e sttt raaeeeeaaeeeeeeesassssaesseaaaaaesesaaassstssranaeaaaanns 9
Figure 3: Forum activation and de-activationcccccciiiiiieiii e 10
FIUIE 4: VIdEO BNTIIES c..iiiiiiiieiee e e ettt e e e e e e e e ettt e e e e e e e e e s e e ababtaeaeeeaaaeeeesssassstbsaseeaaaanens 11
FIZUIE 5: Chat @XamIPIeeeiiiiiiiiiece ettt e e e e e e e e e et r e e e e e e e e e e e e esasnsraaaeeeaaaaeeas 11
Figure 6: A video SESSION EXAMPIE ..ccciiiiiiiiieiee et e et e e e e e e e e e e e tabrraaeeeaaaaee s 12
Figure 7: OpenVidu arChit@CtUIEcccc ittt e e e e e e e e e et aarra e e e eeaaaeeas 15
Figure 8: FUllTeaching tEStING SCOPESuuriiiiiiiieei e e ettt e e e e e e ee st e e e e e e e e e e e rnrrraareeeaaaeeas 18
Figure 9: Illustration of teSt ODJECTIVESuuviiiiiiiiei e e e 19
Figure 10: OpenVidu arChit@CtUIE ..ottt e e e e e e e e e e rrar e e e e e e e e 21
Figure 11: Print screen from OpenVidu SESSION........ccccuuviiiiiiiieee ettt e e e e e e e e eesiarrrrre e e e e e e 21
Figure 12: Simple HoT @appliCationccociiiiiiieece et e e e e e e e r e e e e e e e 27
Figure 13: SUT collective architecture in ElasTest USing EDScccccciiiiiieeeee e, 28
Figure 14: WE SUT application sequence diagram........cccccuveeeeieeeeieeciiiiiiieeeeee e e ecccnrrneeeeea e 29
Figure 15: Architecture of EMBERS ...ttt e e e e e e sarrraa e e e e e e e 30

D7.3 Public demonstrator artifacts C/J EIaS

Glossary of acronyms

API Application Programming Interface
AWS Amazon Web Services

CCS Comparative Case Study

Cl Continuous Integration

DoA Description of Action

EBS ElasTest Big data Service

ECE ElasTest Cost Engine

EDM ElasTest Data Manager

EDS ElasTest Device Emulator Service
EMS ElasTest Monitoring Service

EOE ElasTest Orchestration Engine
ERE ElasTest Recommendation Engine
ESM ElasTest Service Manager

ESS ElasTest Security Service

ETM ElasTest Tests Manager

EUS ElasTest User Impersonation Service
GUI Graphical User Interface

GDPR General Data Protection Regulation
laaS Infrastructure as a Service

lloT Industrial Internet of Things

JSON JavaScript Object Notation
MBaas Mobility Backend as a Service
npm Node Package Manager

OIF OpenloTFog

POC Proof of Concept

QE Quasi Experiment

QoE Quality of Experience

REST REpresentational State Transfer
SiL System in the Large

SPA Single Page Application

SUT System Under Test

TE Test Engine

TiL Test in the Large

D7.3 Public demonstrator artifacts

7Y Elas

Tlob Testing Job

TSS Test Support Service
WP Work Package

WE With ElasTest

e} Without ElasTest

D7.3 Public demonstrator artifacts C/J EIaS

1. Executive summary

This deliverable belongs to the WP7 workpackage that performs the validation of the
ElasTest platform. In particular, the methodology and the metrics defined for the
validation, as well as the results observed, are described in detail in the companion
deliverable D7.2. This document describes some of the demonstrators developed in
the project and used for the validation studies.

As explained in the project DoA, the platform targets different applications domains.
For this reason, the validation covered several demonstrators belonging to different
domains, namely:

* telecommunication infrastructures and networks (Task 7.2),
* WWW and mobile applications (Task 7.3),

* smart environments and Internet of Things (Task 7.4), and

* multimedia communication (Task 7.5).

For the first two domains in the list, the adopted demonstrators are private and are
described in a companion deliverable D7.4 that is private in nature.

This specific document is public and reports the description of the public
demonstrators artifacts corresponding to the third and fourth domains, provided
respectively by the TUB and the Naeva Tec partners.

As described in D7.2, we conducted on such demonstrators several empirical studies,
including Quasi-Experiments and Comparative Case Studies. In the remainder of this
document, for each of the two partners we present the provided artifacts for the
respective studies. Specifically, for each artifact we provide: i) a description of the
functionalities and architectures; ii) (when applicable) a pointer to the repository
where the application can be found; iii) an illustration of the test strategy followed, as
well as of the developed test suites, and finally iv) a genuine feedback by the partner
on perceived advantages/difficulties in using ElasTest.

Chapter 2 includes the contribution by Naeva Tec, spanning over the FullTeaching
application, used for the QE study, and the OpenVidu application, used in a QE
specifically conceived for the QoE validation study.

Chapter 3 includes the contribution by TUB, which used an lloT application on top of
OpenMTC middleware for the QE studies, and the EU project EMBERS for the CCS.

D7.3 Public demonstrator artifacts C/J Elas

2. Naeva Tec artifacts

2.1. The Full Teaching demonstrator

FullTeaching is a proof of concept of a Web
application for making online lessons easy for
students and teachers. FullTeaching makes use of
different OpenVidu components. OpenVidu
provides capabilities for Real-Time multimedia
communication (in video-conferences) with special
requirements of asymmetric communication, where
a teacher must have certain level of administration Figure 1: FullTeaching web site
features that students do not have.

Whereas FullTeaching is a full and working software system, it is still considered here
as a proof of concept, as it may need some rework in order to be used in high
demanding production environments. For instance, scenarios in which more than 20
users in the same “class” may be active concurrently and more than 4 sessions may
pemmewa 2lso be running at the same time. Also
currently the login functionality is very
simplistic and the personalization options
are quite basic. More importantly, to
comply with the GDPR, disclaimer and
privacy policies have still to be addressed.
o ~ Therefore, at the moment it is valid for
,,,,,,,,,,,,,,, ... demonstrating features and validating
e . processes and tools, but it is not prepared
to run in production environments.

< Pseudoscientific course for treating the evil eye

>
¢

= B

Figure 2: Pseudo course

2.1.1. Features & Requirements

FullTeaching covers the two traditional involved roles of a teacher and a student.
These are well defined and delimited as follows:

* Teacher: This is the responsible for creation, update and deletion of courses
and resources. The teacher is also the manager in a video-conference (or video-
lesson); they will manage the access and the actions made available for
students during the video-lesson.

¢ Students: They are the consumers of the contents and will be able to access
both the resources from the courses they are enrolled in, and the video-
conferences. During the video-conferences in order to actively participate they

9

D7.3 Public demonstrator artifacts C/J Elas

should “raise the hand” to participate as publishers: e.g., when the teacher asks
a question, a student may raise his/her hand and the teacher can allow them to
join as presenter/co-presenter in the session until the teacher decides to stop
him/her.

2.1.1.1. Communication mechanisms

The FullTeaching application is designed to support different ways of communication
that may occur naturally during the learning process:

* Asynchronous communication:
o Documents: lessons, exercises, tutorials, references, etc.
o Forums and video forums.

* Synchronous communication:
o Written: chats.
o Multimedia: video/audio conferences (one to one or multi-conferences)

2.1.1.1.1. Asynchronous communication: forums

COURSES SETTINGS.

Activation / De-activation

¢ Pseudoscientific course for treating the evil eye
The FullTeaching forums are linked to each . » = s
of the courses registered in the application.
The teacher that manages each course can
activate or deactivate it, so he/she and the
students can leave comments. When a
forum is deactivated all the messages that
were previously written won’t be deleted,
they will just become inaccessible. In this
way, if the forum is reactivated all the
comments can be shown again.

The forum is not activated!

< Pseudoscientific course for treating the evil eye

L * L B

B

Figure 3: Forum activation and de-activation

10

D7.3 Public demonstrator artifacts C/J Elas

Messages (Entries and comments)

The messages will be sorted as a tree hierarchy. Each conversation linked to the course
(also called entry) will appear in the main list of the forums tab. Each of these entries
may have nested comments that will be shown when the list item is accessed.

Teacher comments are highlighted, to help students to find answers and requests from
the teacher.

In the FullTeaching forums it is possible not only to find written comments or entries,
but also video comments, entries and screen records.

New video entry

Video-Entry

Pantalla

> o @ 0 —e &)

CANCEL

Figure 4: Video entries

= =)
2.1.1.1.2. Real-time communication (Synchronous): video
and chat sessions
Teacher Cheater : Hello! 1 am the
teacher
Chat Student Concludent : Hil
Student Imprudent | What's up??
The video sessions allow the communication also through
an embedded chat between all the participants. This chat it b limonhinid o
. . . . adipiscing elit, sed do elusmod
is a must for all video-conference applications, to tmpor ittt bor ot dlr
magna aliqua. Ut enim ad minim
communicate any incidence, make little annotations and e e
share resources. In this chat window the connection and Student Conludent - A1a
disconnection events will also appear. S
Student Imprudent ; Lorem ipsum
dolor sit amet, consectetur
Video-conference / video-session s ikt ore o ckore

magna aliqua. Ut eni

The kind of video-conference proposed for FullTeaching is Studeat Concludent i ut allqu
mainly a one-to-many, i.e. by default only the teacher —
publishes media while all the students are the recipients.

But while this is the main functionality, there is also the

option where a student can request the publisher role, and

the teacher then may approve his/her intervention. In this |

case both media flows between student and teacher will be

published.

Figure 5: Chat example

11

D7.3 Public demonstrator artifacts C/J EIaS

1. Start video session

3 88Ssion 1: Introduction = - ar—--"

The student has a button to request
intervention.

2. The student request intervention

= S sic

In the teacher screen a button to grant the
intervention appears.

In the student screen a button for
cancelling the request appears.

3. Intervention is approved by the user

During the intervention the teacher has a button to
finish the intervention

Figure 6: A video session example

12

D7.3 Public demonstrator artifacts C/J EIaS

2.1.1.2. Requirements

The requirements implemented in the FullTeaching demonstrator are the following

ones:

2.1.1.2.1. General Requirements

GRO1 All the users will see all the courses to which they participate

GR02 All the users will be able to check their personal data

GRO3 Al the users will be able to modify their profiles -name/nick,
email, password, picture, etc...-

GRO4 All the users in a course will be able to:

GRO4a See all the resources associated to the course —forum, files,
sessions, ...-

GRO4b If the forum enables to participate in the forum

GRO4c Access to the scheduled video sessions

2.1.1.2.2. Teacher Requirements

TRO1 The teacher will be able to create new courses with a name
and a picture

TRO2 The teacher will be able to create and schedule a new video
session with name, description and date

TRO3 The teacher will be able to activate or deactivate the course
forum

TRO4 The teacher will be able to publish entries and comments in
the forum

TRO5 The teacher will be able to upload, update and delete files in
the course

TRO6 The teacher will be able to add students to the course

TRO7 The teacher will be able to initiate a video session

TRO7a The teacher will be the first publisher (only his/her video and

13

D7.3 Public demonstrator artifacts C/J EIaS

audio stream will be shown)

TRO7b The teacher will be able to manage the session and the
students interventions.

TRO7c The teacher will be able to grant and revoke publisher
privileges to students

TRO7d The teacher will be able to mute his/her own audio

TRO7e The teacher will be able to stop sending video

TRO7f The teacher will be able to comment in the chat associated

to the video session

2.1.1.2.3. Student Requirements

SRO1 The student will be able to interact with the courses in
his/her dashboard

SR02 The student will be able to see the list of the resources (files)
of any course he/she participates in

SR0O3 The student will be able to publish entries and comments in
any enabled forum of any course where he/she is
participating

SR04 The student will be able to join video sessions from any
course where he/she is participating

SR04a The student will receive video and audio from the teacher

SR04b The student will be able to block audio and/or video from
the teacher

SR04c The student will be able to write in the chat associated to the
current video-session

SR04d The student will be able to request be publisher (raise
his/her hand)

SR04e The student will be able to publish his/her audio and video
to the rest of the participants as soon as the teacher
approves his/her intervention

SRO4f The student will be able to cancel his/her request to be

publisher at any time

14

D7.3 Public demonstrator artifacts C/J Elas

2.1.2. Architecture

Front End:

o

FullTeaching Frontend: Refers to the client module of FullTeaching. It
provides users with the entry point to the platform. It can be executed
in any kind of supported browser (Chrome, Firefox, Opera and latest
version of Edge). It consists in a SPA — Single Page Application —
developed with Angular. It communicates with the FullTeaching
backend through HTTP requests.

openvidu-browser: It is the connection interface between the
FullTeaching front-end and the OpenVidu Server. It provides an API that
simplifies the development of the client application for all applications
that make use of OpenVidu. The openvidu-browser is available as a npm
package, so it is quite easy to integrate in Angular applications.

FullTeaching Back-end

Q@ openVidu

d openVidu server

\o

* Figure 7: OpenVidu architecture

Backend:

FullTeaching Backend: It is the module that contains the business logic
of FullTeaching, including: user management, life cycle of WebRTC
sessions, data entities -courses, lessons, forums, files, etc.- It is also the
component in charge of managing access control and security.
Technically this module is developed combining Java, Spring and
Hibernate.

o

15

D7.3 Public demonstrator artifacts C/J EIaS

o openvidu-java-client: it is a Java library that enables the FullTeching
backend to secure communications. It accepts different security
parameters for the video-conference sessions. It provides an extra
security layer.

o openvidu-server: it is the component that manages the video-
conference sessions and interacts directly with the media-server
Kurento. It handles low level WebRTC communication requirements
such as ICE candidates, reconnections, connections, etc.

o Kurento Media Server: It is a standalone media-server that provides
transmission, management and processing of the media flows in the
lower level. As said before it is managed by the OpenVidu-server in a
seamless way for the user and the developer.

o FullTeaching DB: simple and minimal MySQL DB where all the persistent
information is stored.

2.1.3. Resources

The FullTeaching version used for the ElasTest project is available in GitHub in the
ElasTest organisation (here: https://github.com/elastest/full-teaching). It contains 3
branches: the master, where code is updated from external repositories in which other
people are updating and maintaining FullTeaching; one branch for the ElasTest testing,
and the third one for the no-ElasTest testing, in order to maintain a differentiation and
a policy of no contamination for the Quasi-Experiment proposed.

An instance of Full Teaching is available under request in the ElasTest Cl environment,
in order to provide an example for component e2e tests and for validation of the
application itself.

2.1.4. Full Teaching test suite

ElasTest provides a really attractive service in order to test FullTeaching and similar
web application that also provide real-time communications. The ElasTest
functionalities that mainly benefit the testing of FullTeaching are:

* Test Orchestration

* Multiconfiguration

* Test comparison

* Browser recording

* WebRTC browser stats
* Log analysing

* Security testing

Even when many of these features may be available in other tools, they are never
available all together into one platform, as for ElasTest, and specific features like the
WebRTC browser stats are currently not provided by any other testing tool. When a

16

D7.3 Public demonstrator artifacts C/J EIaS

tester needs to retrieve them and use them in the context of a testing session, he/she
must implement them tailoring them just for the specific test or retrieve them
manually from the browser.

In the end, the testing of web applications with realTime communications before
ElasTest was very challenging and test automation for WebRTC communications was
too costly, so in the end, what was usually done is manual test for a limited set of
users, or scenarios.

The tests suites generated in order to validate ElasTest are available in the same
repositories as the code; in the folder called e2e-test [https://github.com/elastest/full-
teaching/tree/master/e2e-test] you may find the test code for either With-ElasTest
and WithOut-ElasTest in the specific branch.

The test strategy that was created to be implemented by both, With-ElasTest and
WithOut-ElasTest, was the one defined by Naeva Tec developers as follows:

2.1.4.1. Test Strategy

2.1.4.1.1. Testing types

The tests that will cover the application will be of the following types:
e Unitary tests
* Integration tests
» Performance tests
* Acceptance tests:

o A compilation of the previous tests that will check if the release
can be live or not. Some of the test if failed can be omitted and
the release can be launched, and Ilater those failing
functionalities corrected or implemented.

2.1.4.1.2. Testing frameworks

All the tests of each of the blocks should be automated and a report should be
released for each execution.
The tests will be developed with the following tools:
* Unitary:
o Angular: Karma + Jasmine
o Java: jUnit (&maven)
o This test will execute in the build phase of each release.

* Integration Test:
o Integration with OpenVidu
o Integration with BDD

* Performance Test:
o Consumed resources
o Time of Response

17

D7.3 Public demonstrator artifacts C% ElasTest

¢ Acceptance Test:
o End 2 End functional
o End 2 End integrity

2.1.4.2. Test Objectives

2.1.4.2.1. Global scope of testing

The following chart shows all the testing scopes to be tested in optimal conditions.

User
Accesibility Frlendly

m/

_— Account
\ Protection
Securlty
I~~~
access

Figure 8: FullTeaching testing scopes

D7.3 Public demonstrator artifacts C/J EIaS

Courses (R)

Sessions (R)
Student
Files (R)
Request
Courses (WR)
Sessions
(WR)
Functionality Teacher Forums (AD)
FILES (WR)
Creation
WebRTC
Manager
Log In/ Log
Out
Personal Info
(WR)
Common
Forums (WR)
Connect /
Disconnect
WebRTC
Chat

Figure 9: lllustration of test objectives

Figure 9 shows the complete testing objectives set. The priority of each of the
branches will be evaluated on following sections and test coverage will be adapted to
the priority taking into account time of test development, time of execution, general
complexity, and availability of tools, etc.

19

D7.3 Public demonstrator artifacts C/J Elas

2.1.5. Full Teaching testing demo

For Unitary and Integration tests in both WE and WO branches, the tests are executed
through a mvn command.

In the case of the end-to-end, the tests executed consist on:

1. Launching Chrome with the required flags. In case of the WO the Selenium
code in the test orchestrator will launch every client node; on the other hand,
in WE it is ElasTest that launches and provides the browsers.

2. Loading the FullTeaching web to load in the browsers and start the tests.

WithOut ElasTest the whole process implies adopting lot of tools, by which the tester
must look for the results and then look for the application logs. The test results and the
tests logs are in the Jenkins sever (in our case), so he/she must go to the application
server and in case it was not running specifically for those tests he/she must narrow
the logs to the time frame of each test. With ElasTest not only he/she has all the logs
and the results in the same place, but also he/she can check the videos of the
execution.

In the case of the security tests the WE and WO branches are completely different. In
WO we had to find and run the OWASP tool deployed with Docker and configure it to
test FullTeaching. Even through the tutorials we have not been able to execute and
find the results of all the security tests provided by OWASP. With ElasTest this was
much easier as ElasTest simply executes the tests and provides straight forward
information.

2.2. The OpenVidu demonstrator

While we were running the second round of the QE, in order to be able to reach a
better comprehension of the QoE we have created an additional demonstrator that
consisted just in an OpenVidu server and a simple JavaScript application that allows to
generate OpenVidu sessions and start consuming and publishing to all the users.

As the communication features in FullTeaching are directly provided by the OpenVidu
server and the Kurento server, and the QoE of the video call is mainly affected by the
quality provided by them, this mini demonstrator allows us to test the QoE of
OpenVidu and Kurento without the overhead of a full web application with complex
features on top.

2.2.1. Features & Requirements.

This mini application only has a form to set the needed properties to connect to an
OpenVidu server:

* OpenVidu public url

20

D7.3 Public demonstrator artifacts C/J EIaS

* OpenVidu Secret
e Userld
* Session|Id

With these parameters the application is capable of connecting to a pre-existing
session or generate a new one in the provided OpenVidu server.

The main requirements are that the application should accept any number of
concurrent users and sessions, so we can overload OpenVidu and evaluate the
degradation of QoE parameters.

2.2.2. Architecture

-

User e

—

-

N 7 =

- o

WebRTC stream Browser = OperVicu
WebRTC streams OpenVidu - Browser

Figure 10: OpenVidu architecture

The architecture of this mini demo is simple and plain as
there is one OpenVidu server —with a Kurento media server
behind- and a front end with JS that connects to the
OpenVidu and shows all the streams that are being
published to OpenVidu.

Figure 11: Print screen from
OpenVidu session

2.2.3. Resources

The tests specifically developed to be tested Without-ElasTest can be found here:
https://github.com/naevatec/openvidu-elastest-ge

The tests specifically developed to be tested With-ElasTest can be found here:

https://github.com/elastest/codeurjc-qe-openvidu

In both repositories the mini-demonstrator can be found.

21

D7.3 Public demonstrator artifacts C/J EIaS

2.2.4. Mini-demonstrator test suite
2.2.4.1. Test Strategy

2.2.4.1.1. Testing Types

In this mini-demonstrator we will only focus in the load tests and more specifically how
the load affects the QoE.

2.2.4.1.2. Load Test Process

We will be testing 3 different environments of OpenVidu, i.e. different deployments of
the OpenVidu and the mini-demonstrator.

For each environment:

» Every participant will be connecting from a single browser. Every browser will
be launched in its own Docker container with fixed resource configuration
(available RAM, number of cores and bandwidth)

» Every browser will be a Chrome instance launched with the following
options: allow-file-access-from-files, use-file-for-fake-video-
capture=fakevideo.y4m, use-file-for-fake-audio-
capture=fakeaudio.wav, window-size=1980,1280

* OpenVidu will be deployed in a dedicated EC2 machine. Every OpenVidu

session (and therefore every dockerized browser) will be connecting to this
same instance

e Each video will have a resolution of 540x360 pixels, 30 fps

» Each browser will be responsible of obtaining the necessary token to connect
to its specific test session (URL will contain as parameters the secret, the
session identifier and the ip where to perform REST operations, so the
JavaScript code can get the token)

» Client HTML/JS code will show up 1 local video and 6 remotes videos (for 7
users per session), including WebRTC stats for all of them

2.2.5. Full Teaching testing demo

In both With ElasTest and WithOut ElasTest the test follows the same path.

1. Launch Chrome with the required flags (Selenium code in the test orchestrator
will launch every client node)

2. Wait for the testing web application to load. This static web app will be hosted
in the same AWS EC2 machine as OpenVidu Server.

3. Wait for the browser to connect to the session in OpenVidu Server
(connectionCreated event)

4. Wait for the local video to be playing (videoPlaying event)

5. Wait for each one of the remote videos to be playing (videoPlaying event)

22

D7.3 Public demonstrator artifacts C/J Elas

With ElasTest at this point gathering the statistics and making decisions is quite simple
and needs little human effort. The human just need to compare the different
executions on ElasTest and select the best configuration.

On the other hand, without ElasTest the tester may need to develop just for this use
case a whole set of additional tailor-made tools that will be collecting and printing the
metrics. Then manually they need to do the comparison between executions. When
talking of a limited time to make this comparison the number of executions that can be
run and compared is very limited. Considering the time needed just to develop and set
in place the additional tailor-made tools, this will never be done in real development
projects. In this study we have developed it just for the purpose of measuring and
comparing with ElasTest branch the same type of data.

2.3. The banking CCS demonstrator

In order to provide feedback and data for the CCS Naeva Tec has selected a POC that
showcases the OpenVidu technology applied to Bank OnBoarding. Banks are deploying
into their processes ways of allow users to hire banks services fully remote, for this
one of the methodologies implies assisted or non-assisted recorded video calls, that
should have specific conditions where both conditions and client agreement should be
recorded together under certain security parameters.

The POC is based in a one-to-one recorded video-conference, in which a bank agent
reads and provides the information about the product and the client accepts the
conditions read by the agent, also in the same video a valid ID should be shown. The
recorded video-conference is proof of the contract.

As this application is owned by the client, its detailed description is not included in this
deliverable. Moreover, this POC has been developed in parallel to the ElasTest
platform so there is no coherent baseline data for comparison. The first complete test
suite has been prepared to be run already with ElasTest, as Naeva Tec aimed at
validating internally the usage of ElasTest platform for this new type of projects.
However, even though no quantitative comparison could be performed, in the
reporting of Naeva Tec qualitative feedback we also leveraged their experience within
this study.

2.4. Naeva Tec feedback

To evaluate ElasTest we have taken into account our experience during the project,
with the QE and with our own experience while trying ElasTest in other company
projects (CCS - Naeva Tec Bank Onboarding), and experience prior to the project in
testing without ElasTest. We absolutely resolve that ElasTest improves the testing
process in many measurable factors such as the TTM, because it reduces the time of
the testing phase and the bug detection by a considerable amount. Also we infer that
as the testing process is more efficient, more tests can be automated, so in the
medium and long term more tests would be executed for each release as those
automated test will be used in the future to avoid regressions.

23

D7.3 Public demonstrator artifacts C/J Elas

Specifically regarding testing real-time communications prior to ElasTest we had
minimum test for that applications, we focussed in functionalities and then, on
demand, we could try to execute QoE tests usually manually. With our experience with
ElasTest we foresee to automate QoE tests for all real-time communications
applications, because we have already seen that the time of developing them and
execute them in many cases is less than what it takes execute them manually.

24

D7.3 Public demonstrator artifacts C/J EIaS

3. TUB artifacts

3.1. The lloT demonstrators

A central use-case in the TUB demonstrators is to show the device emulation capability
available in ElasTest through EDS by constructing custom lloT applications, with the
intent of realizing the application concept with minimum or no hardware, thus
reducing development costs. Furthermore, by using ElasTest, we aim to evaluate the
task of orchestrating a set of targeted tests on the application.

We used OpenMTCl, a middleware that is the reference implementation of oneM2M?
Machine to Machine (M2M) communication standard. With OpenMTC, it is possible to
have information models constructed on a centralized gateway. Next, the so-called
oneM2M containers act as hierarchical placeholders for data, aiding in creation of the
information model. Provided an application can reach the oneM2M gateway, the high
level use cases can be summarized as follows:

1. An application can perform create, read, update and delete actions on
containers and place it on a hierarchical structure in the information model.
The containers can be reached by REST API, through a suitably constructed
path based on the hierarchy.

2. An application can push data to a preferred container identified by the
container’s REST path.

3. An application can subscribe to a preferred container through its REST path and
get notified when data gets pushed into the container.

4. The oneM2M applications are thus governed by either timer or subscriber
notification events for which an application can respond suitably, by
performing an action, which can result in a local operation or further push
necessary data a container.

It is important to note that TUB provides a Test Support Service (TSS) called ElasTest
Device Emulator Service (EDS) that is involved in deploying emulated sensors or
actuators on demand as needed by the application implemented in the demonstrator.
During Release 8 of ElasTest, EDS already encompasses 3 applications that were part of
OIF. Furthermore, EDS is available as a full-fledged application of OpenMTC container,
including 3 different sensors and a simple actuator. The demonstrator is thus able to
get data from the sensors, apply logic to the data and flag the actuator based on the
logic. One can imagine the System in Large as composed of several applications that
can be tested using EDS.

We explain the TUB demonstrators in two parts. The first part includes the application
used for the quasi-experiments inside the project, while the second includes the
demonstrator used for the Comparative Case Study (CCS), which was carried out on an

! OpenMTC, http://www.openmtc.org/
2 oneM2M, http://onem2m.org/

25

D7.3 Public demonstrator artifacts C/J EIaS

external application. A common aspect in both scenarios is that the ElasTest Device
Emulator Service (EDS) has been employed for device emulation.

3.2. Description of application used in QE

For this vertical demonstrator, TUB has chosen OpenloTFog (OIF), a set of Industrial
Internet of Things (lloT) applications that involve sensors and actuators commonly
found on the industry shopfloor that are deployed on fog/edge nodes. OpenMTC lays
at the core of OIF, enabling Machine to Machine (M2M) communication between
applications and is used as a middleware.

OpenMTC is an implementation of the oneM2M standard, which is used as a
middleware by OIF. OpenMTC is offered as open source software and is currently in
beta release. A user can clone the software, write an application and test it using
OpenMTC. In the context of ElasTest, a demonstrator application implemented by a
user becomes a System under Test (SUT) and since the OpenMTC is used to implement
such an application, OpenMTC becomes part of SUT. TJobs can cover tests belonging
to specifics of the implemented demonstrator application as well as OpenMTC. Along
this reasoning, TUB proposes to use test specifications of oneM2M to come up with
TJobs concerning the development of OpenMTC. The advantage of testing OpenMTC in
this regard is that it can cover test cases for a wide range of possible future
demonstrator applications. This can provide a good view on the proposed EDS
architecture and demonstrator applications for validation in terms of metrics provided
by quasi experiment.

For the purpose of the second round of quasi experiment, TUB thus used OpenMTC as
a middleware to develop and test an lloT application based on the concept of control
loop, using the EDS.

3.2.1. lloT architecture

An lloT application consists of sensor, logic and actuator. In the control loop, a
temperature sensing application is run with which we would like to flag an alarm if
temperature goes above 50 degrees centigrade. For this a temperature sensor is
needed which feeds data in periodic intervals, say 1 second, to the logic. The logic
decides if an actuation is needed by checking whether the temperature provided by
sensor is greater than 50 degrees. If greater than 50 degrees an actuating signal is sent
to actuator which may be an alarm. In the above-mentioned example of temperature
monitoring, the temperature sensor and the actuator are provided by EDS, while the
logic is implemented by the demonstrator, collectively acting as a System under Test
(SUT). Furthermore another Test Support Service (TSS) of ElasTest, called ElasTest
Monitoring Service (EMS) was used along with OpenMTC as a middleware to construct
TJobs.

To provide context, an explanation of simple lloT application is provided first. Then we
elaborate the approach taken in With ElasTest (WE) and Without ElasTest (WO)
branches to build the application.

26

D7.3 Public demonstrator artifacts C/J EIaS

/ data \ / data in \
SENSOR LOGIC ACTUATOR

T=5

data > 30 D=3
data out

Figure 12: Simple lloT application

Figure 12 depicts a simple lloT application composed of a temperature sensor, a logic
and an actuator, which are denoted by green boxes representing OpenMTC
applications. The red boxes denote OpenMTC containers. The functionality of the
application can be understood as follows:

1.

3.2.2.

Temperature sensor: Is an application that creates the data container.
Produces a value every 5 seconds and pushes it to the data container.

Actuator: Is an application that creates two containers, data_in and data_out
and subscribes to data_in container which acts as the input for the actuator.
The function of the actuator is to wait for a delay of 3 seconds once actuated,
before pushing the received data to data_out. The delay parameter models the
time required for actuator to complete the task.

Control Logic: The logic is an application that subscribes to the data container
that acts as an input. When sensor pushes to data container, the logic is
notified and it invokes a handler where user logic is applied. If the logic is
satisfied, the logic pushes the data received from sensor to the data_in
container of the actuator.

lloT test environment

The above-mentioned application was used as SUT in WE and WO branches of QE. The
two implementations of the testing environment are described below:

In case of WO, the SUT was composed of 3 different OpenMTC applications,
one each for temperature sensor, actuator and control logic. These applications
are provided in a self-documented repositoryg.

In case of WE, the SUT was composed of 3 different OpenMTC applications,
with logic implemented natively on the SUT, and EDS providing temperature
and simple actuator as emulated devices to the SUT. The architecture of the
SUT inside ElasTest can be found in the Figure 13.

3

OpenMTC example applications, https://github.com/elastest/elastest-device-emulator-

service/tree/master/demo/examples

27

D7.3 Public demonstrator artifacts C/J EIaS

(n -\

EDS

Service Manager OpenMTC GW

(ESM)
e System Under
EDS Orchestrator O Test (SuT)

e

Device Emulator

v

i

Test Manager TJob

ET™M) [© k Exec j

Figure 13: SUT collective architecture in ElasTest using EDS

The workflow to establish the SUT in WE branch of QE is presented as a sequence
diagram in Figure 14.

28

D7.3 Public demonstrator artifacts C/J Elas

: ‘ TORM EDS SuT TJob
User
1

I
| Start Tjob
e

EDS Initiated and read

y

<
<

1
1
:
Initiate EDS |
1
]
1
1
1

i Register User application

I~

| User application registered

!
>

|
loop / [Request list of devices]

Request device type

|
| |
: e . |
| Initialize | - Q
T T ~
| i device
| | |
_ device ready | :
I~] 1
. device initiated and available _ |
L |
| | U
: [Form sur]
\ " wire devices |
|
| <1 |
| T
| loop [while Test not completed]
' !
| | _Test execution
| 1€ +

|
_ Test execution completed

|
|
1
|
|
r
|
|
f
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| T
| |

|
- [[

|

|

|

_ Test results | \
|
|

User TORM EDS SuT device

Figure 14: WE SUT application sequence diagram

3.3. Description of application used in CCS

For the CCS TUB used EMBERS", a Horizon 2020 project funded from the EU. EMBERS is
a smart city project, the tests were performed on a smart city platform, called the
Mobility Backend as a Service (MBaas). For the purpose of CCS, different kinds of
configuration were used for “WE” case. These configurations include different
software for several tests, i.e. for connection testing between the broker and the
clients. The tools include Docker images, shell scrips and test suites. In case of ElasTest
high level manual and automated SDK testing were performed to create TJobs, which
is the job to run the SUT and initiate testing.

The data used for validation have been collected from EMBERS in two different stages:

* Without ElasTest (WO)
* With ElasTest (WE)

4 https://embers.city/
29

D7.3 Public demonstrator artifacts C/J Elas

3.3.1. EMBERS architecture

As EMBERS is a smart city project, the tests were performed on a smart city mobility
platform, called the Mobility Backend as a Service (MBaaS). Figure 15 shows the
overall architecture to understand the study.

oo Communication Protocoks / ket Laves Services Laver e L
Devices / Sensors et Broker Laye Services Lay Presentaton Layer |

LwM2M
FUSECO JES—— REST API [&
Playground Sensors. HTTP Backend Routing ooy
WebSockets \
op Coap ?‘l
FIWARE Pub/Sud N
— e o R E
Transportation =
FIT loT-Lab Sensors) ———————| Routing Incidents
LN
NGSI NGSI O .
MBaas ~ Applications.
usersensors — |
Lwh2M — LwhzM n
=—
MBaas -
Oher Sensors. OneM2M OneM2M
Entorp
City Data Citixain Proprietary Crbrain Proprietary

Figure 15: Architecture of EMBERS

The left side of Figure 15 illustrates the link between the physical devices, open data
portals or any data source that integrate the data into the MBaaS. These data are
being sent to the MBaaS via one of the supported protocols and standards. After the
data are sent to the platform, they pass through the broker layer, which analyses the
incoming streams and forwards the data to their destination regardless of their
standard or protocol. Lastly, the MBaa$S processes these data and present them to the
end user, via REST APIs or real-time channels. In short, the right side of Figure 15
shows possible connections through the Northbound API while the left side depicts the
possible connections to the Southbound API.

Northbound API testing is structured around the idea of how many concurrent users
the APl can handle. This will help to battle-test and identify bottlenecks in the API
implementation and the source code before allowing access to real users. For this
purpose, different load-testing tools were analyzed i.e. Apache JMeter’, smartmeter®,
Tsung’ and Locust®.

The southbound API tests are structured around 3 main themes: 1) scaling and load
testing the system in order to find - and push - the limits, 2) basic performance
comparison between protocols (http, https, mqtt etc.), and 3) real-life long-running
use-cases. These tests also include the testing and comparison of Meshblu broker and
openMTC backend.

The tests that were performed with ElasTest were only on the southbound part, while
‘without ElasTest’ part was done on both Northbound and Southbound APIs. For this

> https://jmeter.apache.org

6 https://www.smartmeter.io/

7 https://github.com/processone/tsung

8 https://docs.locust.io/en/latest/what-is-locust.html

30

D7.3 Public demonstrator artifacts C/J EIaS

reason, a simple comparison cannot be possible. However, the results can be analyzed
by a thorough examination, especially the time parameters.

3.4. lloT test suites

[loT is a field including diverse types of devices that follow various standards. To this
end, industrial communication has evolved in identifying and drawing a boundary
between devices that are normally represented as nodes, and industrial M2M
communication help in not only transporting information but also help in constructing
information models. A challenge that arises in large-scale applications is a deadlock
between implementation and testing, where procurement of the required hardware is
the first step. The deadlock in implementation cannot be solved until the application is
validated. This situation was overcome previously by method of simulation or
emulation of devices such that applications can be constructed using the emulated
devices and tested/validated before investing resources into building an actual
application.

ElasTest helps to address such challenge by:

1. Providing emulated devices using EDS which is offered as a TSS within ElasTest.

2. Leveraging the test orchestration facilities as an easier, generic and more
adaptable framework for testing lloT applications.

3. Solving the industrial communication challenge by following an established
M2M communication standard called oneM2M in the form of a reference
implementation called OpenMTC.

In this section we are going to discuss on usage of ElasTest in testing applications
related to QE (Section 3.4.1) and CCS (Section 3.4.2).

3.4.1. Testingin QE

In the first round of QE, TUB used the oneM2M test specifications to test OpenMTC as
a reference implementation. This has been documented in D7.1 deliverable at the
completion of the first round, therefore in this document we focus on testing methods
for second round of QE.

Section 3.2 provides an overview on the SUT used for WE and WO branches of QE. As a
prerequisite for developers of both WE and WO we defined a set of 4 test suites
depending on the following attributes of the SUT:

1. Sensor Behavior: This suite tests if emulated sensor is behaving accordingly.
The suite can be further broken down into two tests:

a. Sensor Trigger Time: This test checks if there was data generated every
5 seconds by the emulated sensor. If the time difference between two
successive timestamps of data generated is greater than 6 seconds,

then the test fails.
b. Sensor Data: This test checks if the data type generated by the
emulated sensor is of floating point number, if the data is of any other

31

D7.3 Public demonstrator artifacts C/J EIaS

type including NULL then the test fails. This test ensures that the device
node is generating the right type of data suitable for consumption by
the logic application.

2. Actuator Trigger: This test suite contains a single test. When the emulated

sensor generates data, this test verifies if in a previous period actuator was
supposed to trigger, if yes, did it or not trigger. This test helps to ascertain
discrepancies in application logic behavior.

3. Actuator Data Behavior: This test suite contains a single test. When the

actuator signals completion signal via actuator’s output container, this test
verifies if the actuator produces the same data as given to the input of the
actuator by the application logic. This test ascertains if there are no
discrepancies in signals given from the application logic.

4. Actuator Time Behavior: This test suite contains 3 tests, which are:

a.

Actuator Trigger Expected: This test ensures that the actuator does not
misfire unexpectedly. On the event of data generation from the sensor,
the application logic decides if the actuator is supposed to trigger. In the
event of actuation signal received from data_out container of the
actuator, the test checks if the actuator trigger was expected. This test
helps in ascertaining the correct behavior of the application logic also
provides room for introducing faults for testing robustness.

Actuator Not Late: This test checks if the actuator took a longer time to
react. This test helps to ascertain if actuator is fast enough to accept
and act on signals from application logic, considering speed of data
generation from the emulated sensor.

Actuator Behavior Correct: This test helps to ascertain if the actuator
took a reasonable time to complete actuation procedure once the
actuation signal was given by the application logic.

The test suites provide a general idea on the tests to be implemented. The details and
specifics of the implementation were left to the WO and WE testers. However,
developers of both branches agreed on using Python as the main language for
programming and unittest framework of Python ® for testing purposes. The
implementation of SUT differs between WO and WE in the following ways:

1. In case of WO:

a.
b.

C.
d.

The OpenMTC gateway was run separately.

The temperature sensor, application logic and actuator were each run
as standalone OpenMTC applications.

The test suites were also run as standalone OpenMTC applications.
Developers had to manually start each application and collect logs.

2. In case of WE:

a.

The OpenMTC gateway was provided as part of EDS.

° Python Unit testing framework, https://docs.python.org/3/library/unittest.html

32

D7.3 Public demonstrator artifacts C/J EIaS

b. A single OpenMTC application was now sufficient to request required
devices from EDS, wire them together and apply application logic.

c. With the assistance from TSS, ElasTest Monitoring Service (EMS), it was
possible to send events from SUT. This significantly sped up test
development because the developer did not have to concentrate on
actual paths of the containers.

d. Atthe TJob, it was possible to construct tests based on screening events
received from SUT.

e. The WE branch leveraged the test orchestration and log analysis
facilities of ElasTest in addition to using EDS and EMS.

f. The tests can be seen documented online™. The tests can be executed
in a similar fashion how the SUT application was executed.

The following text gives a brief description of insights gained during collecting data for
metrics required as part of validation experiments.

3.4.1.1. Time to Market

In both cases of WE and WO, time to market was the time difference between the
start of the QE and end of QE. Due to the complexity involved in developing the SUT,
the individual test applications and efforts in managing and orchestrating the
applications manually proved to be costly in time for WO.

3.4.1.2. Scalability

For this metric, testers had to test 3 SUTs in parallel in both branches. It was found out
the WE is more scalable because of the requirement of less number resources as
compared to WO. In other words, testing WE completed testing the same number of
SUTs with less number of tests and hence lesser efforts.

3.4.1.3. Robustness

For this metric, we introduced a random fault inside the SUT and TJob each. The faults
were introduced by an external personal, such that the location and type of introduced
faults were unknown to both branches. When the fault occurred, WE branch was
successful in locating the fault. Thanks to the log analyzer facility, it was possible for
the developer to locate the fault easily. For the developer in WO branch, it was difficult
to go through localized log files and search for the fault.

3.4.2. Testingin CCS

For the purpose of CCS, different kinds of configurations were used for ‘WE’ case.
These configurations include different software for several tests, i.e. for connection
testing between the broker and the clients. The tools include Docker images, shell
scripts, test suites. In case of ElasTest, high level manual and automated SDK testing

°qF tests, https://github.com/varungowtham/eds
33

D7.3 Public demonstrator artifacts C/J EIaS

were performed to create Tlobs, which is the job to run the system under test (SUT)
and initiate the testing.

3.4.2.1. Time to Market

Time to market for the WO stage starts from the beginning of the project until the
18th month. This stage involved eight developers and four testers in total. The
developers and testers worked on different components as well as in the integration of
parts i.e. North and Southbound Integrations. There were 13 test cases in total, for
example, Connection testing, Load testing for traffic lights, parking and air pollution
scenarios. Most of the devices under tests were the physical sensors that collect the
data from the environment i.e. temperature, light, etc. Locust and JMeter were the
tools that were used for load testing of Northbound API testing, while some scripts
along with some other software were used for Southbound API testing. During this 18
months’ time, most of the time (around 70%) was spent on individual component
development, testing, and analysis.

Unlike TTM for WO, WE stage does not start from the beginning of the project. It starts
from the month 19™ until 24™. In this stage two developers were involved who were
responsible for continuous integration of the developed components as per agile
methods. Two testers were responsible for continuous testing and analysis of the
components and the system as a whole. Of course, along with ElasTest, some other
tools were also used for validation. There were five test cases in total and all the tests
were executed on the southbound API of MBaaS. Most of the devices under tests were
the emulated sensors that send the data to MBaaS. During this phase, around 50% of
the time was spent on components development and testing. While the analysis and
end-end testing utilized the 33% and 17% of the total time respectively.

By comparing the data from both branches, we can see that time to market is
decreased especially in unit and component testing.

3.4.2.2. Productivity

Considering the productivity in WO, the total number of test cases implemented were
13. This includes around 10k lines of code approximately. The total number of defects
of different sorts were eight and all of them were debugged. As far as WE case is
concerned, 5 test cases consisting around 4k lines of code were tested in the span of
six months. As the number of developers and testers were also limited to 2 and 2
respectively, we could see that the productivity has increased a lot. Lines of code and
test cases per unit increased from 555 & 0.7 (WO) to 666 and 0.8 (WE), even though
the personnel effort reduces to 1/3.

3.4.2.3. Maintenance

By analyzing the gathered data, there were around 8 bugs found by using tools other
than ElasTest. All of the bugs were fixed, however it took around 120 hours of time in
total. This time includes the detection, analysis and the removal of faults. By using

34

D7.3 Public demonstrator artifacts C/J EIaS

ElasTest, we could detect only two bugs that were fixed in 10 hours. By considering all
factors i.e. total span of time, number of test cases, the number of defects found and
the time spent on fixing the bugs, we can conclude that maintenance requires much
less effort by using ElasTest comparing to other tools used in these cases.

3.5. lloT testing demo and tutorial

For a generic tutorial on testing using EDS, the reader is pointed to the reference
documentation of the component. Furthermore, EDS can be re-purposed and
enhanced to operate more devices. The source code of EDS is available on the GitHub
repository of the project?.

3.6. TUB feedback

With the conclusion of the validation experiment and CCS, TUB has observed the
following aspects:

1. With the availability of EDS, it possible to request and wire sensors through an
OpenMTC application. Apart from this, EDS runs an OpenMTC gateway natively.
EDS further promotes testing, using emulated devices of large scale applications
with lower effort in implementation as well as in testing.

2. Test orchestration is the most effective tool. ElasTest takes care of initialization,
management and graceful termination of SUTs and TJobs. This helps users in
maintaining a clean state of test environment before and after the execution of
tests. This feature proved to be very important for the demonstrator.

3. EDS offers generic emulated devices that can be customized according to the
requirements of the user. The generic emulated devices from EDS supports
reusability across test cases, by changing the configuration of the devices used in
the application.

4. The log analyzer facility is another useful feature in ElasTest, which can significantly
reduce the time required in locating test failures.

5. The ability to use multiple TSS helps in combining tests. In the validation
experiments, TUB combined the facilities of EMS with EDS that simplified testing
process significantly.

M EDS reference documentation, https://elastest.io/docs/test-services/eds/
2 EDS GitHub repository, https://github.com/elastest/elastest-device-emulator-service

35

